
An Effective and Continuous Client to

Server Assignment in a Distributed

Interactive Application

Rashmi D G
M.tech(CSE)

T.John institute of technology

Bangalore, India.

Mrs. Anju Abraham

 Asst.professor, Dept.of CSE

T.John institute of technology

Bangalore, India.

Abstract—In distributed interactive applications (DIAs), the

interaction time between any pair of clients must include the

network latencies between the clients and their assigned servers,

and the network latency between their assigned servers as

interactivity is a primary performance measure in DIAs. The

latencies in the network are directly affected by how the clients

are assigned to the servers. The interaction time is also

influenced by the consistency and fairness requirements of

DIAs. The problem of effectively assigning clients to servers for

maximizing the interactivity of DIAs is investigated. The focus is

on the continuous DIAs that changes their status not only in

response to user operations but also due to the passing of time.

Client will search for the nearest server and send request to it.

Connection to the server is based on the available memory,

resources and work load on the server. To increase the QOS

client- monitor stores the popular resources in it, so that the

response time to the client is reduced to a great extends and load

on the server is reduced. The monitoring system has the

available resources in the server and so can help the client if the

client requested resource is not available on the connected

server. The monitoring system calculates the path length

between requested client and server. Newly activated server

interact with the other servers and gather information about the

nearest clients and clients get connected with the new nearest

server. The results show that our proposed Greedy and Modify

Assignment algorithms generally produce near optimal

interactivity and significantly reduce the interaction time

between clients compared to the intuitive algorithm that assigns

each client to its nearest server as in existing system.

Keywords— Distributed interactive application, client assignment,

interactivity, consistency, fairness, NP-complete.

I. INTRODUCTION

Distributed interactive applications (DIAs), such as

multiplayer online games and distributed interactive

simulations, allow participants at different locations to

interact with one another through networks. Thus, the

interactivity of DIAs is important for participants to have

enjoyable interaction experiences. Normally, interactivity is

characterized by the duration from the time when a

participant issues an operation to the time when the effect of

the operation is presented to the same participant or other

participants [8]. This duration is referred as the interaction

time between participants. Latency in the Network is known

as a major barrier to provide good interactivity in DIAs [6]. It

cannot be eliminated from the interactions among participants

and has a lower theoretical limit imposed by the speed of

light. Increasing geographical spreads of participants in large

scale DIAs are making distributed server deployment vital for

combating the network latency. Latency-driven distribution

of servers is essential even when there are no limitations on

the availability of server resources at one location .The state

of a DIA is often replicated across a group of geographically

distributed servers in a distributed server architecture. As

shown in Fig. 1, each participant, known as a client, is

assigned to one server and connects to the server for sending

user-initiated operations and receiving updates of the

application state. When issuing an operation, a client first

sends the operation to its assigned server. Then, the server

forward the operation to all the other servers. On receiving

the operation, each server calculates the new state of the

application and sends a state update to all the clients assigned

to it. Thus, the clients interact with one another through their

assigned servers. The interaction time between any pair of

clients must include the network latencies between the clients

and their assigned servers, and the network latency between

their assigned servers. These network latencies are directly

affected by how the clients are assigned to the servers. In

addition, the interaction time is also influenced by the

consistency and fairness requirements of DIAs. Consistency

means that shared common views of the application state

must be created among all clients to support meaningful

interactions [6]. Fairness, on the other hand, is to ensure that

all clients have the same chance of participation regardless of

their network conditions [8], [3]. Maintaining consistency

and fairness in DIAs usually introduces artificial

synchronization delays in the interactions among clients due

to diverse network latencies [8], [4], [9]. These

synchronization delays are also dependent on the assignment

of clients to servers. Therefore, how to assign the clients to

the servers in DIAs is of crucial importance to their

interactivity performance.

In previous work each participant, known as a client, is

assigned to one server and connects to the server for sending

user-initiated operations and receiving updates of the

application state. When issuing an operation, a client first

sends the operation to its assigned server. Then, the server

forward the operation to all the other servers. On receiving

the operation, each server calculates the new state of the

application and sends a state update to all the clients assigned

to it.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

1

Fig.1. Distributed server architecture

Thus, the clients interact with one another through their

assigned servers. The interaction time between any pair of

clients must include the network latencies between the clients

and their assigned servers, and the network latency between

their assigned servers. These network latencies are directly

affected by how the clients are assigned to the servers. In

addition, the interaction time is also influenced by the

consistency and fairness requirements of DIAs. Maintaining

consistency and fairness in DIAs usually introduces artificial

synchronization delays in the interactions among clients due

to diverse network latencies.

a. While Nearest-Server Assignment reduces the client-

to-server latencies, it could significantly increase the latencies

between the assigned servers of different clients, and thus

make the interactivity far worse than optimum.

b. The assumption of the triangle inequality is

commonly made when theoretically analyzing the

performance of the approximation algorithms in facility

location problems.

c. In the absence of the triangle inequality, Nearest-

Server Assignment cannot achieve any bounded

approximation ratio.

