
An Effective Task Assigning Scheduler based on

Job Size in Hadoop

Madhusudan.M.S1

1Postgraduate Student -P.E.S Collage of Engineering Mandya

Abstract— The MapReduce framework and its open source

implementation in Hadoop is existing as an standard for Bigdata

related processing in industry and academies. When a bunch of jobs

are simultaneously submitted together to a MapReduce cluster, bunch

of jobs will compete for available resources by this the overall system

performance may go down, this is because in MapReduce cluster

different kinds of workload is shared among multiple users. Existing

scheduling algorithms which is supported by Hadoop always cannot

guarantee good average response time with different workloads.

Therefore it is a challenging ability to design an effective scheduler

which can work with shared MapReduce cluster. To solve this

problem we propose a new hadoop scheduler which works on the

different workload patterns and reduces overall execution time and

job response time by dynamically tuning the available resources that

is shared among multiple users and scheduling algorithm for each

user. The experimental results are obtained from CloudEra shows

that proposed scheduler reduces the average job response time under

different workloads that are compared with existing Fair and FIFO

Scheduler.

Keywords-Job Scheduling; Hadoop; Mapreduce; Workload; HDFS;

I. INTRODUCTION

MapReduce is software framework that breaks a computation

job into number of small MapReduce tasks and lets them to run

on different resources in parallel[1]. MapReduce is an important

part for parallel data oriented cluster programming because of its

flexibility and simplicity [2].MapReduce allows Processing of

large structured and unstructured data simultaneously. Apache

Hadoop is an open source implementation of MapReduce and it

has distributed file system called HDFS (Hadoop Distributed file

System [4,5].

Hadoop is primarily developed by yahoo and is used for

processing hundreds of terabytes of data on at least 10,000

cores[6].There are variety of data intensive application that uses

MapReduce. Nowadays, many clusters are deployed with Hadoop

and shared among multiple users to run a bunch of long batch

jobs and short interactive jobs[7]. There are two types of jobs one

map tasks and another one is reduce tasks. Map task is applied to

map and process a block in the given input data and it produces an

intermediate data in the form of key-value pairs . This

intermediate data partitioned by hash function and fetched to

reducer task, after getting the data reducer starts the execution and

produces the final result. A Single master node will

communicates and manages all the slave nodes.

The master node will communicate to slaves though a

heartbeatmessage. The heartbeat message consists of status and

other information related with number of slaves. Job scheduling is

done by jobtrackerassigns and manages the tasks to slave nodes

that has free resources. The nodes with free resources are

determined by heartbeat messages.

Each slave node have prefixed slots each slot can run either

single map or reduce task at a time.

When multiple users enter into the execution environment they

compete for the slots available. Recent surveys found that

MapReduce workloads has busy tailed characteristics this is

because there are large and small jobs in this case even small jobs

need a long waiting due long jobs. This may results in overall

system performance degradation. In such MapReduce only

effective Scheduling Policy can improve the system performance.

By default Hadoop comes with FIFO(first in first out) scheduling

where number of jobs are served based on incoming order

irrespective of job size this is not sufficient to serve different kind

of workloads i.e., if long job is submitted first and a small job is

submitted next to it the small job experiences long waiting time.

Alternative to FIFO a Fair scheduler is proposed to improve the

job response time by assigning all jobs with a equal share of

resources. But there arises problem with the Fair Scheduler i.e.,

Fair scheduler makes scheduling decision without considering

different types workload pattern by users. Thus it is necessary to

design an efficient Hadoop scheduler which can work with

different kinds of workload pattern and reduces overall execution

time of MapReduce tasks.

We propose a good Hadoop scheduler which aims towards

improving the average job response time by looking at job size

patterns to tune the scheduling policy among users, we first

develop information collector that collects the information about

recently fetched jobs by each users. A self tuning scheduling

procedure is designed in two levels or tiers: at tier1 the available

resource share to the multiple user is tuned based on the file size

of job submitted by each user; and the job scheduling for each

individual user is further done at tier 2. Experimental results are

obtained by the simulation model which executed on CloudEra

confirms the effective working of our solution. Our scheduler’s

job response time is compared with FIFO and Fair scheduler

under different workloads.

II. RELATED WORK

The scheduling of a set of tasks in a parallel system has been

proposed [8] focus on scheduling tasks and focus on system

performance under different workload.

