
An Efficient Algorithm for processing Top-k Spatial Preference Queries
S Rao chintalapudi katikireddy srinivas

 Asst.Professor Associate Professor

CMR Technical Campus B.V.C Engineering College

Abstract

A spatial preference query ranks objects

based on the qualities of features in their spatial

neighborhood. For example, using a real estate

agency database of flats for sale, a customer may

want to rank the flats with respect to the

appropriateness of their location, defined after

aggregating the qualities of other features (e.g.,

restaurants, market, hospital, railway station, etc.)

within their spatial neighborhood. Such a

neighborhood concept can be specified by the user

via different functions. In this paper, we formally

define spatial preference queries and propose

appropriate indexing techniques and search

algorithms for them. Extensive evaluation of our

methods on both real and synthetic data reveals that

an optimized branch-and-bound solution is efficient

and robust with respect to different parameters.

Index Terms—Query processing, spatial

preference query, spatial databases.

1. INTRODUCTION
Spatial database systems manage large

collections of geographic entities, which apart from

spatial attributes contain non-spatial information

(e.g., name, size, type, price, etc.). In this paper, we

study an interesting type of preference queries, which

select the best spatial location with respect to the

quality of facilities in its spatial neighborhood. Given

a set D of interesting objects (e.g., candidate

locations), a top-k spatial preference query retrieves

the k objects in D with the highest scores. The score

of an object is defined by the quality of features (e.g.,

facilities or services) in its spatial neighborhood. As a

motivating example, consider a real estate agency

office that holds a database with available flats for

sale. Here “feature” refers to a class of objects in a

spatial map such as specific facilities or services. A

customer may want to rank the contents of this

database with respect to the quality of their locations,

quantified by aggregating non-spatial characteristics

of other features (e.g., restaurants, super market,

hospital, railway station, etc.) in the spatial

neighborhood of the flat (defined by a spatial range

around it). Quality may be subjective and query-

parametric. For example, the user (e.g., a tourist)

wishes to find a hotel p that is close to a railway

station and a high-quality restaurant. Fig. 1a

illustrates the locations of an object dataset D (hotels)

in white, and two feature data sets: the set F1

(restaurants) in gray, and the set F2 (railway stations)

in black. For the ease of discussion, the qualities are

normalized to values in [0, 1].

Fig. 1.Example of top-k spatial preference query

a) Range Score b)Influence Score

The score T(p) of a hotel p is defined in terms of:

 1) the maximum quality for each feature in

the neighborhood region of p

 2) the aggregation of those qualities.

The Range score, binds the neighborhood

region to a circular region at p with radius ϵ (shown

as a circle), and the aggregate function to SUM. For

instance, the maximum quality of gray and black

points within the circle of p1 are 0.9 and 0.6

respectively, so the score of p1 is T(p1)=

0.9+0.6=1.5. Similarly, we obtain T(p2)=1.0+0.1=1.1

and T(p3)=0.7+0.7=1.4. Hence,the hotel p1 is

returned as the top result.

In fact, the semantics of the aggregate

function is relevant to the user‟s query. The SUM

function attempts to balance the overall qualities of

all features. The neighborhood region in the above

spatial preference query can also be defined by other

score functions. A meaningful score function is the

influence score (see Section 4).As opposed to the

crisp radius ϵ constraint in the range score, the

influence score smoothens the effect of ϵ and assigns

higher weights to railway stations that are closer to

the hotel. Fig. 1b shows a hotel p5 and three railway

stations s1, s2, s3 (with their quality values). The

circles have their radii as multiples of ϵ .Now, the

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

1www.ijert.org

score of a railway station si is computed by

multiplying its quality with the weight 2
-j
, where j is

the order of the smallest circle containing si. For

example, the scores of s1, s2, and s3 are 0.3*2
-1

=0.15,

0.9*2
-2

=0:225, and 1.0*2
-3

=0.125,respectively. The

influence score of p5 is taken as the highest value

(0.225).

 Traditionally, there are two basic ways for ranking

objects:

1) Spatial ranking, which orders the

objects according to their distance from

a reference

point.

