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Abstract 

A spatial preference query ranks objects 

based on the qualities of features in their spatial 

neighborhood. For example, using a real estate 

agency database of flats for sale, a customer may 

want to rank the flats with respect to the 

appropriateness of their location, defined after 

aggregating the qualities of other features (e.g., 

restaurants, market, hospital, railway station, etc.) 

within their spatial neighborhood. Such a 

neighborhood concept can be specified by the user 

via different functions. In this paper, we formally 

define spatial preference queries and propose 

appropriate indexing techniques and search 

algorithms for them. Extensive evaluation of our 

methods on both real and synthetic data reveals that 

an optimized branch-and-bound solution is efficient 

and robust with respect to different parameters. 

 

Index Terms—Query processing, spatial 

preference query, spatial databases. 

 

 

1. INTRODUCTION 
Spatial database systems manage large 

collections of geographic entities, which apart from 

spatial attributes contain non-spatial information 

(e.g., name, size, type, price, etc.).   In this paper, we 

study an interesting type of preference queries, which 

select the best spatial location with respect to the 

quality of facilities in its spatial neighborhood. Given 

a set D of interesting objects (e.g., candidate 

locations), a top-k spatial preference query retrieves 

the k objects in D with the highest scores. The score 

of an object is defined by the quality of features (e.g., 

facilities or services) in its spatial neighborhood. As a 

motivating example, consider a real estate agency 

office that holds a database with available flats for 

sale. Here “feature” refers to a class of objects in a 

spatial map such as specific facilities or services. A 

customer may want to rank the contents of this 

database with respect to the quality of their locations, 

quantified by aggregating non-spatial characteristics 

of other features (e.g., restaurants, super market, 

hospital, railway station, etc.) in the spatial 

neighborhood of the flat (defined by a spatial range 

around it). Quality may be subjective and query-

parametric. For example, the user (e.g., a tourist) 

wishes to find a hotel p that is close to a railway 

station and a high-quality restaurant. Fig. 1a 

illustrates the locations of an object dataset D (hotels) 

in white, and two feature data sets: the set F1 

(restaurants) in gray, and the set F2 (railway stations) 

in black. For the ease of discussion, the qualities are 

normalized to values in [0, 1]. 

 
Fig. 1.Example of top-k spatial preference query  

a) Range Score b)Influence Score 

The score T(p) of a hotel p is defined in terms of:  

 1) the maximum quality for each feature in 

the neighborhood region of p 

 2) the aggregation of those qualities. 

The Range score, binds the neighborhood 

region to a circular region at p with radius ϵ  (shown 

as a circle), and the aggregate function to SUM. For 

instance, the maximum quality of gray and black 

points within the circle of p1 are 0.9 and 0.6 

respectively, so the score of p1 is T(p1)= 

0.9+0.6=1.5. Similarly, we obtain T(p2)=1.0+0.1=1.1 

and T(p3)=0.7+0.7=1.4. Hence,the hotel p1 is 

returned as the top result. 

In fact, the semantics of the aggregate 

function is relevant to the user‟s query. The SUM 

function attempts to balance the overall qualities of 

all features. The neighborhood region in the above 

spatial preference query can also be defined by other 

score functions. A meaningful score function is the 

influence score (see Section 4).As opposed to the 

crisp radius ϵ  constraint in the range score, the 

influence score smoothens the effect of ϵ  and assigns 

higher weights to railway stations that are closer to 

the hotel. Fig. 1b shows a hotel p5 and three railway 

stations s1, s2, s3 (with their quality values). The 

circles have their radii as multiples of ϵ .Now, the 
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score of a railway station si is computed by 

multiplying its quality with the weight 2
-j
, where j is 

the order of the smallest circle containing si. For 

example, the scores of s1, s2, and s3 are 0.3*2
-1

=0.15, 

0.9*2
-2

=0:225, and 1.0*2
-3

=0.125,respectively. The 

influence score of p5 is taken as the highest value 

(0.225). 

 Traditionally, there are two basic ways for ranking 

objects:  

1) Spatial ranking, which orders the 

objects according to their distance from 

a reference              

point. 