I order to study the pros and cons of the existing scheduler i.e.,

FIFO and Fair, we conduct several experiments inHadoop at

cloudEra. We created 4 nodes one node serve as a master

remaining serve as a slave. Each slave node contains 3 map slots

and 3 reduce slots. Three different application i.e., WordCount,

CharCount, LineCount run to compute the occurrence frequency

of words, lines, characters in the input file with different sizes.

A.Slots Sharing

There are two tiers of scheduling in Hadoop system which is

shared by multiple users: (1) Tier 1 is responsible assigning

available slots to active users, and (2) Tier 2schedules the jobs for

each individual users. In this aspect first we look at Hadoop

scheduling policies at Tier 1.When no minimum share of each

user is specified, Fair scheduler Fairly allocates available slots

among users such that all users get an equal share of slots.

However,Fair scheduler unfortunately becomes inefficient when

job sizes of active users are not uniform.

In a context of single user job queue, giving preference to

shortest job first can reduce the overall response time. Using

Shortest Job First (SJF) has some disadvantages one is long jobs

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

1

may be starved in this SJF, SJF lacks flexibility when certain

level of priority between users is required. However precise job

size prediction before execution is required in SJF, which is not

much easy to achieve. The sharing based scheduling can easily

solve the starvation problem between users for example, setting

up minimal shares for users. Allowing all users to run their

application simultaneously also helps to improve the job size

prediction accuracy in Hadoop system.

Information obtained by this studies and the analysis processor

sharing between multiple users in , we evaluate the share policies

in Hadoop systems. It is difficult to find out an optimal sharing

policy within a dynamic environment where each user workload

pattern may change time to time.Therefore we planned to assign

the slot based on current average job size of users and

dynamically tune the share over time based on workload patterns.

B. Scheduling

In this section we describe the two scheduling policy works at

Tier 2, i.e., allocating slots to the jobs from same user. The

execution time in enterprise workloads may vary from seconds to

hours. Average job response time with FIFO scheduling may

increase as the small jobs remains behind lager ones and waits for

long time to get its turn, this may cause the small job to

experience the Starvation. Where as in Fair Scheduler this

problem is solved by giving equal slots based on job size. When

job size has large Variations, i.e., coefficient of variation

CV>1,Fair gets Performance than FIFO, But this performance

decreases when CV<1.

To verify this observation, we conduct experiments in our

Hadoopby running WordCount applications under three different

job size distributions: (1) input files have the same size with CV =

0; (2) input file sizes are exponentially distributed with CV = 1;

and (3) input file sizes are highly variable with CV = 2. As shown

in Table 1, when input file sizes are exponentially distributed,

both FIFO and Fair gets similar average job response times, while

Fair significantly reduce the average job response times under the

case of high variance but loses its superior when all files have

similar sizes.

TABLE 1

Average job response times under FIFO and Fair

when job sizes have three different distributions.
 CV = 0 CV = 1 CV = 2

FIFO 60.33 sec 54.48 sec 59.66sec
Fair 78.32 sec 61.72 sec 41.48sec

The response times of each job in the three experiments with

different job size distributions are also plotted in Figure 1. We

noticed that when the job sizes are similar, most of jobs gets

shorter response times under FIFO than under Fair, show in

Figure 1(a). However, as the variation of job sizes increases, i.e.,

CV > 1, the percentage of jobs which are finished more quickly

under Fair increases as well, which thus allows Fair to achieve

better average job response time. These results further confirm

that the relative performance between two scheduling policies

depends on the job size distribution. Clearly, the response time of

each individual job is mainly related to that particular job’s size

under Fair scheduling policy. On the other hand, under the FIFO

policy, each job’s response time may be affected by other jobs

which were submitted earlier. FIFO allows most of the jobs to

experience faster response times when the job sizes are similar;

while most jobs are finished faster under Fair when jobs have

variable sizes.

III. ARCHITECHTURE AND ALGORITHEM

We propose an adaptive scheduling algorithm which works on

workload information and dynamically Tune the scheduling

schemes to improve efficiency in terms of job response time.

(1) Estimate the

UsersSubmit jobs workload of

each User.