The problem of effectively assigning clients to servers for

maximizing the interactivity of DIAs is investigated.

Examples of continuous DIAs include distributed virtual

environments, distributed interactive simulations, and

multiplayer online games. The process start by

mathematically modeling the interactivity performance of

continuous DIAs under the consistency and fairness

requirements. Given any client assignment, the minimum

achievable interaction time for DIAs to preserve consistency

and provide fairness among clients is analyzed. Based on the

analysis, we formulate the client assignment problem as a

combinational optimization problem and prove that it is NP-

complete. The performance of the algorithms is also

experimentally evaluated using real Internet latency data. The

results show that our proposed Greedy Assignment and

Distributed-Modify Assignment algorithms generally produce

near optimal interactivity and significantly reduce the

interaction time between clients compared to the intuitive

Nearest-Server Assignment algorithm that assigns each client

to its nearest server. Distributed-Modify Assignment also has

good adaptively to dynamics in client participation and

network latency.

II. SYSTEM MODULES

A. Server

The server is connected in order to create a connection

between the client and the server where the nodes select there

respective server in accordance with the nearest one. The

server checks the client which are ideal. Here the client

assignment is done using the greedy assignment algorithm.

The different servers are interconnected and the servers also

perform a checking algorithm where it checks the client

which are ideal and also initiates the node having the highest

path length to search for the nearest server after all the nodes

are connected respectively.

B. Client

Here the clients are deployed in the network and is connected

to the server based on the Greedy assignment algorithm.

After all the nodes are connected to their respective server the

nodes having the highest path length gets a request from their

server to update their search so that if any new server is

allocated near them then they can connect to that server.

C. Monitor node

The monitor nodes does all the calculation about the nodes

pathlength with respective to their nearest server. This

calculation gets initiated whenever the server sends a request

to the monitor node for updation. After calculation the

monitor nodes updates the table of the Server who has sent

the request and then with that information the server performs

its next task. When all the client connected to the server

distributed modification of the client take place .The client

with the maximum pathlength is selected and request is sent

to that client by the server with which it is connected. After

receiving request client will search for the next nearest server

for connection. if no new server is found than the client

request back to that server where server will search for the

idle client. Selected client will take service via idle client

from server.

III. RELATED WORK

In paper [1] the author discussed the problem of latency in

the network and uses King tool. This tool that accurately

and quickly estimates the latency between arbitrary end hosts

by using recursive DNS queries in a novel way. It does not

require the deployment of additional infrastructure.

In paper [2] the author discussed about the mirror placement

problem as a case of constrained mirror placement where

mirrors can only be placed on a preselected set of candidates.

Performance improvement in terms of client round-trip time

(RTT) and server load when clients are clustered by the

autonomous systems (AS) in which they reside. the number

of mirror sites (under the constraint) effective in reducing

client to server RTT and server load.

In paper [3] the propose is Game-independent, network-

based service, called Sync-MS, that balances the trade-off

between response time and fairness. Sync-MS uses two

mechanisms: Sync-out mechanism properly queue up the

message at player stations and deliver it to the game

application only after the same update message has arrived at

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

2

all player stations. Sync-in mechanism enforce a sufficient

waiting period on each action message dynamically in order

to guarantee fair processing of all action messages.The

fairness requirement is to ensure that all clients have same

chance of participation regardless of their network conditions.

In paper [4] Existing online multiplayer games typically use a

client-server model, which introduces added latency as well

as a single bottleneck and single point of failure to the game.

Distributed multiplayer games minimize latency and remove

the bottleneck, but require special synchronization

mechanisms to provide a consistent game for all players. A

new synchronization mechanism, trailing state

synchronization (TSS), which is designed around the

requirements of distributed first-person shooter games.

Trailing state synchronization (TSS) is designed to execute

commands quickly while at the same time maintaining a

consistent copy of the game state at all players. When

inconsistency does occur due to jitter, the application state

can be repair by trailing state synchronization.