2) Non-spatial ranking, which orders the 

objects by an aggregate function on 

their non-. spatial values 

Our top-k spatial preference query integrates 

these two types of ranking in an intuitive way. As 

indicated by our examples, this new query has a wide 

range of applications in service recommendation and 

decision support systems. 

To our knowledge, there is no existing 

efficient solution for processing the top-k spatial 

reference query. A brute force approach (to be 

elaborated in Section 3.2) for evaluating it is to 

compute the scores of all objects in D and select the 

top-k ones. This method, however, is expected to be 

very expensive for large input data sets. In this paper, 

we propose alternative techniques that aim at 

minimizing the I/O accesses to the object and feature 

datasets, while being also computationally efficient. 

Specifically, we contribute the branch-and-bound 

(BB)algorithm for efficiently processing the top-k 

spatial preference query.  

Furthermore, this paper studies one relevant 

extension that have not been investigated in our 

preliminary work [1].The extension (Section 3.4) is 

an optimized version of BB that exploits a more 

efficient technique for computing the scores of the 

objects. The second extension (Section 3.6) studies 

adaptations of the proposed algorithms for aggregate 

functions other than SUM, e.g., the functions MIN 

and MAX. The third extension (Section 4) develops 

solutions for the top-k spatial preference query based 

on the influence score. The rest of this paper is 

structured as follows: Section 2 provides background 

on basic and advanced queries on spatial databases, 

as well as top-k query evaluation in relational 

databases. Section 3 defines the top-k spatial 

preference query and presents our solutions. Section 

4 studies the query extension for the influence score. 

In Section 5, our query algorithms are experimentally 

evaluated with real and synthetic data. Finally, 

Section 6 concludes the paper with future research 

directions. 

 

2. BACKGROUND AND RELATED 

WORK 
Object ranking is a popular retrieval task in various 

applications. In relational databases, we rank tuples 

using an aggregate score function on their attribute 

values [2]. For example, a real estate agency 

maintains a database that contains information of 

flats available for sale. A potential customer wishes 

to view the top 10 flats with the largest sizes(area) 

and lowest prices. In this case, the score of each flat 

is expressed by the sum of two qualities: size and 

price, after normalization to the domain [0, 1] (e.g., 1 

means the largest size and the lowest price and 0 

means the smallest size and the highest price). In 

spatial databases, ranking is often associated to 

nearest neighbor (NN) retrieval. Given a query 

location, we are interested in retrieving the set of 

nearest objects to it that qualify a condition (e.g., 

restaurants).Assuming that the set of interesting 

objects is indexed by an R-tree [3], we can apply 

distance bounds and traverse the index in a branch-

and-bound fashion to obtain the answer [4]. 

2.1 Spatial Query Evaluation on R-Trees 
The most popular spatial access method is 

the R-tree [3], which indexes minimum bounding 

rectangles (MBRs) of objects. Fig. 2 shows a set 

D=(p1, . . . , p8) of spatial objects(e.g., points) and an 

R-tree that indexes them. R-trees can efficiently 

process main spatial query types, including spatial 

range queries, nearest neighbor queries, and spatial 

joins.  

Given a spatial region W, a spatial range 

query retrieves from D the objects that intersect W. 

For instance, consider a range query that asks for all 

objects within the shaded area in Fig. 2. Starting from 

the root of the tree, the query is processed by 

recursively following entries, having MBRs that 

intersect the query region. 

 
             (a)                                     (b) 

Fig. 2. Spatial queries on R-trees.   a) MBRs        

b)R-tree representation 

 

For instance, e1 does not intersect the query 

region, thus the subtree pointed by e1 cannot contain 

any query result. In contrast, e2 is followed by the 

algorithm and the points in the corresponding node 
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are examined recursively to find the query result p7.A 

nearest neighbor query takes as input a query object q 

and returns the closest object in D to q. For instance, 

the nearest neighbor of q in Fig. 2 is p7. Its 

generalization is the k-NN query, which returns the k 

closest objects to q, given a positive integer k. NN 

(and k-NN) queries can be efficiently processed using 

the best-first (BF) algorithm of [4], provided that D is 

indexed by an R-tree. A min-heap H, which 

organizes R-tree entries based on the (minimum) 

distance of their MBRs to q is initialized with the 

root entries. In order to find the NN of q in Fig. 2, BF 

first inserts to H entries e1,e2, e3, and their distances 

to q. Then, the nearest entry e2 is retrieved from H 

and objects p1, p7, p8 are inserted to H. The next 

nearest entry in H is p7, which is the nearest neighbor 

of q. In terms of I/O, the BF algorithm is shown to be 

no worse than any NN algorithm on the same R-tree 

[4]. 