(2)Calculate the Slot

Share for user at

Tier 1

(3)Tune the

Scheduling for

eachuser

at Tier 2

AssignStatus Report

 Tasks

Fig 2. The architecture of Effective Scheduler

(a) Low Variability : CV = 0 (b) Medium Variability : CV = 1 (c) High Variability : CV = 2

(s
ec

) 100
FIFO 100

FIFO

100
FIFO

80 Fair
80 Fair

80 Fair

T
im

e

60 60 60

R
es

p
o

n
se

40 40 40

20 20 20

Jo
b

0
0

0

4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20

4 6 8 10 12 14 16 18 20 2 2 2

 Job ID Job ID Job ID

Fig. 1.Response times of each WordCount job under FIFO andFairwhen the input file sizes have differentCV

The architecture adaptive scheduler is shown is in Fig.2. The

Effective scheduler consists of three parts:

1. Information collector: This gathers the workload

information form user, monitors the execution of each job

and task.

2. Tier1: Scheduling among multiple user which allocates slots

to users based on their workload.

3. Tier 2: Tunes the scheduling for each user based on job size.

A.Information Collector

To Design an effective scheduling algorithm the job size and

patterns of it must considered. So, a light weight information

collector is used to get the information of jobs and user. This

information is updated when each job is bifurcated as map and

reduce tasks.
In Effective scheduler, the important is workloadinformation

that needs to be collected for each user ui includes itsaverage

task execution time𝑡𝑖
𝑚(and 𝑡𝑖

𝑟), average size.

Algorithm 1 Effective scheduler

1. When user 𝑖 submit a new job

a. Job size 𝑆𝑖 is estimated for user 𝑖.
 b. Slot share is modified among users, alg.2

c. Job Scheduling is tuned for user 𝑖, alg. 3

Job Tracker Information Collector

Scheduler

Tier 1

Tier 2

Task Tracker

Slots

Map Reduce

Map Reduce

…. ……..

…. ……..

Task Tracker

Slots

Map Reduce

Map Reduce

…. ……..

…. ……..

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

2

2. When job 𝑗 is of task is finished Execution time𝑡𝑖,𝑗 is updated.

3. When 𝑗th jobof user𝑖 finished average map reduce time is

measured 𝑡𝑖,𝑗
𝑚 , 𝑡𝑖,𝑗

𝑟 .

4. After Tuning the available free slots are allotted based of the
tuned scheduling order.

Our Statistics are based on below formulas,

 𝑠𝑖,𝑗=𝑡𝑖,𝑗
𝑚 + 𝑡𝑖,𝑗

𝑟 (1)

 𝑆𝑖 = 𝑆𝑖 + (𝑠𝑖,𝑗 − 𝑆𝑖)/𝑗 (2)

𝑣𝑖 = 𝑣𝑖(𝑠𝑖,𝑗 − 𝑆𝑖)
2.(𝑗 − 1)/𝑗 (3)

 𝐶𝑉𝑖 = √𝑣𝑖/𝑗/𝑆𝑖 (4)

 𝑆𝑈𝑖 = 𝑆𝑈𝑖
∗. (∝. 𝑈.

1

𝑠∗

∑
1

𝑠𝑖
∗

𝑢
𝑖=1

+ 1 − 𝛼) (5)

Where𝑠𝑖,𝑗 denotes size of 𝑗th job completed of user ui, 𝑡𝑖,𝑗
𝑚

(respected𝑡𝑖,𝑗
𝑟) represents the measured average map (respected

reduce) task execution time of 𝑗𝑖,𝑗means the measured map (resp.

reduce) task number of the 𝑗𝑖,𝑗 . A job’s size𝑠𝑖,𝑗 is defined as the

summation of the execution times of all tasks of the job, which is

independent on the level of task concurrency during the

execution. The estimation of a job’s size uses the previous tasks

execution times of the job based on a well accepted assumption

that the same type of tasks (either map or reduce tasks) of the

same job have similar execution times. Additionally, 𝑣𝑖 = 𝑗

denotesthe variance of job sizes and are both initializedas 0 and

updated each time when a new job is finished and its information

is collected.

The data structure used to collect user’s information that includes

user ID, number of submitted by the user, map/reduce task

execution times, average and variance of job sizes, and the last

update time for detecting inactive users. The memory space used

for each user is 26 bytes and our proposed system requires a total

memory space of 130 bytes when 5 users are taken in our

experiments. This is a overhead for regular MapReduce clusters.

To further reduce the space overhead, proposed system timely

checks the inactive user records if a user has not submitted any

jobs in 5 minutes. The average task execution time of each active

jobis recorded in another data structure, e.g., JobInfo used by Fair.

JobInfo is used to store information such as number of running

tasks for each active job, which is created when a job is submitted

and after execution job is deleted.

