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Abstract - Newtonian gravity usually treats interacting bodies as point masses and ignores effects related to their internal structure 
and rotation. However, real physical bodies are extended in size and often rotate, which can slightly modify their gravitational 
interaction. In this work, an effective correction to the Newtonian gravitational force is studied for two extended rotating bodies. 
Starting from the exact Newtonian grav-itational potential for continuous mass distributions and using the large separation 
approximation, a higher-order correction term is derived. This correction depends on the moments of inertia of the two bodies and 
shows a force dependence proportional to R -6. The result is interpreted as an effective rotational or quadrupole-level correction
 rather than a new gravitational force. Order-of-magnitude estimates are calculated for planetary systems and 
compact astrophysical systems such as binary neutron stars. While the correction is extremely small for planetary scales, it 
becomes more relevant in compact systems where high precision is required. The analysis remains consistent with Newtonian 
gravity and the weak-field limit of general relativity. 

1 Introduction

Newtonian gravity has been used for a very long time to explain the motion of planets, satellites, and many other astronomical 
systems. Most of the time, it gives very accurate results and works extremely well. The usual approach in Newtonian gravity 
is to consider physical objects as point masses, where only the total mass and the distance between the objects are considered. 
For many problems, especially in planetary motion, this approxima-tion is more than sufficient. However, real objects are not 
point-like. Every physical body has a finite size, a certain internal mass distribution, and often some amount of rotation. 
Because of this, the gravitational interaction between two real bodies is, in principle, slightly more complicated than the ideal 
point-mass case. In most everyday situations, these addi-tional effects are very small and can be ignored. Still, when we look 
at systems that require high precision or involve compact objects, such small corrections can become interesting to study. In 
classical physics, corrections due to internal structure are often discussed using expansions of the gravitational potential. The 
simplest term gives the standard Newtonian gravitational force, while higher-order terms appear because the mass is not 
concentrated at a single point. These higher-order contributions are related to physical properties such as shape, rotation, and 
mass distribution. For rotating bodies, effects connected to their moments of inertia naturally arise in this description. The 
main aim of this work is to study an effective correction to the Newtonian gravitational force that comes from the rotational 
mass distribution of extended bodies. The purpose is not to propose a new theory of grav-ity, but rather to examine how 
known physical properties, such as rotation, can introduce additional terms within the Newtonian framework. Starting from 
the gravitational potential for continuous mass distributions and using reasonable approximations, an effective force term 
depending on the moments of inertia of the two bodies is obtained. This correction is expected to be extremely small for 
ordinary planetary systems and therefore has no practical effect on most classical problems. Nevertheless, for compact 
astrophysical systems, such as binary neutron stars, the same correction grows rapidly as the separation decreases. For this 
reason, simple numerical estimates are included to compare the strength of the correction in different physical systems. The 
analysis presented here is limited to the weak gravitational field regime and is intended to provide physical insight rather than 
an exact description of strongly relativistic interactions.

Scope and novelty of the present work. Quadrupole-level corrections to Newtonian gravity arising from extended mass 
distributions are well known within classical gravitational theory. The purpose of the present work is not to rediscover or 
modify these results, but to reformulate the quadrupoleâ€“quadrupole interaction in a compact and physically transparent 
effective form. In particular, the interaction is expressed in terms of scalar moments of inertia rather than full tensorial 
quantities, allowing simple order-of-magnitude estimates and intuitive interpretation. This formulation is intended to be 
pedagogical and practically useful for assessing the relevance of rotational structure effects in weak-field non-
relativistic gravitational systems.
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2 Physical Assumptions and Model

Here, the gravitational interaction between two extended bodies is examined within classical Newtonian gravity. The aim of 
this section is to describe the physical assumptions behind the analysis and the simplified model considered. These 
assumptions clarify where the results are applicable and where they should not be extended.

First, the gravitational field is assumed to be weak, and the motion of the bodies is con-sidered to be non-relativistic. 
This means that effects related to strong spacetime curvature, such as those occurring during relativistic mergers or final 
collision stages, are not included. The present analysis is therefore restricted to situations where Newtonian gravity provides 
a good leading-order description.

Each body is treated as an extended object with a finite size and a continuous mass distribution. Unlike the point-mass 
approximation, the internal structure of the bodies is taken into account through their mass distribution and rotational 
properties. The bodies are assumed to be rigid, so that their internal mass distribution does not change significantly during 
the interaction. Rotation is allowed, and its effect enters the model through the moments of inertia of the bodies.

