
An Effect of Cyber-Attacks on Session

Management

K Bhupathi Reddy
2nd year MCA,

KMM Institute of post graduate

studies, Tirupati.

P Ashok Kumar
2nd year MCA,

KMM Institute of Post graduate

studies, Tirupati.

Dr G. V. Ramesh Babu
Asst.,Prof., Dept., of MCA

S.V.University, Tirupathi

Abstract --An attacker specifically targeting the session

management process is growing on a daily basis. The hacker

can steal password by means of several practices, like

guessing or brute force attack etc. a lot of social websites like

Facebook and Gmail along with banks and other financial

institutions websites, are using two-factor authentication for

security. Under these fake identities, attackers can steal

sensitive data, alter private settings, and compromise website

structure and content. This article describes Web application

design flaws that could be exploited for session management

attacks and discusses these flaws' current prevalence.

Keywords: Session Management, Tokens, Session attacks,

session vulnerabilities.

I. INTRODUCTION

Today browsers have become complex software

applications. It allows users to do more than just viewing

web pages, adding up to their usability level through many

other functions. One of these functions is to manage user

passwords for different sites. The need for this option come

from the fact that Web developers implement in their

applications secure sessions that require users to

authenticate with their username and password. In

computer science, in particular networking, a session is a

semi-permanent interactive information interchange, also

known as a dialogue, a conversation or a meeting, between

two or more communicating devices, or between a

computer and user1. Session management tracks user’s

activity across sessions of interaction with a website.

II. SESSION MANAGEMENT:

Session management most wide spread use is login, but it’s

also used when the user isn’t required to log in, as in the

case of many e-commerce websites or web based social

networks. The typical way to implement it is to associate

each user with unique identifier- the session ID or session

token. The Token implementation typically employs one of

these mechanisms:

 Tokens are stored in cookies.

 Tokens are sent in hidden fields of a specific form on

the website.

 Tokens, once created by server, are added to each link

the user clicks on.

Some application use HTTP authentication. The

Browser could use the HTTP header, rather than the

application’s web page code, to send user credentials. The

main vulnerabilities concern token generation and session

management mechanisms.

III. SESSION MANAGEMENT TOOLS:

 There are three most representative tools for

session management vulnerabilities.

 Rapid7’s Nexspose is a platform for assessing web

application vulnerabilities. The vulnerabilities which

are focused by this are SQL injection and cross-site

scripting.

 EEye analyzes a website’s structure, content, and

resources to find vulnerabilities. It focus on local

applets or objects, and hidden fields.

 Nessus is a scanner for security policy assessment

with some features for web application security, but it

doesn’t focus on session management.



IV. TOKEN GENERATION:

This kind of vulnerability lets attackers generate and use a

valid token. Tokens can be created by composing some

pieces of user information, such as a username or e-email

address. If these schemas are reversible, an attackers could

decode the token and create a valid one.

 Attackers can predict tokens with higher

probability when the token-creating algorithm uses one of

three strategies. Hidden sequences generates tokens by

coding a normal sequence of numbers. In time

dependences, tokens are function of generation time. The

third strategy is the weak generation algorithm. They

employ pseudorandom number generators (PRNG’s).

V.SESSION MANAGEMENT MECHANISMS

 Even if a token is properly generated and unpredictable,

attackers could intercept it. They can do this by exploiting

unencrypted transmissions or weak mechanisms for

preserving the cryptographic keys that a website uses to

generate tokens.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

1

 Another way to intercept tokens is by detecting

them from log files, such as browser logs, Web server logs,

and server proxy logs. If then token is passed as a URL,

parameter, an attacker can read it on the log.

 Yet another way is to find tokens in a browser or

proxy cache, which can record the entire webpage and the

response header.

 Other ways include exploiting faulty mechanisms

user to assign tokens, assigning multiple tokens to the same

user, and using static tokens for each user.

 Additionally, poor session termination policies

create many opportunities for attack. To reduce the

temporal window for attacks, the session should be as short

as possible. Some applications provide no mechanism for

a session’s expiration, which enables attackers to try many

values before the session expires. When a user logs out,

logs out, the server removes that token from the user’s

browser, but if the user (or attacker) sends a previously

used token, the server receives no request at logout and

doesn’t invalidate the session. If an attacker obtains this

token, the attacker could use the session, just as the user

who never logged out could.

Attackers could intercept by following ways

 Exploiting unencrypted transmissions or weak

mechanisms for preserving the cryptographic keys

that a website uses to generate tokens.