B. Tier 1

This section tells about algorithm used for scheduling between

number of users. The main goal is decide the number of slots

allocate the slots to active user. MapReduce consists of two kinds

of slots map and reduce slots. We have designed two algorithm,

one for allocating map slots and another one to allocate reduce

slots.

Assigning slots equally cannot give better result. So, we

proposed a new scheduler which adaptively allocates slots shares

among all users. Consider an example where two users, if their

job ratio is equal to 1:2, then number of allotted to user1 will be

twice that of user2. Consequently our scheduler give higher

priority to smaller jobs, results in shorter response time.

One serious problem that has to be addressed is how to exactly

measure the execution time of map or reduce task that are waiting

or running currently. In hadoop it is not possible to get the exact

processing time of job before the job is completely executed. We

can predict the execution time of job in hadoop as discussed in

earlier section.

The Resulting share slot need not to be equal to the actual

share slot assignment between users. After redistribution which

user can get the available slots as shown step 4 in the below

algorithm.

Algorithm 2 Tier 1: Slot Share Allocation to users

for each user 𝑢𝑖do

Update the slot share details of users𝑆𝑈𝑖using Eq.6;

foruser𝑖’s𝑗th job do

if 𝑗𝑖,𝑗is submitted first then

𝑆𝐽𝑖,𝑗=𝑆𝑈𝑖;

 else

𝑆𝐽𝑖,𝑗=0;

As shown in above algorithm in first step after arriving a new

job, Effective scheduler updates the job size of that user and

adaptively adjusts slot share(𝑆𝑈𝑖) among all users using Eq.5

where 𝑆𝑈𝑖represents the estimated slot share that will be assigned

to the users.

The Effective scheduler sorts the user in descending order with

redistributed slots. The scheduler will dispatch the job towards the

slots after assigning slots. When the free slots are available with

new order then that free slots can be allotted to users waiting.

C. Tier 2

The Design principal in our proposed system after adjusting

share slots among multiple users dynamically tunes among each

individual user jobs by observing at each individual user job

details. This tier look into the available resources and equally

distributes it among shared resources and it avoids small jobs

waiting behind large ones i.e., it gives priority to shortest job first

and then looks for the longest job.

Algorithm 3 Tier 2: Dynamically tuning the scheduling

 for each user

for each user 𝑢𝑖do

ifuser 𝑢𝑖is active then

find𝐶𝑉𝑖
∗ current jobs

if𝐶𝑉𝑖
∗<1 and 𝐶𝑉𝑖<1 then

 Scheduling is based on job submission;

if𝐶𝑉𝑖
∗>1 and 𝐶𝑉𝑖>1 then

slots are equally allotted among jobs;

clear the previous information and start execution

from beginning.

The above considers the𝐶𝑉 of job sizes, i.e., map plus reduce

size, of each user to find out which scheme should be used to

allocate the free slots to jobs from that user. To improve the

accuracy, we combine the job size information and the estimated

size of running and waiting jobs in system. 𝐶𝑉𝑖of currently

finished jobs sizes of user 𝑖 is provided directly by the history

information collector, and 𝐶𝑉𝑖of waiting and running jobs’ sizes

is calculated based on the estimated job sizes. When the two

values of a user are both smaller than 1, the proposed scheme

schedules the current jobs in that user’s in the order of their

submission times, otherwise the user level scheduler will equally

assign slots among jobs. The previous information will be cleared

and a new collection window will start at this time.

IV. MODEL DESCRIPTION

In this section, we introduce a queuing model Which is

designed to embed theHadoop system. The main purpose of this

model is to compare withnumerousHadoop scheduling schemes,

and give best proof result to our new approach. This model does

not include all the details of the complex Hadoop system, but

provide a generalized guideline to users .
Sm Map Slots

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

3

Map Task
Map Queue

(Qm)

Dispatcher

...
Job Generator

Update Percentage of Finished Map Tasks for

Each Job

Reduce Task

Reduce

Queue (Qr)

...

Dispatcher

Sr Reduce

Slots

Fig. 3.Design of the HadoopMapReduce cluster simulator.
The model shown in Fig. 3 consists of two queues for map

tasks (Qm) and reduce tasks (Qr), respectively. Once a job is

submitted, tasks will be inserted into Qm through the map task

dispatcher and then it is reduced and inserted to reduce queue(Qr)
through reduce dispatcher.