2) Non-spatial ranking, which orders the

objects by an aggregate function on

their non-. spatial values

Our top-k spatial preference query integrates

these two types of ranking in an intuitive way. As

indicated by our examples, this new query has a wide

range of applications in service recommendation and

decision support systems.

To our knowledge, there is no existing

efficient solution for processing the top-k spatial

reference query. A brute force approach (to be

elaborated in Section 3.2) for evaluating it is to

compute the scores of all objects in D and select the

top-k ones. This method, however, is expected to be

very expensive for large input data sets. In this paper,

we propose alternative techniques that aim at

minimizing the I/O accesses to the object and feature

datasets, while being also computationally efficient.

Specifically, we contribute the branch-and-bound

(BB)algorithm for efficiently processing the top-k

spatial preference query.

Furthermore, this paper studies one relevant

extension that have not been investigated in our

preliminary work [1].The extension (Section 3.4) is

an optimized version of BB that exploits a more

efficient technique for computing the scores of the

objects. The second extension (Section 3.6) studies

adaptations of the proposed algorithms for aggregate

functions other than SUM, e.g., the functions MIN

and MAX. The third extension (Section 4) develops

solutions for the top-k spatial preference query based

on the influence score. The rest of this paper is

structured as follows: Section 2 provides background

on basic and advanced queries on spatial databases,

as well as top-k query evaluation in relational

databases. Section 3 defines the top-k spatial

preference query and presents our solutions. Section

4 studies the query extension for the influence score.

In Section 5, our query algorithms are experimentally

evaluated with real and synthetic data. Finally,

Section 6 concludes the paper with future research

directions.

2. BACKGROUND AND RELATED

WORK
Object ranking is a popular retrieval task in various

applications. In relational databases, we rank tuples

using an aggregate score function on their attribute

values [2]. For example, a real estate agency

maintains a database that contains information of

flats available for sale. A potential customer wishes

to view the top 10 flats with the largest sizes(area)

and lowest prices. In this case, the score of each flat

is expressed by the sum of two qualities: size and

price, after normalization to the domain [0, 1] (e.g., 1

means the largest size and the lowest price and 0

means the smallest size and the highest price). In

spatial databases, ranking is often associated to

nearest neighbor (NN) retrieval. Given a query

location, we are interested in retrieving the set of

nearest objects to it that qualify a condition (e.g.,

restaurants).Assuming that the set of interesting

objects is indexed by an R-tree [3], we can apply

distance bounds and traverse the index in a branch-

and-bound fashion to obtain the answer [4].

2.1 Spatial Query Evaluation on R-Trees
The most popular spatial access method is

the R-tree [3], which indexes minimum bounding

rectangles (MBRs) of objects. Fig. 2 shows a set

D=(p1, . . . , p8) of spatial objects(e.g., points) and an

R-tree that indexes them. R-trees can efficiently

process main spatial query types, including spatial

range queries, nearest neighbor queries, and spatial

joins.

Given a spatial region W, a spatial range

query retrieves from D the objects that intersect W.

For instance, consider a range query that asks for all

objects within the shaded area in Fig. 2. Starting from

the root of the tree, the query is processed by

recursively following entries, having MBRs that

intersect the query region.

 (a) (b)

Fig. 2. Spatial queries on R-trees. a) MBRs

b)R-tree representation

For instance, e1 does not intersect the query

region, thus the subtree pointed by e1 cannot contain

any query result. In contrast, e2 is followed by the

algorithm and the points in the corresponding node

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

2www.ijert.org

are examined recursively to find the query result p7.A

nearest neighbor query takes as input a query object q

and returns the closest object in D to q. For instance,

the nearest neighbor of q in Fig. 2 is p7. Its

generalization is the k-NN query, which returns the k

closest objects to q, given a positive integer k. NN

(and k-NN) queries can be efficiently processed using

the best-first (BF) algorithm of [4], provided that D is

indexed by an R-tree. A min-heap H, which

organizes R-tree entries based on the (minimum)

distance of their MBRs to q is initialized with the

root entries. In order to find the NN of q in Fig. 2, BF

first inserts to H entries e1,e2, e3, and their distances

to q. Then, the nearest entry e2 is retrieved from H

and objects p1, p7, p8 are inserted to H. The next

nearest entry in H is p7, which is the nearest neighbor

of q. In terms of I/O, the BF algorithm is shown to be

no worse than any NN algorithm on the same R-tree

[4].