 The aggregate R-tree (aR-tree) [10] is a 

variant of the Rtree, where each nonleaf entry 

augments an aggregate measure for some attribute 

value (measure) of all points in its subtree. As an 

example, the tree shown in Fig. 2 can be upgraded to 

a MAX aR-tree over the point set, if entries e1,e2,e3 

contain the maximum measure values of sets (p2, 

p3), (p1,p8, p7), (p4, p5, p6), respectively. Assume 

that the measure values of p4,p5, p6 are 0.2,0.1, 0.4, 

respectively. In this case, the aggregate measure 

augmented in e3 would be max(0.2, 0.1,0.4) = 0.4. In 

this paper, we employ MAX aR-trees for indexing 

the feature data sets (e.g., restaurants),in order to 

accelerate the processing of top-k spatial preference 

queries. 

Given a feature data set F and a 

multidimensional region R, the range top-k query 

selects the tuples (from F) within the region R and 

returns only those with the k highest qualities. Hong 

et al. [11] indexed the data set by a MAX aR-tree and 

developed an efficient tree traversal algorithm to 

answer the query. Instead of finding the best k 

qualities from F in a specified region, our (range 

score)query considers multiple spatial regions based 

on the points from the object data set D, and attempts 

to find out the best k regions (based on scores derived 

from multiple feature data sets Fc). 

 

3 SPATIAL PREFERENCE QUERIES 

 
Section 3.1 formally defines the top-k spatial 

preference query problem and describes the index 

structures for the data sets. Section 3.2 studies two 

baseline algorithms for processing the query. Section 

3.3 presents an efficient branch-and-bound algorithm 

for the query, and its further 

optimization is proposed in Section 3.4. Section 3.5 

develops a specialized spatial join algorithm for 

evaluating the query. Finally, Section 3.6 extends the 

above algorithms for answering top-k spatial 

preference queries involving other aggregate 

functions. 

 

3.1 Definitions and Index Structures 

 
Given an object data set D and m feature data sets 

F1,F2 . . . Fm, the top-k spatial preference query 

retrieves the k points in D with the highest score. 

Here, the overall score of an object point p ϵ  D is 

defined as 

   

 T(p)=AGG{Tc(p)|c ϵ  [1,m]} (1) 

where AGG  is an aggregate function (e.g: 

SUM,MIN,MAX etc) 

Tc(p)  is the  c
th 

component score of p with 

respect to the neighborhood condition and 

m is the number of feature data sets. 

The  c
th 

component score of p i.e Tc(p)  can be 

computed as follows 

   

 Tc(p)=max({w(s)|s ϵ  Fc ^ dist(p,s) ≤ ϵ }U 

{0}).                           (2) 

 

3.2 Algorithms 
we develop various algorithms for 

processing top-k spatial preference queries. We first 

introduce a brute-force solution that computes the 

score of every point p ϵ  D in order to obtain the 

query results. Then, we propose a group evaluation 

technique that computes the scores of multiple points 

concurrently. 

 

3.2.1 Simple Probing Algorithm 
For a point p ϵ  D, where not all its component scores 

are known, its upper bound score Tu(p) defined as 

      

Tu(p)=  Tc(p),  if Tc(p) is known    

    (3) 

      

                        1, otherwise 

It is guaranteed that the upper bound Tu(p) is greater 

than or equals to the actual score T(p). 

Algorithm 1 is a pseudocode of the simple probing 

(SP)algorithm, which retrieves the query results by 

computing the score of every object point. The 

algorithm uses two global variables: Wk is a min-

heap for managing the top-k results and ɣ  represents 

the top-k score so far (i.e., lowest score in Wk). 