An very important feature of MapReduce is jobs need to be

considered in the model is the dependency between map and

reduce tasks. In a Hadoop cluster, there is a Key which decides

when a job could start its reduce tasks. By default, this parameter

is set as 5%, which shows that the first reduce task can be started

when 5% of the map tasks are committed. However, Studies [14]

found that this setting would lead to poor performance under the

Fair scheduling scheme and proposed to launch reduce tasks

gradually according to the progress ofmap phase. We further

found that delaying the launch time of reduce tasks, can improve

the performance of the Fair and the other slots sharing based

schedulers. However, this is not a necessary assume in the model.

When compared to the complex design of a MapReduce

system, the simulator built based on this model is a much-

simplified tool. Our aim is design a queue that can quikly adopt

any scheduling. Point of the simulation model is to record the

reactions of different scheduling policies on the job response time

under different conditions. Therefore, the model we designed

mainly simulates this key feature, i.e., how to share slots, without

capturing the low-level details of a MapReduce system, such as

communication costs, locality of data, and fault-tolerant

mechanism.

V. EVALUATION

Here we present the performance evolution of our proposed

scheduler which mainly targets on how to improve efficiency of

Hadoop system under different workloads.

A.Simulation Results

Initially we test Effective scheduler with the simulation

T

im
e

(S
ec

) (a) Overall

 (b) User 1

 (c) User 2

750 750 750

500
500

500
−1%

R re
sp

o
n

se

13%

37% 23%
37%

36% −0.4%

60% 62%

250 250 250

A
v

er
ag

e

0
medium busy

 0
medium busy

0
normal medium busy

normal normal

 FIFO Fair LsPS

Fig. 4. Average job response times of (a) two users, (b) user 1, and (c) user 2 under three different scheduling policies and different job size

distribution settings. The relative improvement with respect to Fair is also plotted on each bar of LsPS.

T

im
e

(S
ec

) (a) Overall

 (b) User 1

 (c) User 2

300 300 300

200
200

200
−3%

R re
sp

o
n

se

10%

58% 34%
59%

23% −0.6%

78% 69%

100 100 100

A
v

er
ag

e

0
medium busy

 0
medium busy

0
normal medium busy

normal normal

 FIFO Fair LsPS

Fig. 5. Average job response times of (a) two users, (b) user 1, and (c) user 2 under different scheduling policies and different job interarrival
time distributions. The relative job size ratio of two users is 1:5.

model shown in previous section which is emulated with

existing Hadoop system. We use a trace driven simulation model

to evaluate the performance of proposed scheduler to

improve it in terms of average response time, we use this on the

top of the model. Later the performance of the scheduler can be

improved by implementing it on a CloudEraHadoop cluster.

We have configured number of map reduce slots in the clusters

in the simulation model. We have U users i.e.{ u1, u2,.. ui,, uU}
this users get the slots after submitting their jobs to the system.

Each user specification like jobId, inter arrival time, job size etc

are recorded. Each hadoop job scheduled is determined with

number of map tasks and respective reduce tasks during the

execution.

We consider different workloads to calculate average job

response time and execution time. Here we consider busy

workload, intermediate workload and normal workload.

We consider three simple cases where the available cluster is

shared with two users and with multiple clusters. We consider

different job size in first case, different job arrival pattern in case

two.

A.1 Case 1: Different job size with two users

 Here we consider two usersu1 and u2simultaneously submit

their Hadoop jobs to the system. We evaluate this Hadoop jobs

with existing FIFO and Fair scheduler with job size patterns we

consider different job size patterns with user u1 and u2. We

consider scheduler performance with different jobs and same job

size with two users. number of scheduling policies. Job response

is measured

from when job a particular job is submitted and arrived to the job

tracker till it is assigned to map reduce. We noted

Figure 4 shows the job response time of both users under that

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

4

high variance in job size decreases the performance under FIFO

because a huge number of small jobs will stuck behind the large

ones, it is plotted in Figure 4(a) in contrast with fair and proposed

scheduler where performance is improved in other two schemes

by scheduling the available slots between users. Our proposed

scheduler further improves by scheduling FIFO with user 1 and

other 2 is scheduled with FIFO and user1 with other policies as

shown in Figure 4(c). Same experiment is done with fair that

shows the performance improvement with two users with our

proposed scheduler.

A.2 Case 2: Different job size arrival pattern with two users

In this Section we consider changes in job arrival pattern. We

conduct some experiments with two users with their differing

arrival pattern the job arrival ratio between user is considered here

so we test with a job arrival ratio say 1:5 with respect user 1 and

user 2, we consider the job arrival with different workload

patterns, the average response time of two users shown in Figure

5.