 The aggregate R-tree (aR-tree) [10] is a

variant of the Rtree, where each nonleaf entry

augments an aggregate measure for some attribute

value (measure) of all points in its subtree. As an

example, the tree shown in Fig. 2 can be upgraded to

a MAX aR-tree over the point set, if entries e1,e2,e3

contain the maximum measure values of sets (p2,

p3), (p1,p8, p7), (p4, p5, p6), respectively. Assume

that the measure values of p4,p5, p6 are 0.2,0.1, 0.4,

respectively. In this case, the aggregate measure

augmented in e3 would be max(0.2, 0.1,0.4) = 0.4. In

this paper, we employ MAX aR-trees for indexing

the feature data sets (e.g., restaurants),in order to

accelerate the processing of top-k spatial preference

queries.

Given a feature data set F and a

multidimensional region R, the range top-k query

selects the tuples (from F) within the region R and

returns only those with the k highest qualities. Hong

et al. [11] indexed the data set by a MAX aR-tree and

developed an efficient tree traversal algorithm to

answer the query. Instead of finding the best k

qualities from F in a specified region, our (range

score)query considers multiple spatial regions based

on the points from the object data set D, and attempts

to find out the best k regions (based on scores derived

from multiple feature data sets Fc).

3 SPATIAL PREFERENCE QUERIES

Section 3.1 formally defines the top-k spatial

preference query problem and describes the index

structures for the data sets. Section 3.2 studies two

baseline algorithms for processing the query. Section

3.3 presents an efficient branch-and-bound algorithm

for the query, and its further

optimization is proposed in Section 3.4. Section 3.5

develops a specialized spatial join algorithm for

evaluating the query. Finally, Section 3.6 extends the

above algorithms for answering top-k spatial

preference queries involving other aggregate

functions.

3.1 Definitions and Index Structures

Given an object data set D and m feature data sets

F1,F2 . . . Fm, the top-k spatial preference query

retrieves the k points in D with the highest score.

Here, the overall score of an object point p ϵ D is

defined as

 T(p)=AGG{Tc(p)|c ϵ [1,m]} (1)

where AGG is an aggregate function (e.g:

SUM,MIN,MAX etc)

Tc(p) is the c
th

component score of p with

respect to the neighborhood condition and

m is the number of feature data sets.

The c
th

component score of p i.e Tc(p) can be

computed as follows

 Tc(p)=max({w(s)|s ϵ Fc ^ dist(p,s) ≤ ϵ }U

{0}). (2)

3.2 Algorithms
we develop various algorithms for

processing top-k spatial preference queries. We first

introduce a brute-force solution that computes the

score of every point p ϵ D in order to obtain the

query results. Then, we propose a group evaluation

technique that computes the scores of multiple points

concurrently.

3.2.1 Simple Probing Algorithm
For a point p ϵ D, where not all its component scores

are known, its upper bound score Tu(p) defined as

Tu(p)= Tc(p), if Tc(p) is known

 (3)

 1, otherwise

It is guaranteed that the upper bound Tu(p) is greater

than or equals to the actual score T(p).

Algorithm 1 is a pseudocode of the simple probing

(SP)algorithm, which retrieves the query results by

computing the score of every object point. The

algorithm uses two global variables: Wk is a min-

heap for managing the top-k results and ɣ represents

the top-k score so far (i.e., lowest score in Wk).

Initially, the algorithm is invoked at the root node of

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

3www.ijert.org

the object tree (i.e., N =D.root). The procedure is

recursively applied (at Line 4) on tree nodes until a

leaf node is accessed. When a leaf node is reached,

the component score Tc(e) (at Line 8) is computed

by executing a range search on the feature tree Fc for

range score queries. Lines 6-8 describe an

incremental computation technique, for reducing

unnecessary component score computations. In

particular, the point e is ignored as soon as its upper

bound score Tu(e) (see (3)) cannot be greater than the

best-k score ɣ . The variables Wk and ɣ are updated

when the actual score T(e) is greater than ɣ .