 In paper [5] the drawback is a novel distributed algorithm

that dynamically selects game servers for a group of game

clients participating in large scale interactive online games.

The goal of server selection is to minimize server resource

usage while satisfying the real-time delay constraint. Develop

a synchronization delay model for interactive games and

formulate the server selection problem. The proposed

algorithm, called zoom-in-zoom-out, allow the clients select

appropriate servers in a distributed manner

In paper [6] the author discussed about Collaborative virtual

environments (CVEs) enable two or more people, separated

in the real world, to share the same virtual ‘space’. CVEs is

compromised by one major problem: the delay that exists in

the networks linking users together .The ‘Impact-Perceive-

Adapt’ model of user performance, which considers the

interaction between performance measures, perception of

latency and the breakdown of the perception of immediate

causality, is proposed as an explanation for the observed

pattern of performance.

IV. PROBLEM STATEMENT

The client assignment problem for maximizing the

interactivity of continuous DIAs is formulated as follows:

Given a set of servers S and a set of clients C in a network,

find a client assignment that minimizes the maximum length

of interaction paths between all client pairs, i.e., to minimize

V. HARDNESS RESULT

Theorems 1 and 2 below present the hardness results of the

client assignment problem.

Theorem 1. The client assignment problem is NP-complete.

Theorem 2. No polynomial-time algorithm for the client

assignment problem can achieve an approximation ratio less

than 4/3 if the network latency satisfies the triangle inequality

and any bounded approximation ratio otherwise, if P ≠NP.

VI. HEURISTIC ALGORITHMS

There are three heuristic algorithms where in the proposed

system the combination of greedy and distributed modify

assignment algorithm are considered to effectively assign the

client to server in order to increase interactivity performance .

in proposed system greedy and modify assignment algorithm

is used.

A. Dijkstra algorithm

The first algorithm is called Nearest-Server Assignment

which intuitively assigns clients to their nearest servers using

Dijkstra algorithm. This algorithm can be implemented by

having each client measure the network path length between

itself and all servers, and select the server with the minimum

path length as its assigned server.

After assigning the client to the nearest server the client

broadcast the information about its assignment to the

neighbor clients that are present within the range.

Algorithm : Dijkstra algorithm

 1 function Dijkstra(Graph, source):

 2
 3 dist[source] ← 0 // Distance from source to source

 4 prev[source] ← undefined // Previous node in optimal path

initialization
 5

 6 for each vertex v in Graph: // Initialization

 7 if v ≠ source // Where v has not yet been removed
from Q (unvisited nodes)

 8 dist[v] ← infinity // Unknown distance function from
source to v

 9 prev[v] ← undefined // Previous node in optimal path from

source
 10 end if

 11 add v to Q // All nodes initially in Q (unvisited nodes)

 12 end for
 13

 14 while Q is not empty:

 15 u ← vertex in Q with min dist[u] // Source node in first case
 16 remove u from Q

 17

 18 for each neighbor v of u: // where v has not yet been removed
from Q.

 19 alt ← dist[u] + length(u, v)

 20 if alt < dist[v]: // A shorter path to v has been found
 21 dist[v] ← alt

 22 prev[v] ← u
 23 end if

 24 end for

 25 end while
 26

 27 return dist[], prev[]

 28
 29 end function

B. Greedy and modify Assignment algorithm

The second algorithm Greedy assignment adopts a greedy

approach to assign clients iteratively, starting with an empty

assignment. In each step, the algorithm considers all the

possibilities of assigning an unassigned client to a server. If a

client c is selected to be assigned to a server s, then all

unassigned clients that are not farther from s than c are also

assigned to s as this would not increase the maximum

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

3

interaction path length. Let ∆n be the number of new clients

assigned to s in this way, and ∆l be the increase in the

maximum interaction path length due to these new

assignments. To minimize the amortized increase in the

maximum interaction path length, we use ∆l=∆n as the cost

metric for selecting which client to be assigned to which

server. In each step, among all possible pairs of unassigned

client and server, the pair resulting in the minimum cost

∆l=∆n is selected and the corresponding clients are then

assigned to s. The algorithm terminates when all clients have

been assigned to servers. To calculate ∆n efficiently, the

distances from all clients to each server s are sorted in a list

Ls in a preprocessing stage. This sorted list is then

incrementally updated by removing newly assigned clients at

the end of every step. As a result, ∆n can be obtained directly

from the index of the unassigned client in the list. On the

other hand, ∆l for assigning a new client c to a server s is

calculated by comparing the maximum interaction path

length before assigning c with the maximum length of the

interaction paths from c to all the clients already assigned.