Initially, the algorithm is invoked at the root node of 
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the object tree (i.e., N =D.root). The procedure is 

recursively applied (at Line 4) on tree nodes until a 

leaf node is accessed. When a leaf node is reached, 

the component score Tc(e)  (at Line 8) is computed 

by executing a range search on the feature tree Fc for 

range score queries. Lines 6-8 describe an 

incremental computation technique, for reducing 

unnecessary component score computations. In 

particular, the point e is ignored as soon as its upper 

bound score Tu(e) (see (3)) cannot be greater than the 

best-k score ɣ . The variables Wk and ɣ  are updated 

when the actual score T(e) is greater than ɣ . 

 

Algorithm 1. Simple Probing Algorithm 

algorithm SP(Node N) 

1: for each entry e ϵ  N do 

2: If N is nonleaf then 

3: read the child node N
'
 pointed by e; 

4: SP(N
'
); 

5: else 

6: for c = 1 to m do 

7: If Tu(e)  > ɣ   then    

 //if upper bound is greater than ɣ  

8: compute Tc(p) using tree Fc; update Tu(e); 

9: If  T(e) > ɣ  then 

10: update Wk and ɣ  by e; 

 

Drawbacks 

1.it is very expensive because it comutes score for all 

objects. 

2.No concurrency 

3.it is not efficient method for larger input data sets. 

 

3.2.2 Group Probing Algorithm 
Due to separate score computations for 

different objects, SP is inefficient for large-object 

data sets. In view of this, we propose the group 

probing (GP) algorithm, a variant of SP,that reduces 

I/O cost by computing scores of objects in the same 

leaf node of the R-tree concurrently. In GP, when a 

leaf node is visited, its points are first stored in a set 

V and then their component scores are computed 

concurrently at a single traversal of the Fc tree. 

 We now introduce some distance notations 

for MBRs. Given a point p and an MBR e, the value 

mindist(p,e) [4] denotes the minimum possible 

distance between p and any point in e. Similarly, 

given two MBRs ea and eb, the value mindist(ea, eb) 

denotes the minimum possible distance between any 

point in ea and any point in eb. 

Algorithm 2 shows the procedure for 

computing the c
th 

component score for a group of 

points. Consider a subset Vof D for which we want to 

compute their component score at feature tree Fc. 

Initially, the procedure is called with N being the root 

node of Fc. If e is a nonleaf entry and its mindist 

from some point pϵ V is within the range ϵ , then the 

procedure is applied recursively on the child node of 

e, since the subtree of Fc rooted at e may contribute 

to the component score of p. In case e is a leaf entry 

(i.e., a feature point), the scores of points in V are 

updated if they are within distance ϵ  from e. 

Algorithm 2. Group Probing Algorithm 

algorithm GP(Node N, Set V , Value c,Value  ϵ ) 

1: for each entry e ϵ  N do 

2: If N is nonleaf then 

3: If  p ϵ  V , mindist(p,e) ≤ ϵ  then 

4: read the child node N
'
  pointed by e; 

5: GP(N
'
,V ,c, ϵ ); 

6: else 

7: for each p ϵ  V such that dist(p,e) ϵ  do 

8: Tc(p)=max{Tc(p),w(e)}; 

 

Drawbacks 

1.it is also expensive because it computes score for 

all objects but concurrently . 

 

3.3 Branch-and-Bound Algorithm 

 
GP is still expensive as it examines all 

objects in D and computes their component scores. 

We now propose an algorithm that can significantly 

reduce the number of objects to be examined. The 

key idea is to compute, for nonleaf entries e in the 

object tree D, an upper bound Tu(p) of the score T(p) 

for any point p in the subtree of e. If  Tu(e) ≤ ɣ  then 

we need not access the subtree of e, thus we can save 

numerous score computations. 

Algorithm 3 is a pseudocode of our BB 

algorithm, based on this idea. BB is called with N 

being the root node of D. If N is a nonleaf node, 

Lines 3-5 compute the scores T(e) for nonleaf entries 

e concurrently. Recall that Tu(e) is an upperbound 

score for any point in the subtree of e.. If Tu(e) ≤ ɣ  

,then the subtree of e cannot contain better results 

than those in Wk and it is removed from V . In order 

to obtain points with high scores early, we sort the 

entries in descending order of T(e) before invoking 

the above procedure recursively on the child nodes 

pointed by the entries in V .If N is a leaf node, we 

compute the scores for all points of N concurrently 

and then update the set Wk of the top-k results. Since 

both Wk and ɣ  are global variables, their values are 

updated during recursive call of BB. 