The separation between the two bodies is assumed to be large compared to their indi-vidual sizes. This 
condition allows the use of a large-separation approximation, in which the gravitational interaction can be 
expanded in powers of the ratio of the body size to the separation distance. Under this approximation, the 
leading term corresponds to the stan-dard Newtonian gravitational force, while higher-order terms arise due to the 
extended and rotating nature of the bodies.

The focus of this work is on an effective higher-order correction term that depends on the rotational mass distribution of 
the two bodies. This correction naturally involves the moments of inertia I1 and I2 and appears as a force contribution 

proportional to GI1I2/D6, where D is the separation between the centers of mass. This term is interpreted as an effective
correction within Newtonian gravity rather than as a new fundamental force.

In astrophysical systems, such as binary stars or binary neutron star systems, the separa-tion between the bodies 
decreases over time due to energy loss mechanisms. As the separation becomes smaller, higher-order gravitational 
corrections grow more rapidly compared to the leading Newtonian term. While the present model does not describe the 
actual collision or merger phase, it provides insight into how rotational and structural effects can enhance gravitational 
interactions during the late stages of orbital evolution, before the breakdown of the weak-field approximation.

Overall, the model adopted here is intentionally simple and idealized. Its goal is not to provide a 
complete description of realistic astrophysical collisions, but to isolate and understand the role of rotational mass 
distribution in modifying gravitational interactions within a controlled and physically consistent Newtonian framework.

U = −G

∫ ∫
ρ1(r1) ρ2(r2)

|D+ r2 − r1| d
3r1 d

3r2.

3 Mathematical Formulation

In order to study the gravitational interaction between two extended bodies, we begin with the standard 
Newtonian description of gravity for continuous mass distributions. Unlike the point-mass approximation, this 
approach allows the internal structure of the bodies to be taken into account in a systematic way.

Consider two extended bodies with mass densities ρ1(r1)  and ρ2(r2), where r1 and r2 denote position vectors 

measured from the respective centers of mass. Let D be the vec-tor connecting the centers of mass of the two bodies. The 
exact Newtonian gravitational potential energy between the two bodies can then be written as
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This expression is fully general within Newtonian gravity and contains all information about the mass distributions and 
relative geometry of the two bodies. However, in this form it is difficult to extract physical insight. To make further progress, 
suitable approximations are required.

In the present work, the separation between the two bodies is assumed to be much larger than their 
individual sizes. Under this condition, the quantity |r1| and |r2| are small compared to |D|. This allows the 
denominator of the potential to be expanded in powers 
of (r2 − r1)/D. Such an expansion naturally separates the gravitational interaction into a leading contribution and a sequence 
of smaller correction terms.

The leading term of this expansion depends only on the total masses of the two bodies and reproduces the standard 
Newtonian gravitational potential for point masses. Higher-order terms arise due to the finite size and internal structure of 
the bodies. These terms depend on quantities such as the spatial distribution of mass and, in the case of rotating bodies, on 
their moments of inertia.

The aim of the following section is to evaluate the dominant higher-order contribution that originates from rotational 
mass distribution effects. By keeping only the relevant terms in the expansion and relating them to the moments of inertia of 
the two bodies, an effective correction to the Newtonian gravitational force is obtained. This correction forms the basis of 
the main result discussed in this work.

4 Derivation of the Effective Rotational Correction

In this section, the effective correction to the Newtonian gravitational interaction is derived in a step-by-step manner. The 
derivation starts from the exact Newtonian gravitational potential for extended bodies and proceeds using controlled 
approximations consistent with the assumptions stated earlier.

4.1 Exact Newtonian interaction for extended bodies
For two extended bodies with mass densities ρ1(r1) and ρ2(r2), the exact Newtonian gravi-tational potential energy is given 
by

U = −G

∫ ∫
ρ1(r1) ρ2(r2)

|D+ r2 − r1| d
3r1 d

3r2,

where D is the vector connecting the centers of mass of the two bodies, and r1 and r2 are position vectors measured 

from their respective centers of mass.
This expression is exact within Newtonian gravity, but it is not convenient for direct physical interpretation.

4.2 Large-separation expansion

Under the assumption that the separation between the bodies is much larger than their individual sizes, the quantities |r1| 
and |r2| are small compared to |D|. This allows the denominator to be expanded in powers of (r2 − r1)/D.