Algorithm 1. Simple Probing Algorithm

algorithm SP(Node N)

1: for each entry e ϵ N do

2: If N is nonleaf then

3: read the child node N
'
 pointed by e;

4: SP(N
'
);

5: else

6: for c = 1 to m do

7: If Tu(e) > ɣ then

 //if upper bound is greater than ɣ

8: compute Tc(p) using tree Fc; update Tu(e);

9: If T(e) > ɣ then

10: update Wk and ɣ by e;

Drawbacks

1.it is very expensive because it comutes score for all

objects.

2.No concurrency

3.it is not efficient method for larger input data sets.

3.2.2 Group Probing Algorithm
Due to separate score computations for

different objects, SP is inefficient for large-object

data sets. In view of this, we propose the group

probing (GP) algorithm, a variant of SP,that reduces

I/O cost by computing scores of objects in the same

leaf node of the R-tree concurrently. In GP, when a

leaf node is visited, its points are first stored in a set

V and then their component scores are computed

concurrently at a single traversal of the Fc tree.

 We now introduce some distance notations

for MBRs. Given a point p and an MBR e, the value

mindist(p,e) [4] denotes the minimum possible

distance between p and any point in e. Similarly,

given two MBRs ea and eb, the value mindist(ea, eb)

denotes the minimum possible distance between any

point in ea and any point in eb.

Algorithm 2 shows the procedure for

computing the c
th

component score for a group of

points. Consider a subset Vof D for which we want to

compute their component score at feature tree Fc.

Initially, the procedure is called with N being the root

node of Fc. If e is a nonleaf entry and its mindist

from some point pϵ V is within the range ϵ , then the

procedure is applied recursively on the child node of

e, since the subtree of Fc rooted at e may contribute

to the component score of p. In case e is a leaf entry

(i.e., a feature point), the scores of points in V are

updated if they are within distance ϵ from e.

Algorithm 2. Group Probing Algorithm

algorithm GP(Node N, Set V , Value c,Value ϵ)

1: for each entry e ϵ N do

2: If N is nonleaf then

3: If p ϵ V , mindist(p,e) ≤ ϵ then

4: read the child node N
'
 pointed by e;

5: GP(N
'
,V ,c, ϵ);

6: else

7: for each p ϵ V such that dist(p,e) ϵ do

8: Tc(p)=max{Tc(p),w(e)};

Drawbacks

1.it is also expensive because it computes score for

all objects but concurrently .

3.3 Branch-and-Bound Algorithm

GP is still expensive as it examines all

objects in D and computes their component scores.

We now propose an algorithm that can significantly

reduce the number of objects to be examined. The

key idea is to compute, for nonleaf entries e in the

object tree D, an upper bound Tu(p) of the score T(p)

for any point p in the subtree of e. If Tu(e) ≤ ɣ then

we need not access the subtree of e, thus we can save

numerous score computations.

Algorithm 3 is a pseudocode of our BB

algorithm, based on this idea. BB is called with N

being the root node of D. If N is a nonleaf node,

Lines 3-5 compute the scores T(e) for nonleaf entries

e concurrently. Recall that Tu(e) is an upperbound

score for any point in the subtree of e.. If Tu(e) ≤ ɣ

,then the subtree of e cannot contain better results

than those in Wk and it is removed from V . In order

to obtain points with high scores early, we sort the

entries in descending order of T(e) before invoking

the above procedure recursively on the child nodes

pointed by the entries in V .If N is a leaf node, we

compute the scores for all points of N concurrently

and then update the set Wk of the top-k results. Since

both Wk and ɣ are global variables, their values are

updated during recursive call of BB.

Algorithm 3. Branch-and-Bound Algorithm

Wk= new min-heap of size k (initially empty);

ɣ =0;

algorithm BB(Node N)

1: V ={e| e ϵ N};

2: If N is nonleaf then

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

4www.ijert.org

3: for c= 1 to m do

4: compute Tc(e) for all e ϵ V concurrently;

5: remove entries e in V such that Tu(e) ≤ ɣ ;

6: sort entries e ϵ V in descending order of T(e);

7: for each entry e ϵ V such that Tu(e) > ɣ do

8: read the child node N' pointed by e;

9: BB(N');

10: else

11: for c = 1 to m do

12: compute Tc(e) for all e ϵ V concurrently;

13: remove entries e in V such that Tu(e) ≤ ɣ ;

14: update Wk and ɣ by entries in V ;

Advantages

1.it reduces number of objects to be examined.