 

Algorithm 3. Branch-and-Bound Algorithm 

Wk= new min-heap of size k (initially empty); 

ɣ =0; 

algorithm BB(Node N) 

1: V ={e| e ϵ  N}; 

2: If N is nonleaf then 
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3: for c= 1 to m do 

4: compute Tc(e) for all e ϵ  V concurrently; 

5: remove entries e in V such that Tu(e) ≤  ɣ ; 

6: sort entries e ϵ  V in descending order of T(e); 

7: for each entry e ϵ  V such that Tu(e) > ɣ  do 

8: read the child node N' pointed by e; 

9: BB(N'); 

10: else 

11: for c = 1 to m do 

12: compute Tc(e)  for all e ϵ  V concurrently; 

13: remove entries e in V such that Tu(e) ≤  ɣ  ; 

14: update Wk and ɣ  by entries in V ; 

 

Advantages 

1.it reduces number of objects to be examined. 

2.it is efficient than SP and GP algorithms. 

 

3.3.1 Upper Bound Score Computation 

 
It remains to clarify how the (upper bound) 

scores Tc(p) of nonleaf entries (within the same node 

N) can be computed concurrently (at Line 4). Our 

goal is to compute these upperbound scores such that, 

1).the bounds are computed with low I/O 

cost, and. 

2).the bounds are reasonably tight, in order 

to facilitate effective pruning. 

To achieve this, we utilize only level-1 

entries (i.e., lowest level nonleaf entries) in Fc for 

deriving upper bound scores because:  

1) there are much fewer level-1 entries than 

leaf entries (i.e., points) 

2) high-level entries in Fc cannot provide 

tight bounds.  

In our experimental study, we will also 

verify the effectiveness and the cost of using level-

1entries for upper bound score computation. 

Algorithm 2 can be modified for the above upper 

bound computation task (where input V corresponds 

to a set of nonleaf entries), after changing Line 2 to 

check whether child nodes of N are above the leaf-

level. The following example illustrates how upper 

bound range scores are derived. In Fig. 4a, v1 and v2 

are nonleaf 

entries in the object tree D and the others are level-1 

entries in the feature tree Fc. For the entry v1, we 

first define its Minkowski region [21] (i.e., gray 

region around v1), the area whose mindist from v1 is 

within ϵ . Observe that only entries ei intersecting the 

Minkowski region of v1 can contribute to the score of 

some point in v1. Thus, the upper bound score Tc(p) 

is simply the maximum quality of entries e1,e5, e6, 

e7, i.e., 0.9. Similarly, Tc(p) is computed as the 

maximum quality of entries e2, e3, e4, e8, i.e., 0.7. 

Assuming that v1 and v2 are entries in the same tree 

node of D, their upper bounds are computed 

concurrently to reduce I/O cost. 

 
 

Fig. 4. Examples of deriving scores. (a) Upper 

bound scores. (b) Optimized computation. 

 

3.4 Optimized Branch-and-Bound 

Algorithm 
This section develops a more efficient score 

computation technique to reduce the cost of the BB 

algorithm. 

3.4.1 Problem with BB Algorithm 
Recall that Lines 11-13 of the BB algorithm 

are used to compute the scores of object points (i.e., 

leaf entries of the R-tree on D). A leaf entry e is 

pruned if its upper bound score Tu(e)  is not greater 

than the best score found so far ɣ . However, the 

upper bound score Tu(e) (see (3)) is not tight because 

any unknown component score is replaced by 1. 

Let us examine the computation of Tu(p1) 

for the point p1 in Fig. 4b. The entry e1
F1

 is a nonleaf 

entry from the feature tree F1. Its augmented quality 

value is w(e1
F1

)=0.8. The entry points to a leaf node 

containing two feature points, whose qualities values 

are 0.6 and 0.8, respectively. Similarly, e2
F2

 is a 

nonleaf entry from the tree F2 and it points to a leaf 

node of feature points.  

Suppose that the best score found so far in 

BB is ɣ =1.4(not shown in the figure). We need to 

check whether the score of p1 can be higher than ɣ . 