To leading order, the expansion gives

1

|D+ r2 − r1| =
1

R
+ terms involving r1, r2.

The first term depends only on D and corresponds to the monopole contribution.

4.3 Recovery of the Newtonian force

Substituting the leading term into the potential and performing the integrals over the mass densities gives

U0 = −GM1M2

D
,
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whereM1 andM2 are the total masses of the two bodies. Taking the gradient of this potential

with respect to D reproduces the standard Newtonian gravitational force,

FN =
GM1M2

D2
.

This confirms that the usual Newtonian result naturally appears as the lowest-order term.

4.4 Vanishing of dipole contributions

The next-order terms in the expansion involve integrals of the form

∫
ρ(r) r d3r.

When the coordinate origin is chosen at the center of mass of each body, these integrals

vanish by definition. As a result, dipole contributions do not contribute to the gravitational

interaction between the two bodies.

4.5 Leading correction from internal structure

The first non-vanishing correction arises from terms involving products of position vectors,

which encode information about the internal mass distribution of the bodies. These terms

are related to second moments of the mass distribution and are naturally expressed in terms

of rotational quantities such as the moments of inertia.

For rotating and extended bodies, the relevant contribution to the interaction energy

scales as

Ucorr ∝ − G

D5
I1I2,

where I1 and I2 are the moments of inertia of the two bodies. The exact numerical coefficient

depends on the geometry and orientation of the bodies and is therefore absorbed into an

effective constant.

4.6 Effective force correction

The gravitational force is obtained by differentiating the potential energy with respect to

the separation distance D. Differentiating the correction term leads to an effective force

contribution of the form

Fcorr ∝ GI1I2
D6

.

This term decreases more rapidly with distance than the Newtonian force and therefore
becomes significant only at relatively small separations.
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4.7 Interpretation of the result

The derived D−6 dependence does not represent a new fundamental force. Instead, it should

be understood as an effective correction arising from the rotational mass distribution of

extended bodies within Newtonian gravity. The correction naturally grows as the bodies

approach each other, especially in systems where the moments of inertia are large, such as

compact astrophysical objects.

The total gravitational interaction can therefore be written schematically as

Ftotal = FN + Fcorr,

where FN is the standard Newtonian force and Fcorr represents the effective rotational cor-

rection derived above.

A Detailed Tensor-Level Derivation of the Rotational

Correction

In this appendix, a complete mathematical derivation of the effective rotational correction

to the Newtonian gravitational interaction is presented. All intermediate steps are shown

explicitly in order to clarify the origin of the D−6 dependence and to clearly identify where

approximations enter the analysis.

A.1 Exact Newtonian interaction for continuous mass distributions

The exact Newtonian gravitational potential energy between two extended bodies with mass

densities ρ1(x) and ρ2(y) is given by

U = −G

∫
d3x

∫
d3y

ρ1(x)ρ2(y)

|D+ y − x| ,

where x and y are position vectors measured from the centers of mass of the two bodies,
and D is the vector connecting the two centers of mass.

This expression is exact within Newtonian gravity and contains no approximations.

A.2 Definition of expansion variable

We define the relative internal displacement vector

ξ = y − x.
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The separation between the mass elements is therefore |D+ ξ|.
We assume that the characteristic size of each body is much smaller than the separation

distance,

|ξ| � D,

which allows a systematic Taylor expansion.

A.3 Taylor expansion of the Newtonian Green’s function

Using a multivariable Taylor expansion, the inverse distance can be expanded as

1

|D+ ξ| =
1

D
− Diξi

D3
+

3(Diξi)(Djξj)−D2ξiξi
2D5

+O(ξ3),

where Einstein summation over repeated indices is implied. Here Di and ξi denote Cartesian

components of the vectors D and ξ, and δij represents the Kronecker delta.

A.4 Substitution into the potential energy

Substituting the expansion into the expression for U gives

U = −G

∫ ∫
ρ1(x)ρ2(y)

[
1

D
− Di(yi − xi)

D3
+

3DiDj(yi − xi)(yj − xj)−D2(yi − xi)(yi − xi)

2D5

]
d3x d3y.

Each term in this expression can now be evaluated separately.

A.5 Zeroth-order (monopole) term

The leading contribution is

U0 = −G

D

(∫
ρ1(x)d

3x

)(∫
ρ2(y)d

3y

)
.