Our proposed scheduler performs well in terms job response

times as shown in Figure 5(a) we noted that the outcome benefit

come with improvement in response time of user, our scheduler

assigns more slots to user 1 with FIFO scheduling to smaller jobs

based on FIFO because FIFO has low variability job sizes as

shown in Figure 5(c).

A.3 Case 3: Different job size/arrival pattern with multiple users

To further verify our scheduler with multiple number of users

we conduct experiments with complex case of 4 users which have

mixed workload of changing job size arrival and job size patterns.

Here user with larger job id will have larger job size in average.

We also adjusted the average arrival rate such that all the users

submit the same load to the system. Below table 2 shows the

average job response times of jobs of users under different

scheduling schemes. We compare our scheduler with other

available schedulers i.e., FIFO and Fair.

TABLE 2

Average response times (in seconds) of all users

and each user under different scheduling policies.

User FIFO Fair Proposed Proposed Proposed
 0:2 0:4 1:0

1 6398.10 171.83 63.00 50.05 42.41
2 8729.09 233.26 134.64 142.00 142.10

3 8345.62 235.09 176.12 188.88 152.44

4 8509.23 672.11 442.42 534.20 457.81

All 6834.12 745.65 365.23 431.27 342.52

Table 2 shows the average job size in terms time for each

individual users and average of all six users as well. The above

table also gives the simulation results of effective scheduler with

ratio of job size with number of users equal to 0:2,0:4,1:0.

TABLE 3
Notations used in the algorithm

U/ui number of users/ i–th user

Ji set of all user i jobs

𝑡𝑖,𝑗
𝑚/ 𝑡𝑖,𝑗

𝑟 average map/reduce task execution time of job

𝑛𝑖,𝑗
𝑚 / 𝑛𝑖,𝑗

𝑟 number of map/reduce task in job

Si,j size of job

Si/𝑆𝑖
∗ Average size of completed/current jobs from

user ui

𝐶𝑉𝑖
∗/𝐶𝑉𝑖 CV of completed/current jobs from user ui

SUi/SJi,j Slot share of ui/slot share of jobi,j

VI. CONCLUSION

The use of FIFO and Fair scheduler will seriously degrade the

performance of the overall Hadoop system. So, the proposed

Effective scheduler is an adaptive scheduling technique which can

improve the performance of the Hadoop system that process large

number of MapReduce jobs. In enterprise the workload will

drastically increase with different workload patterns this may

happen from seconds to hours that will put workload on

MapReduce cluster as well. Adopting our policy can record job

size patterns based on the job size pattern knowledge can

schedule among all users and further it dynamically tunes the

scheduling among individual user jobs and assigns the available

slots efficiently. Exeriments done in CloudEra had shown that our

Effective scheduler will dramatically improves the performance in

terms of job response time under varying workloads.

REFERENCES

[1] J. Dean, S. Ghemawat, “MapReduce: Simplified Data Processing on

Large Clusters,” Communications of the ACM, 2008, 51(1):1-13.

[2] J. Dean, S. Ghemawat, and G. Inc, “Mapreduce: simplified data
processing on large clusters,” in OSDI’04, 2004.

[3] Apache Hadoop Users. [Online]. Available: http://wiki.apache.

org/hadoop/PoweredByD. Borthakur, The Hadoop Distributed File
System: Architecture andDesign. The Apache Software Foundation, 2007.

[4] Apache Hadoop. [Online]. Available: http://hadoop.apache.org/

[5] Yahoo! Launches World’s Largest HadoopProduction Application,
Yahoo! Developer

Network,http://developer.yahoo.com/blogs/hadoop/2008/02/yahoo-

worldslargest-production-hadoop.html.
[6] M. Zaharia, D. Borthakur, J. Sarma, et al., “Job scheduling for

multiusermapreduce clusters,” EECS Department University of

CaliforniaBerkeley Tech Rep UCBEECS200955 Apr, 2009–55.
EECSDepartment, University of California, Berkeley. Retrieved

fromhttp://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-

55.pdf.
[7] Chan Tian, Haojie Zhou, Yougqiang He, Li Zha “A DyanmicMapReduce

Scheduler for Heterogeneous Workloads” Institute of computing

technology ,Chinese academy sciences,china.
[8] Yongnitao, Lei Shi, Pinhua Chen “Job Scheduling Optimization for Multi-

user MapReduceCluser” ZengzhouUniversity,china

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

5