For this, we compute the first component score 

T1(p1)= 0.6 by accessing the child node of e1
F1

 . 

Now, we have the upper bound score of p1 as Tu(p1) 

= 0.6 + 1.0= 1.6. Such a bound is above ɣ =1.4 so we 

need to compute the second component score 

T2(p1)= 0.5 by accessing the child node of e2
F2

 . The 

exact score of p1 is T(p1)=0.6+0.5=1.1 the point p1 

is then pruned because T(p1) ≤ ɣ . In summary, two 

leaf nodes are accessed during the computation of 

T(p1) . 

Our observation here is that the point p1 can 

be pruned earlier, without accessing the child node of 

e2
F2

 . By taking the maximum quality of level-1 

entries (from F2) that intersect the ϵ -range of p1, we 

derive: T2(p1) ≤w(e2
F2 

)=0.7.With the first 

component score T1(p1)=0.6, we infer that:T(p1)= 
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0.6 + 0.7= 1.3. Such a value is below ɣ  so p1 can be 

pruned. 

 

3.4.2 Optimized Computation of Scores 
Based on our observation, we propose a 

tighter derivation for the upper bound score of p than 

the one shown in (3).Let p be an object point in D. 

Suppose that we have traversed some paths of the 

feature trees on F1,F2, . . . Fm.Let µ be an upper 

bound of the quality value for any unvisited entry 

(leaf or nonleaf) of the feature tree Fc. We then 

define the function T*(p) as 

 T*(p)=

           (4) 

In the max function, the first set denotes the 

upper bound quality of any visited feature point 

within distance ϵ  from p.According to (4), the value 

T*(p)  is tight only when every c value is low. In 

order to achieve this, we access the feature trees in a 

round-robin fashion, and traverse the entries in each 

feature tree in descending order of quality values. 

Round-robin is a popular and effective strategy used 

for efficient merging of rankings [7], [9].  

Algorithm 4 is the pseudocode for 

computing the scores of objects efficiently from the 

feature trees F1,F2,. . . ,Fm. The set V contains 

objects whose scores need to be computed. Here, ϵ  

refers to the distance threshold of the range score, 

and ɣ  represents the best score found so far. Foreach 

feature tree Fc, we employ a max-heap Hc to traverse 

the entries of Fc in descending order of their quality 

values. The root of Fc is first inserted ino Hc. The 

variable µ maintains the upper bound quality of 

entries in the tree that will be visited. We then 

initialize each component score Tc(p) of every object 

p ϵ  V to 0. 

Algorithm 4. Optimized Group Range Score 

Algorithm 

algorithm Optimized_Group_Range(Trees F1;F2; 

. . . ;Fm, Set V , Value _, Value _) 

1: for c := 1 to m do 

2: Hc := new max-heap (with quality score as 

key); 

3: insert Fc.root into Hc; 

4: µ := 1; 

5: for each entry p ϵ  V do 

6:  Tc(p)  := 0; 

7: α:= 1;                                                                           

//ID of the current feature tree 

8: while |V |> 0 and there exists a nonempty heap 

Hc do 

9: deheap an entry e from Hα; 

10: µα =w(e);                                                                   

//update threshold 

11: if p ϵ  V , mindist(p,e) > ϵ  then 

12: continue at Line 8; 

13: for each p ϵ  V do                                                     

// prune unqualified points 

14: if ( ) ≤ ɣ  then 

15: remove p from V ; 

16: read the child node CN pointed to by e; 

17: for each entry e' of CN do 

18: if CN is a nonleaf node then 

19: if p ϵ  V , mindist(p,e') ≤ ϵ  then 

20: insert e' into Hα; 

21: else                                                                              

// update component scores 

22: for each p ϵ  V such that dist(p,e') ≤ ϵ  do 

23: Tα (p)=max{ Tα (p),w(e')}; 

24: α= next (round-robin) value where Hα is not 

empty; 

25: for each entry p ϵ V do 

26: T(p)= ; 

 

At Line 7, the variable α keeps track of the 

ID of the current feature tree being processed. The 

loop at Line 8 is used to compute the scores for the 

points in the set V. We then deheap an entry e from 

the current heap Hα. The property of the max-heap 

guarantees that the quality value of any future entry 

deheaped from Hα is at most w(e). Thus, the bound µ 

is updated to w(e). At Lines 11-12, we prune the 

entry e if its distance from each object point p ϵ  V is 

larger than ϵ . In case e is not pruned, we compute 

the tight upper bound score T(p) for each p ϵ  V (by 

(4)); the object p is removed from V if T(p) ≤ 

ɣ (Lines 13-15). 