2.it is efficient than SP and GP algorithms.

3.3.1 Upper Bound Score Computation

It remains to clarify how the (upper bound)

scores Tc(p) of nonleaf entries (within the same node

N) can be computed concurrently (at Line 4). Our

goal is to compute these upperbound scores such that,

1).the bounds are computed with low I/O

cost, and.

2).the bounds are reasonably tight, in order

to facilitate effective pruning.

To achieve this, we utilize only level-1

entries (i.e., lowest level nonleaf entries) in Fc for

deriving upper bound scores because:

1) there are much fewer level-1 entries than

leaf entries (i.e., points)

2) high-level entries in Fc cannot provide

tight bounds.

In our experimental study, we will also

verify the effectiveness and the cost of using level-

1entries for upper bound score computation.

Algorithm 2 can be modified for the above upper

bound computation task (where input V corresponds

to a set of nonleaf entries), after changing Line 2 to

check whether child nodes of N are above the leaf-

level. The following example illustrates how upper

bound range scores are derived. In Fig. 4a, v1 and v2

are nonleaf

entries in the object tree D and the others are level-1

entries in the feature tree Fc. For the entry v1, we

first define its Minkowski region [21] (i.e., gray

region around v1), the area whose mindist from v1 is

within ϵ . Observe that only entries ei intersecting the

Minkowski region of v1 can contribute to the score of

some point in v1. Thus, the upper bound score Tc(p)

is simply the maximum quality of entries e1,e5, e6,

e7, i.e., 0.9. Similarly, Tc(p) is computed as the

maximum quality of entries e2, e3, e4, e8, i.e., 0.7.

Assuming that v1 and v2 are entries in the same tree

node of D, their upper bounds are computed

concurrently to reduce I/O cost.

Fig. 4. Examples of deriving scores. (a) Upper

bound scores. (b) Optimized computation.

3.4 Optimized Branch-and-Bound

Algorithm
This section develops a more efficient score

computation technique to reduce the cost of the BB

algorithm.

3.4.1 Problem with BB Algorithm
Recall that Lines 11-13 of the BB algorithm

are used to compute the scores of object points (i.e.,

leaf entries of the R-tree on D). A leaf entry e is

pruned if its upper bound score Tu(e) is not greater

than the best score found so far ɣ . However, the

upper bound score Tu(e) (see (3)) is not tight because

any unknown component score is replaced by 1.

Let us examine the computation of Tu(p1)

for the point p1 in Fig. 4b. The entry e1
F1

 is a nonleaf

entry from the feature tree F1. Its augmented quality

value is w(e1
F1

)=0.8. The entry points to a leaf node

containing two feature points, whose qualities values

are 0.6 and 0.8, respectively. Similarly, e2
F2

 is a

nonleaf entry from the tree F2 and it points to a leaf

node of feature points.

Suppose that the best score found so far in

BB is ɣ =1.4(not shown in the figure). We need to

check whether the score of p1 can be higher than ɣ .

For this, we compute the first component score

T1(p1)= 0.6 by accessing the child node of e1
F1

 .

Now, we have the upper bound score of p1 as Tu(p1)

= 0.6 + 1.0= 1.6. Such a bound is above ɣ =1.4 so we

need to compute the second component score

T2(p1)= 0.5 by accessing the child node of e2
F2

 . The

exact score of p1 is T(p1)=0.6+0.5=1.1 the point p1

is then pruned because T(p1) ≤ ɣ . In summary, two

leaf nodes are accessed during the computation of

T(p1) .

Our observation here is that the point p1 can

be pruned earlier, without accessing the child node of

e2
F2

 . By taking the maximum quality of level-1

entries (from F2) that intersect the ϵ -range of p1, we

derive: T2(p1) ≤w(e2
F2

)=0.7.With the first

component score T1(p1)=0.6, we infer that:T(p1)=

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

5www.ijert.org

0.6 + 0.7= 1.3. Such a value is below ɣ so p1 can be

pruned.