Defining the total masses

M1 =

∫
ρ1(x)d

3x, M2 =

∫
ρ2(y)d

3y,

we obtain

U0 = −GM1M2

D
.
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A.6 First-order (dipole) term

The first-order contribution contains integrals of the form

∫
ρ(r) ri d

3r.

By definition of the center of mass, these integrals vanish:

∫
ρ(r)r d3r = 0.

Therefore, the dipole contribution to the interaction energy is exactly zero:

U1 = 0.

A.7 Second-order (quadrupole-level) contribution

The next non-zero contribution arises from the quadratic terms:

U2 = − G

2D5

∫ ∫
ρ1(x)ρ2(y)

[
3DiDj(yi − xi)(yj − xj)−D2(yi − xi)(yi − xi) d3x d3y.

Expanding the products (yi − xi)(yj − xj) produces terms involving xixj and yiyj. Cross

terms vanish due to symmetry.

A.8 Definition of the quadrupole tensor

The mass quadrupole tensor for each body is defined as

Qij =

∫
ρ(r) 3rirj − r2δij d3r.

This definition is exact and standard in classical gravitational theory.

A.9 Quadrupole–quadrupole interaction energy

After performing the algebra, the quadrupole-level interaction energy can be written as

UQQ = − G

D5
Q

(1)
ij Q

(2)
kl

(
δikδjl − 5ninkδjl +

35

2
ninjnknl

)
,

where

ni =
Di

D
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is the unit vector along the line joining the two centers of mass.

This expression is fully tensorial and contains exact numerical coefficients.

A.10 Force derived from the interaction energy

The gravitational force is obtained by differentiating the interaction energy with respect to

the separation distance:

F = −dU

dR
.

Since UQQ ∝ D−5, the corresponding force scales as

FQQ ∝ G

D6
.

A.11 Reduction to an effective scalar form

The quadrupole tensors Qij contain detailed directional information about the mass dis-

tribution and orientation of each body. To obtain a simplified, isotropic description, an

orientation-averaged approximation is introduced.

The scalar moment of inertia is defined as

I =

∫
ρ(r)r2d3r.

Under isotropic averaging, tensor contractions of the form QijQij may be replaced by an

effective scalar proportional to I1I2:

Q
(1)
ij Q

(2)
ij → C I1I2,

where C is a geometry-dependent numerical constant.

This is the only step in the derivation where an approximation is introduced.

A.12 Final effective force

After this isotropic reduction, the effective rotational correction to the gravitational force

can be written as

Feff = C
GI1I2
D6

.

This result represents an orientation-averaged, effective correction arising from the rotational

mass distribution of extended bodies and does not replace the exact tensor-level interaction.
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Origin and interpretation of the coefficient C. The dimensionless coefficient C arises

from the angular dependence of the quadrupole–quadrupole interaction. In the most general

case, the interaction energy depends explicitly on the relative orientation of the bodies

through angular factors involving cos θ = â · D̂, where â denotes a symmetry axis of the

mass distribution and D̂ = D/D is the unit separation vector.

If no orientation averaging is performed, the interaction energy contains explicit angular

dependence proportional to a fourth-order Legendre polynomial, P4(cos θ). In the present

work, an isotropic or orientation-averaged description is adopted, appropriate for systems

with randomly oriented or rapidly precessing axes. Under this averaging, the angular de-

pendence reduces to a numerical factor, which is absorbed into the constant C.

The coefficient C is therefore dimensionless and of order unity, and encodes geometrical

and orientation information that is not resolved in the effective scalar formulation. For

example, using 〈cos2 θ〉 = 1/3 and 〈cos4 θ〉 = 1/5 for isotropic orientations, the angular

dependence of the quadrupole–quadrupole interaction reduces to a constant numerical factor,

yielding an effective force of the form Feff = CGI1I2/D
6.

B Total Gravitational Force and Physical Interpreta-

tion

From the derivation presented earlier, the gravitational interaction between two extended

rotating bodies can be understood as having two parts. The first part is the usual Newtonian

gravitational force, which depends only on the total masses of the bodies and the distance

between them. The second part is an effective correction that appears because real bodies

are not point-like and can rotate.

The total gravitational force can therefore be written in a simple way as
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Fgrav = FN + Feff,

where FN is the standard Newtonian force and Feff represents the effective correction due to
rotational mass distribution. The correction term depends on the moments of inertia of the
two bodies and decreases very rapidly with increasing separation.