Next, we access the child node pointed to by 

e, and examine each entry e' in the node (Lines 16-

17). A nonleaf entry e' is inserted into the heap Hα if 

its minimum distance from some p ϵ  V is within ϵ  

(Lines 18-20); whereas a leaf entry e' is used to 

update the component score Tα(p) for any p ϵ  V 

within distance ϵ  from e' (Lines 22-23). At Line 24, 

we apply the round-robin strategy to find the next α 

value such that the heap Hα is not empty. The loop at 

Line 8 repeats while V is not empty and there exists a 

nonempty heap Hc. At the end, the algorithm derives 

the exact scores for the remaining points of V . 

3.4.3 The BB* Algorithm 

 
Based on the above, we extend BB 

(Algorithm 3) to an optimized BB* algorithm as 

follows: First, Lines 11-13 of BB are replaced by a 

call to Algorithm 4, for computing the exact scores 

for object points in the set V . Second, Lines 3-5of 

BB are replaced by a call to a modified algorithm 4, 

for deriving the upper bound scores for nonleaf 
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entries (in V ).Such a modified Algorithm 4 is 

obtained after replacing Line 18 by checking whether 

the node CN is a nonleaf node above the level-1. 

 

4. EXPERIMENTAL EVALUATION 
In this section, we compare the efficiency of 

the proposed algorithms using real and synthetic data 

sets. Each data set is indexed by an aR-tree with 4 K 

bytes page size. We used an LRU memory buffer 

whose default size is set to 0.5 percent of the sum of 

tree sizes (for the object and feature trees used).Our 

algorithms were implemented in C++ and 

experiments were run on a Pentium D 2.8 GHz PC 

with 1 GB of RAM. In all experiments, we measure 

both the I/O cost (in number of page faults) and the 

total execution time (in seconds) of our algorithms.  

 

 

5 RESULTS  
In this section, we conduct experiments on 

real object and feature data sets in order to 

demonstrate the application of top-k spatial 

preference queries. We obtained three real spatial 

data sets from a travel 

portal,http://www.allstays.com/. Locations in these 

data sets correspond to (longitude and 

latitude)coordinates in US. We cleaned the data sets 

by discarding records without longitude and latitude. 

In summary, the relative performance between the 

algorithms in all experiments is consistent to the 

results on synthetic data. 

 

 
 
Fig. –Comparision of  I/O cost for SP,GP,BB,BB*. 

 

 

 

 
Fig.-Comparision of Execution Times for 

SP,GP,BB,BB* 

 

6 CONCLUSION 
In this paper, we studied top-k spatial 

preference queries, which provide a novel type of 

ranking for spatial objects based on qualities of 

features in their neighborhood. The neighborhood of 

an object p is captured by the scoring function: 1) the 

range score restricts the neighborhood to a crisp 

region centered at p, whereas 2) the influence score 

relaxes the neighborhood to the whole space and 

assigns higher weights to locations closer to p.We 

presented four algorithms for processing top-k spatial 

preference queries. The baseline algorithm SP 

computes the scores of every object by querying on 

feature data sets. The algorithm GP is a variant of SP 

that reduces I/O cost by computing scores of objects 

in the same leaf node concurrently. The algorithm BB 

derives upper bound scores for non leaf entries in the 

object tree, and prunes those that cannot lead to better 

results. The algorithm BB*is a variant of BB that 

utilizes an optimized method for computing the 

scores of objects (and upper bound scores of non leaf 

entries). Based on our experimental findings, BB* is 

scalable to large data sets and it is the most robust 

algorithm with respect to various parameters. In the 

future, we will study the top-k spatial preference 

query on a road network, in which the distance 

between two points is defined by their shortest path 

distance rather than their euclidean distance. The 

challenge is to develop alternative methods for 

computing the upper bound scores for a group of 

points on a road network. 
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