3.4.2 Optimized Computation of Scores
Based on our observation, we propose a

tighter derivation for the upper bound score of p than

the one shown in (3).Let p be an object point in D.

Suppose that we have traversed some paths of the

feature trees on F1,F2, . . . Fm.Let µ be an upper

bound of the quality value for any unvisited entry

(leaf or nonleaf) of the feature tree Fc. We then

define the function T*(p) as

 T*(p)=

 (4)

In the max function, the first set denotes the

upper bound quality of any visited feature point

within distance ϵ from p.According to (4), the value

T*(p) is tight only when every c value is low. In

order to achieve this, we access the feature trees in a

round-robin fashion, and traverse the entries in each

feature tree in descending order of quality values.

Round-robin is a popular and effective strategy used

for efficient merging of rankings [7], [9].

Algorithm 4 is the pseudocode for

computing the scores of objects efficiently from the

feature trees F1,F2,. . . ,Fm. The set V contains

objects whose scores need to be computed. Here, ϵ

refers to the distance threshold of the range score,

and ɣ represents the best score found so far. Foreach

feature tree Fc, we employ a max-heap Hc to traverse

the entries of Fc in descending order of their quality

values. The root of Fc is first inserted ino Hc. The

variable µ maintains the upper bound quality of

entries in the tree that will be visited. We then

initialize each component score Tc(p) of every object

p ϵ V to 0.

Algorithm 4. Optimized Group Range Score

Algorithm

algorithm Optimized_Group_Range(Trees F1;F2;

. . . ;Fm, Set V , Value _, Value _)

1: for c := 1 to m do

2: Hc := new max-heap (with quality score as

key);

3: insert Fc.root into Hc;

4: µ := 1;

5: for each entry p ϵ V do

6: Tc(p) := 0;

7: α:= 1;

//ID of the current feature tree

8: while |V |> 0 and there exists a nonempty heap

Hc do

9: deheap an entry e from Hα;

10: µα =w(e);

//update threshold

11: if p ϵ V , mindist(p,e) > ϵ then

12: continue at Line 8;

13: for each p ϵ V do

// prune unqualified points

14: if () ≤ ɣ then

15: remove p from V ;

16: read the child node CN pointed to by e;

17: for each entry e' of CN do

18: if CN is a nonleaf node then

19: if p ϵ V , mindist(p,e') ≤ ϵ then

20: insert e' into Hα;

21: else

// update component scores

22: for each p ϵ V such that dist(p,e') ≤ ϵ do

23: Tα (p)=max{ Tα (p),w(e')};

24: α= next (round-robin) value where Hα is not

empty;

25: for each entry p ϵ V do

26: T(p)= ;

At Line 7, the variable α keeps track of the

ID of the current feature tree being processed. The

loop at Line 8 is used to compute the scores for the

points in the set V. We then deheap an entry e from

the current heap Hα. The property of the max-heap

guarantees that the quality value of any future entry

deheaped from Hα is at most w(e). Thus, the bound µ

is updated to w(e). At Lines 11-12, we prune the

entry e if its distance from each object point p ϵ V is

larger than ϵ . In case e is not pruned, we compute

the tight upper bound score T(p) for each p ϵ V (by

(4)); the object p is removed from V if T(p) ≤

ɣ (Lines 13-15).

Next, we access the child node pointed to by

e, and examine each entry e' in the node (Lines 16-

17). A nonleaf entry e' is inserted into the heap Hα if

its minimum distance from some p ϵ V is within ϵ

(Lines 18-20); whereas a leaf entry e' is used to

update the component score Tα(p) for any p ϵ V

within distance ϵ from e' (Lines 22-23). At Line 24,

we apply the round-robin strategy to find the next α

value such that the heap Hα is not empty. The loop at

Line 8 repeats while V is not empty and there exists a

nonempty heap Hc. At the end, the algorithm derives

the exact scores for the remaining points of V .