Physically, this means that when two bodies are far apart, their internal structure and
rotation have almost no effect on the gravitational interaction. In such situations, the point-
mass approximation works extremely well, and the Newtonian force alone provides an ac-
curate description. The additional correction becomes relevant only when the bodies are
sufficiently close and their extended nature can no longer be ignored.

The appearance of the correction term does not imply the existence of a new fundamental

force. Instead, it reflects the fact that gravity between real, extended objects is slightly
more complex than the idealized point-mass case. The correction arises naturally when the
gravitational interaction is examined beyond the lowest-order approximation and internal
properties such as mass distribution and rotation are taken into account.

In astrophysical systems involving compact objects, such as close binary stars, the sepa-
ration between the bodies can decrease over time. As this happens, higher-order effects grow
more rapidly than the Newtonian term. The effective correction discussed here provides a
simple way to understand how rotational and structural properties may influence gravita-
tional interactions during such stages, while still remaining within the framework of classical
Newtonian gravity.

It is important to emphasize that the present analysis is limited to weak gravitational
fields and non-relativistic motion. The results should therefore be interpreted as providing
physical insight rather than a complete description of strongly relativistic systems. A fully
relativistic treatment would require general relativity and is beyond the scope of this work.

C Numerical Illustrations and Comparative Estimates

In this section, simple numerical illustrations are presented to show how the effective ro-

tational correction compares with the standard Newtonian gravitational force in different

physical systems. These estimates are intended only to provide physical intuition and to

illustrate relative scales. They are not meant to represent precise predictions.

For all numerical estimates presented here, each body is approximated as a rigid, uniform-

density sphere. Under this assumption, the moment of inertia is taken as

I =
2

5
MR2,
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where M is the mass of the body and R is its physical radius. The separation R used in the

force expressions denotes the distance between the centers of mass of the two bodies.

For the Earth–Moon system, the following representative values are used: M⊕ = 6.0 ×
1024 kg, R⊕ = 6.4 × 106 m, MMoon = 7.3 × 1022 kg, RMoon = 1.7 × 106 m, with a mean

separation D = 3.8× 108 m. For the Earth–Moon system, we use the parameters

M⊕ = 6.0× 1024 kg, R⊕ = 6.4× 106 m, (1)

MMoon = 7.3× 1022 kg, RMoon = 1.7× 106 m, (2)

D = 3.8× 108 m. (3)

The moments of inertia are

I⊕ =
2

5
M⊕R2

⊕ =
2

5
(6.0× 1024)(6.4× 106)2 ≈ 9.8× 1037 kgm2, (4)

IMoon =
2

5
MMoonR

2
Moon ≈ 8.4× 1034 kgm2. (5)

The Newtonian gravitational force is

FN =
GM⊕MMoon

D2
≈ 2.0× 1020 N. (6)

The effective rotational correction is

Feff = C
GI⊕IMoon

D6
≈ 10−15 N, (7)

where C ∼ 1 has been assumed.

The total gravitational force is therefore

Ftotal = FN + Feff (8)

(9)= 2.0× 1020 N + 1.0× 10−15 N

= 2.0× 1020 N+ 1.0× 10−15 N (10)

(11)

Table 1: Order-of-magnitude estimates for the Earth–Moon system using the rigid-sphere
moment of inertia approximation.

Quantity Value
3.8× 108 m
∼ 1020 N
∼ 10−15 N

Center-of-mass separation D
Newtonian force FN

Effective correction Feff

Ratio Feff/FN ∼ 10−35
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For the Sun–Earth system, the estimates use M� = 2.0 × 1030 kg, R� = 7.0 × 108 m,

M⊕ = 6.0× 1024 kg, R⊕ = 6.4× 106 m, and a mean separation D = 1.5× 1011 m.

For the Sun–Earth system, we use

M� = 2.0× 1030 kg, R� = 7.0× 108 m, (12)

M⊕ = 6.0× 1024 kg, R⊕ = 6.4× 106 m, (13)

D = 1.5× 1011 m. (14)

The moments of inertia are

I� =
2

5
M�R2

� ≈ 3.9× 1047 kgm2, (15)

I⊕ ≈ 9.8× 1037 kgm2. (16)

The Newtonian force is

FN =
GM�M⊕

D2
≈ 3.5× 1022 N. (17)

The effective rotational correction is

Feff = C
GI�I⊕
D6

≈ 10−12 N. (18)

Thus, the total gravitational force is

Ftotal = FN + Feff (19)

(20)= 3.5× 1022 N + 1.0× 10−12 N

= 3.5× 1022 N+ 1.0× 10−12 N (21)

(22)

Table 2: Order-of-magnitude estimates for the Sun–Earth system assuming spherical bodies.