The latter is given by where 2d(c,s) is the interaction path

length from c to itself and C0 is the set of clients already

assigned. For each server the term s is independent of client

c, so its calculation can be shared among all unassigned

clients. The pseudocode of Greedy Assignment is presented

in Algorithm 1. Greedy Assignment is suited for centralized

implementation due to its need for global knowledge about

the distances between clients and servers.

Algorithm 2: Greedy and modify assignment algorithm

1. Initialize =0;

2. for all C do

3. pos() info(x, y,);

4. Send Pos() to monitor node

5. Monitor node calculate NS for

6. Dijkstra (Network graph , Source) ;

7. Monitor node response

8. send request to NS

9. if Max (capacity of C

10. response to

11. connect to

12. Check for

13. if (check == true)

14. Connect to

15. i i+1;

16. for all j 1 to |C| do

17. MaxPL MPL(x, y,);

18. If MaxPL 0

19. posi MaxPL

20. while (0)

21. calculate pathlength length ();

22. if pathlength MaxPL

23. status request (;

24. if (status == active)

25. assign

26. else Assign

27. else for all k=0 to |C|

28. Initiate monitor node check idle client

29. if(check== true)

30. Disconnect

31. Connect ();

32. k k+1;

The unassigned clients are considered and among that one

client will search for nearest server and send requested to that

server using algorithm. When server will get the requested it

will forward it to the monitoring node for calculation of path

length. If the interaction path length is minimum then client

get assigned to the server.

Modify Assignment is performed in a distributed manner

without requiring the global knowledge of the network at any

single server. The assignment is continuously modified for

reducing the maximum interaction path length D until it

cannot be further reduced. This process is referred to as the

assignment modification. One server is selected which as

maximum path length with the connected client to perform

assignment modification. The client is requested to search

next nearest server. If the client finds nearest server then it

connect to that server. If two or more servers is selected to

perform assignment modifications concurrently, the

maximum interaction path length is not guaranteed to reduce

because the calculation of each assignment modification is

based on the assumption that the assigned servers of other

clients remain unchanged.

Fig. 3. An example in which changing the assigned servers of two clients

simultaneously increases the maximum interaction path length.

The Figure 3 gives an example. Suppose that clients c1 and

c2 are initially assigned to servers s1 and s2, respectively, so

that the maximum interaction path length is 30. If c1 (or c2)

changes its assigned server to s3 (or s4), the maximum

interaction path length would be reduced to 25. However, if

both clients change their assigned servers, the interaction path

length between c1 and c2 would become 40, which is even

longer than the maximum interaction path length of the to its

clients. Distributed-Modify Assignment has unbounded

approximation ratio if it starts with an arbitrary initial

assignment, even for networks with the triangle inequality.

On the other hand, if Distributed-Modify Assignment takes

Nearest-Server Assignment as the initial assignment, the

resultant assignment cannot be worse than the latter since the

assignment modification can only reduce the maximum

interaction path length.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

4

VII. SERVER CAPACITY CONSTRAINTS

So far, the assignment algorithms have not assumed any

capacity limitation at the servers. These “uncapacitated”

algorithms are suitable for the scenario where each server site

has abundant server resources or server resources can be

added to these sites as needed. However, if the server

capacity at each site is limited, assigning more clients to a

server than its capacity may result in significant increase in

the processing delay at the server, damaging the interactivity

of the DIA. Therefore, we now discuss how to adapt each

proposed assignment algorithm to deal with server capacity

constraints.

 Greedy Assignment: When selecting the pair of

unassigned client and server in each step, the

algorithm considers unsaturated servers only. After a

client c is selected to be assigned to a server s in a

step, if the algorithm cannot assign to server s, all

clients closer to s than client c due to the capacity

constraint of s, only a portion of these clients are

assigned to server s to fill it to capacity.

Accordingly, the calculation of ∆n is adjusted to

reflect the capacity limitations of the servers.

 Modify Assignment: At each assignment

modification, a client is allowed to be reassigned to

unsaturated servers only.