3.4.3 The BB* Algorithm

Based on the above, we extend BB

(Algorithm 3) to an optimized BB* algorithm as

follows: First, Lines 11-13 of BB are replaced by a

call to Algorithm 4, for computing the exact scores

for object points in the set V . Second, Lines 3-5of

BB are replaced by a call to a modified algorithm 4,

for deriving the upper bound scores for nonleaf

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

6www.ijert.org

entries (in V).Such a modified Algorithm 4 is

obtained after replacing Line 18 by checking whether

the node CN is a nonleaf node above the level-1.

4. EXPERIMENTAL EVALUATION
In this section, we compare the efficiency of

the proposed algorithms using real and synthetic data

sets. Each data set is indexed by an aR-tree with 4 K

bytes page size. We used an LRU memory buffer

whose default size is set to 0.5 percent of the sum of

tree sizes (for the object and feature trees used).Our

algorithms were implemented in C++ and

experiments were run on a Pentium D 2.8 GHz PC

with 1 GB of RAM. In all experiments, we measure

both the I/O cost (in number of page faults) and the

total execution time (in seconds) of our algorithms.

5 RESULTS
In this section, we conduct experiments on

real object and feature data sets in order to

demonstrate the application of top-k spatial

preference queries. We obtained three real spatial

data sets from a travel

portal,http://www.allstays.com/. Locations in these

data sets correspond to (longitude and

latitude)coordinates in US. We cleaned the data sets

by discarding records without longitude and latitude.

In summary, the relative performance between the

algorithms in all experiments is consistent to the

results on synthetic data.

Fig. –Comparision of I/O cost for SP,GP,BB,BB*.

Fig.-Comparision of Execution Times for

SP,GP,BB,BB*

6 CONCLUSION
In this paper, we studied top-k spatial

preference queries, which provide a novel type of

ranking for spatial objects based on qualities of

features in their neighborhood. The neighborhood of

an object p is captured by the scoring function: 1) the

range score restricts the neighborhood to a crisp

region centered at p, whereas 2) the influence score

relaxes the neighborhood to the whole space and

assigns higher weights to locations closer to p.We

presented four algorithms for processing top-k spatial

preference queries. The baseline algorithm SP

computes the scores of every object by querying on

feature data sets. The algorithm GP is a variant of SP

that reduces I/O cost by computing scores of objects

in the same leaf node concurrently. The algorithm BB

derives upper bound scores for non leaf entries in the

object tree, and prunes those that cannot lead to better

results. The algorithm BB*is a variant of BB that

utilizes an optimized method for computing the

scores of objects (and upper bound scores of non leaf

entries). Based on our experimental findings, BB* is

scalable to large data sets and it is the most robust

algorithm with respect to various parameters. In the

future, we will study the top-k spatial preference

query on a road network, in which the distance

between two points is defined by their shortest path

distance rather than their euclidean distance. The

challenge is to develop alternative methods for

computing the upper bound scores for a group of

points on a road network.

.7.REFERENCES

[1] M.L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis,

“Top-k Spatial Preference Queries,” Proc. IEEE

Int‟l Conf. Data Eng. (ICDE),2007.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

7www.ijert.org

[2] N. Bruno, L. Gravano, and A. Marian,

“Evaluating Top-k Queriesover Web-Accessible

Databases,” Proc. IEEE Int‟l Conf. Data Eng.(ICDE),

2002.

[3] A. Guttman, “R-Trees: A Dynamic Index

Structure for SpatialSearching,” Proc. ACM

SIGMOD, 1984.

[4] G.R. Hjaltason and H. Samet, “Distance

Browsing in SpatialDatabases,” ACM Trans.

Database Systems, vol. 24, no. 2, pp. 265-318, 1999.

[5] R. Weber, H.-J. Schek, and S. Blott, “A

Quantitative Analysis andPerformance Study for

Similarity-Search Methods in High-Dimensional

Spaces,” Proc. Int‟l Conf. Very Large Data

Bases(VLDB), 1998.

[6] K.S. Beyer, J. Goldstein, R. Ramakrishnan, and

U. Shaft, “When is„Nearest Neighbor‟ Meaningful?”

Proc. Seventh Int‟l Conf. DatabaseTheory (ICDT),

1999.