Quantity Value
1.5× 1011 m
∼ 1022 N
∼ 10−12 N

Center-of-mass separation D
Newtonian force FN

Effective correction Feff

Ratio Feff/FN ∼ 10−34
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For a compact binary neutron star system, typical parameters are

M1 ≈ M2 ≈ 1.4M� ≈ 2.8× 1030 kg, (23)

R1 ≈ R2 ≈ 104 m, (24)

D ∼ 106 m. (25)

The moments of inertia are

I1 ≈ I2 =
2

5
MR2 ≈ 1.1× 1038 kgm2. (26)

The Newtonian gravitational force is

FN =
GM1M2

D2
≈ 5× 1030 N. (27)

The effective rotational correction is

Feff = C
GI1I2
D6

≈ 1026 N. (28)

The total force is therefore

Ftotal = FN + Feff (29)

= 5.0× 1030 N + 1.0× 1026 N (30)

= 5.0× 1030 N+ 1.0× 1026 N (31)

. (32)

Quantity Value
Center-of-mass separation D 106 m

Newtonian force FN ∼ 1030 N
Effective correction Feff ∼ 1026 N

Ratio Feff/FN ∼ 10−4

Table 3: Order-of-magnitude estimates for a compact binary neutron star system using the
spherical moment of inertia approximation.
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Note: All graphical illustrations presented below are plotted on log–log scales.
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Figure 1: Log–log plot of the effective rotational correction as a function of separation
distance, illustrating the inverse sixth-power dependence Feff ∝ D−6.
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Figure 2: Log–log comparison of the Newtonian gravitational force and the effective rota-tional 
correction as functions of separation distance.
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The graphical results presented above are obtained directly from the analytical force rela-tions
derived in this work. They illustrate physically meaningful trends and scaling behavior that
may become relevant in specific regimes, particularly for compact or closely interacting
systems, within the validity of the stated assumptions.
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Figure 3: Ratio of the effective rotational correction to the Newtonian force as a function of
separation distance, illustrating the rapid suppression at large separations.

Note: The following figures are code-generated schematic illustrations based on the ana-

lytical relations developed in this work. They are intended to visualize rotational motion,

separation distance, and force dependence within the stated assumptions.

All illustrations above are generated directly from the theoretical framework developed in this

work and are intended to provide physical intuition regarding rotational motion, separation

dependence, and force scaling in different gravitational systems.
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Figure 4: Effective rotational correction as a function of separation distance plotted on
linear axes [no logarithmic scaling], showing a steep hyperbola-like decay consistent with
Feff ∝ D−6.
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Figure 5: Newtonian gravitational force as a function of separation distance plotted on
normal linear axes[no logarithmic scaling], showing the inverse-square dependence FN ∝ 
D−2.
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COM D

ω

Figure 6: Schematic illustration of Newtonian circular motion with angular velocity ω and
separation distance D.

Separation decreasing

Figure 7: Code-generated schematic illustration of a binary inspiral showing decreasing
separation prior to collision.

Planetary
Binary star

Galactic

Figure 8: Qualitative comparison of characteristic separation scales across different gravita-
tional systems.
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Figure 9: Linear-axis plot illustrating the inverse sixth-power dependence of the effective
force on separation distance.
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Figure 10: Linear-axis plot illustrating the inverse-square dependence of the Newtonian
gravitational force on separation distance.
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D Discussion and Limitations

The results discussed in the previous section help us understand how the effective rotational correction behaves in 
different gravitational systems. The aim of this work is not to change or challenge Newtonian gravity, but to explore how 
real physical properties of bodies, such as rotation and internal mass distribution, can introduce additional terms when 
extended objects are considered instead of ideal point masses.

From the derived expressions and the graphs presented, it can be seen that the effective correction depends much more 
strongly on the separation distance than the usual Newtonian force. While the Newtonian force follows an inverse square 
dependence on distance, the effective term decreases with the inverse sixth power. Because of this, the correction becomes 
extremely small for systems with large separations, such as planetary or galactic systems. This explains why Newtonian 
gravity works very well in most practical situations and why the point-mass approximation is usually sufficient.