VIII. CONCLUSION

The client assignment problem for interactivity enhancement

in continuous DIAs is investigated. The interactivity

performance of continuous DIAs under the consistency and

fairness requirements is modeled. The minimum achievable

interaction time between clients is analyzed and used as the

optimization objective in our formulation of the client

assignment problem. The problem is proven to be NP-

complete. Three heuristic assignment algorithms are

presented. The results show that: 1) our proposed Greedy

Assignment and Distributed-Modify Assignment algorithms

significantly outperform the intuitive Nearest-Server

Assignment algorithm; 2) Distributed-Modify Assignment

requires only a small proportion of clients to perform

assignment modifications for improving interactivity; and 3)

Distributed-Modify Assignment has good adaptivity to

dynamics in both client participation and network latency.

To deal with asymmetric routing [6], the network can be

modeled by a directed graph. Each pair of nodes is associated

with the lengths of two routing paths of different directions.

The interaction path from a client ci to another client cj can

be considered as a directed path that is different from the

interaction path from cj to ci. It is easy to show that if we

change the definition of D to be the maximum length of all

the directed interaction paths between clients, the consistency

and fairness requirements can still be satisfied. Therefore, the

objective of the client assignment problem becomes to

minimize the maximum length of all directed interaction

paths. For the heuristic algorithms, we can simply use the

lengths of the directed routing paths between clients and

servers in the calculation without modifying the algorithms.

However, the approximation ratios of the algorithms may

change. In future when the new server is deploy it get the

information about the client from other servers. After getting

the information it will search for the nearest client based on

the information and it will send the request to that client.

After receiving the request from the server client will get

assign to the newly deployed server.

REFERENCES

[1] K.P. Gummadi, S. Saroiu, and S.D. Gribble, “King: Estimating Latency
between Arbitrary Internet End Hosts,” Proc. Second ACM

SIGCOMM Workshop Internet Measurement, pp. 5-18, 2002.

[2] E. Cronin, S. Jamin, C. Jin, A.R. Kurc, D. Raz, and Y. Shavitt,
“Constrained Mirror Placement on the Internet,” IEEE J. Selected

Areas Comm., vol. 20, no. 7, pp. 1369-1382, Sept. 2002.

[3] Y.J. Lin, K. Guo, and S. Paul, “Sync-MS: Synchronized Messaging

Service for Real-Time Multi-Player Distributed Games,” Proc. IEEE

10th Int’l Conf. Network Protocols (ICNP ’02), 2002.

[4] E. Cronin, A.R. Kurc, B. Filstrup, and S. Jamin, “An Efficient
Synchronization Mechanism for Mirrored Game Architectures,”

Multimedia Tools and Applications, vol. 23, no. 1, pp. 7-30, 2004.

[5] Y. He, M. Faloutsos, S. Krishnamurthy, and B. Huffaker, “On Routing
Asymmetry in the Internet,” Proc. IEEE Global Telecomm. Conf.

(GLOBECOM ’05), 2005.

[6] D. Delaney, T. Ward, and S. McLoone, “On Consistency and Network
Latency in Distributed Interactive Applications: A Survey-Part I,”

Presence: Teleoperators and Virtual Environments, vol. 15, no. 2, pp.

218-234, 2006.
[7] J. Brun, F. Safaei, and P. Boustead, “Managing Latency and Fairness in

Networked Games,” Comm. ACM, vol. 49, no. 11, pp. 46-51, 2006.

[8] C. Jay, M. Glencross, and R. Hubbold, “Modeling the Effects of Delayed
Haptic and Visual Feedback in a Collaborative Virtual Environment,”

ACM Trans. Computer-Human Interaction, vol. 14, no. 2, article 8,

2007.
[9] K.W. Lee, B.J. Ko, and S. Calo, “Adaptive Server Selection for Large

Scale Interactive Online Games,” Computer Networks, vol. 49, no. 1,

pp. 84-102, 2005.
[10] M. Marzolla, S. S. Ferretti, and G. D’Angelo, “Dynamic Resource

Provisioning for Cloud-Based Gaming Infrastructures,” ACM

Computers in Entertainment, to be published.
[11] M.R. Korupolu, C.G. Plaxton, and R. Rajaraman, “Analysis of a Local

Search Heuristic for Facility Location Problems,” J. Algorithms, vol.

37, no. 1, pp. 146-188, 2000.
[12] C. Lumezanu, R. Baden, N. Spring, and B. Bhattacharjee, “Triangle

Inequality and Routing Policy Violations in the Internet,” Proc. 10th

Int’l Conf. Passive and Active Network Measurement (PAM ’09), pp.
45-54, 2009.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

5