[7] R. Fagin, A. Lotem, and M. Naor, “Optimal

AggregationAlgorithms for Middleware,” Proc. Int‟l

Symp. Principles ofDatabase Systems (PODS), 2001.

[8] I.F. Ilyas, W.G. Aref, and A. Elmagarmid,

“Supporting Top-k JoinQueries in Relational

Databases,” Proc. 29th Int‟l Conf. Very LargeData

Bases (VLDB), 2003.

[9] N. Mamoulis, M.L. Yiu, K.H. Cheng, and D.W.

Cheung, “EfficientTop-k Aggregation of Ranked

Inputs,” ACM Trans. DatabaseSystems, vol. 32, no.

3, p. 19, 2007.

[10] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao,

“Efficient OLAPOperations in Spatial Data

Warehouses,” Proc. Int‟l Symp. Spatialand Temporal

Databases (SSTD), 2001.

[11] S. Hong, B. Moon, and S. Lee, “Efficient

Execution of Range Top-kQueries in Aggregate R-

Trees,” IEICE Trans. Information andSystems, vol.

88-D, no. 11, pp. 2544-2554, 2005.

[12] T. Xia, D. Zhang, E. Kanoulas, and Y. Du, “On

Computing Top-tMost Influential Spatial Sites,”

Proc. 31st Int‟l Conf. Very Large DataBases

(VLDB), 2005.

[13] Y. Du, D. Zhang, and T. Xia, “The Optimal-

Location Query,” Proc.Int‟l Symp. Spatial and

Temporal Databases (SSTD), 2005.

[14] D. Zhang, Y. Du, T. Xia, and Y. Tao,

“Progessive Computation ofThe Min-Dist Optimal-

Location Query,” Proc. 32nd Int‟l Conf. VeryLarge

Data Bases (VLDB), 2006.

[15] Y. Chen and J.M. Patel, “Efficient Evaluation of

All-Nearest-Neighbor Queries,” Proc. IEEE Int‟l

Conf. Data Eng. (ICDE), 2007.

[16] P.G.Y. Kumar and R. Janardan, “Efficient

Algorithms for ReverseProximity Query Problems,”

Proc. 16th ACM Int‟l Conf. Advances inGeographic

Information Systems (GIS), 2008.

[17] M.L. Yiu, P. Karras, and N. Mamoulis, “Ring-

Constrained Join:Deriving Fair Middleman Locations

from Pointsets via aGeometric Constraint,” Proc.

11th Int‟l Conf. Extending Database

Technology (EDBT), 2008.

[18] M.L. Yiu, N. Mamoulis, and P. Karras,

“Common Influence Join:A Natural Join Operation

for Spatial Pointsets,” Proc. IEEE Int‟lConf. Data

Eng. (ICDE), 2008.

[19] Y.-Y. Chen, T. Suel, and A. Markowetz,

“Efficient QueryProcessing in Geographic Web

Search Engines,” Proc. ACMSIGMOD, 2006.

[20] V.S. Sengar, T. Joshi, J. Joy, S. Prakash, and K.

Toyama, “RobustLocation Search from Text

Queries,” Proc. 15th Ann. ACM Int‟lSymp.

Advances in Geographic Information Systems (GIS),

2007.

[21] S. Berchtold, C. Boehm, D. Keim, and H.

Kriegel, “A Cost Modelfor Nearest Neighbor Search

in High-Dimensional Data Space,”Proc. ACM Symp.

Principles of Database Systems (PODS), 1997.

[22] E. Dellis, B. Seeger, and A. Vlachou, “Nearest

Neighbor Search on Vertically Partitioned High-

Dimensional Data,” Proc. Seventh Int‟l Conf. Data

Warehousing and Knowledge Discovery (DaWaK),

pp. 243-253, 2005.

[23] N. Mamoulis and D. Papadias, “Multiway

Spatial Joins,” ACMTrans. Database Systems, vol.

26, no. 4, pp. 424-475, 2001.

[24] A. Hinneburg and D.A. Keim, “An Efficient

Approach to Clustering in Large Multimedia

Databases with Noise,” Proc.Fourth Int‟l Conf.

Knowledge Discovery and Data Mining (KDD),

1998.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 4, June - 2012
ISSN: 2278-0181

8www.ijert.org