At the same time, the numerical estimates and schematic illustrations suggest that the effective correction may 
become more important in compact systems. When the separation between objects is small and their moments of inertia 
are large, the correction grows rapidly, even though it remains smaller than the Newtonian force. Examples of such 
systems include close binary stars or binary neutron stars during the late stages of their inspiral. In these cases, rotational 
and structural effects can contribute in a noticeable way while the weak-field approximation is still applicable.

The code-generated diagrams and drawings included in this work are meant to help build physical intuition. The 
orbital sketches, inspiral-like figures, and force–distance graphs provide a visual understanding of how rotation, 
separation, and force scaling are related. These figures are qualitative in nature and are not intended to represent exact 
dynamical evolution or realistic astrophysical simulations. Their role is simply to illustrate the behavior implied by the 
derived formulas.

There are several important limitations to the present analysis. First, the entire treat-ment is limited to weak 
gravitational fields and non-relativistic motion. Effects related to strong gravity, relativistic corrections, tidal deformation, 
and gravitational radiation are not included. For this reason, the results should not be applied to the final merger stages of 
compact objects or to systems where general relativity dominates the dynamics.

Second, the bodies are modeled as rigid objects with simplified mass distributions, often taken to be uniform spheres. 
In reality, astrophysical objects can have complex internal structures, differential rotation, and time-dependent 
deformation. These features can affect the detailed numerical form of higher-order corrections and are beyond the scope of 
this study.

Finally, the effective force term derived here should be understood as an additional con-tribution within the 
Newtonian framework, not as a new fundamental force. Its purpose is to show how known physical properties, such as 
rotation and mass distribution, can naturally lead to higher-order corrections when extended bodies are treated more 
realistically.

Overall, this work presents a simple and physically consistent approach to examining rotational effects in 
gravitational interactions. Although limited in scope, it provides useful insight and can serve as a starting point for further 
studies, including more realistic modeling or extensions into relativistic regimes

E Conclusion

In this work, an effective rotational correction to the Newtonian gravitational interaction has been studied for 
extended and rotating bodies. The main idea of this work was not to change Newtonian gravity, but to understand how 
real physical properties such as rotation and internal mass distribution can affect gravitational interaction when objects are 
not treated as ideal point masses.

By starting from the classical Newtonian framework and using reasonable physical as-sumptions, an effective force 
term proportional to the product of the moments of inertia and inversely proportional to the sixth power of the separation 
distance was obtained. This term appears naturally as a higher-order correction and does not replace the usual Newtonian 
force. Instead, it adds a small contribution that represents rotational and structural effects that are normally ignored in 
simple models.
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Analytical results, numerical estimates, and code-generated illustrations were used to examine how this effective 
correction behaves in different gravitational systems. The results show that the correction is extremely small for systems 
with large separation distances, such as planetary or galactic systems. This explains why Newtonian gravity works very well 
in most everyday and astronomical situations. However, as the separation between objects decreases, the correction 
increases rapidly, suggesting that it may become more important in compact systems such as close binary stars or binary 
neutron stars, as long as the weak-field approximation remains valid.

The graphs and schematic illustrations included in this work help in building physical understanding. Force–distance 
plots and simple drawings make it easier to see how the effective term depends on distance and how it compares with the 
Newtonian force. These figures are not meant to describe real astrophysical evolution, but they clearly show the behavior 
predicted by the derived formulas.

There are several limitations to this study. The analysis is limited to weak gravitational ï¬ elds, non-relativistic motion, 
and simpliï¬ ed models of extended bodies, which are often assumed to be rigid and uniform. Important eï¬€ects such as 
strong gravity, relativistic motion, tidal deformation, and gravitational radiation are not included. Because of this, the results 
should not be applied to strongly relativistic systems or to the ï¬ nal stages of compact object mergers.

Despite these limitations, this work shows that rotational and structural properties can be included in classical gravity in 
a clear and consistent way. The approach presented here provides a simple starting point for further study and can 
be extended in the future to include more realistic body structures or relativistic eï¬€ects. Overall, this study aims to 
improve understanding of how classical gravitational theory can be reï¬ ned when real physical properties of extended 
bodies are taken into account.
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