 By detecting them from log files, such as browser

logs, Web server logs, and server proxy logs. If then

token is passed as a URL, parameter, an attacker can

read it on the log.

 Another way is to find tokens in a browser or proxy

cache, which can record the entire webpage and the

response header.

And also poor session termination policies create many

opportunities for attack. When a user logs out, the server

removes that token from the user’s browser, but if the user

(or attacker) sends a previously used token the server keeps

accepting it. In the worst case, the server receives no

request at logout and does not in validate the session. If an

attacker obtains this token, the attacker could use the

session, just as the user who never logged out could.

If the token is captured in a cookie, cookie parameter

settings might contain other vulnerabilities. If a cookie

does not have secure flag set, the cookie will be send in

unencrypted transmissions. If the HTTP only flag isn’t set,

attacker can catch it through cross side scripting (XSS)

attacks. Attackers could also explode a cookies scope.

V. SESSION SUSCEPTIBILITIES

 Some applications identify protected area that use

HTTPs but use the same token out side the protected

area. Attacker can obtain the token by intercepting

HTTP transmissions.

 Some application allow HTTP connections even in

protected areas, where HTTP’s should be used. So,

attackers can induce users to make an HTTP request

and then steal the token. Such attacks commonly used

phishing mails, banners, or social engineering.

 Some application use an HTTP connection to access

static content as well as images, scripts and cascading

style sheets attacker can captures tokens by

intercepting these request.

VI. ATTACKS ON SESSION

Attackers can perform attacks such as

 Session sniffing

 http packet sniffing

 log sniffing

 cache sniffing

 XSS cookie sniffing

 Predictable session ID

 Session validity

 CSRF

 Session Fixation

A. Session sniffing:

 These attacks consists of passively intercepting a

sessions dataset that’s being transmitted

i. HTTP packet sniffing:

These attacks intercepts http packets. Attacker must

look at a sniffer in a machine in the network of the victim

or the organization responsible for the web application.

There are four enabling vulnerabilities.

The area of the web site doesn’t use http’s is

identifiable.

 The secure flag isn’t set. The application allows http

request for pages under https. The application uses http

before authentication.



ii. Log sniffing:

These attacks obtains the token by analyzing log files

in the different systems involved in client server

communication there are two enabling vulnerabilities. The

token is transmitted as a URL parameter, in which case it

might be recorded in the log files.

The token is transmitted as hidden field and the server

accept get request in the place of post requests. Such a

request inversion could be realized by a client side script.

iii. Cache sniffing:

If the attacker accesses the browser or proxy cache, the

attacker could obtain the token in any format contain as

cookie, URL parameter, or hidden field. Cache can manage

by two types directive aren’t in the HTTP response header

and the directive cache control: private enables the cache

only on the machine on which the user is working. This is

the main risk for shared machines.

iv. XSS cookie sniffing:

A cross-site scripting attack is a kind of attack on web

applications in which attackers try to inject malicious

scripts to perform malicious actions on trusted websites. In

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

2

cross-site scripting, malicious code executes on the

browser side and affects users. Cross-site Scripting is also

known as an XSS attack. The first question that comes in

mind is why we call it "XSS" instead of "CSS." The answer

is simple and known to all who work in web development.

In web design, we have cascading style sheet s (CSS). So

cross-site scripting is called XSS so it does not get

confused with CSS.

If the input is not properly encoded and sanitized, this

injected malicious script will be sent to users. And a

browser has no way to know that it should not trust a script.

When the browser executes the script, a malicious action is

performed on the client side. Most of the times, XSS is

used to steal cookies and steal session tokens of a valid

user to perform session hijacking.

Fig. Cross Site Trace Attacks

Example:

Suppose there is a website with a messaging feature. In this

website, users can send messages to their contacts. A basic

form will look something like this:

 <form action="sendmessage.php"

method="post'">

 <textarea name="message"> </textarea>

 <input type="submit" value="send" />

 </form>

When this form is submitted, the message will be stored in

the database. Another person will see the message when he

opens the message from the inbox. Suppose an attacker has

sent some cookie-stealing script in the message. This script

will be stored on the website as a message. When the other

person tries to read the message, the cookie-stealing script

will be executed and his session id is now on the attacker's

side. With a valid session id, the attacker can hijack the

other person's account.

B. Predictable session id:

The most common flaw in session ID usage has

always been predictability. As discussed earlier, the two

causes are a lack of randomness, or length, or both.

 Sequential allocation of Session ID's - Each visitor to

the site is allocated a session ID in sequential order.

Thus, by observing your own session ID information,

the simple practice of replacing it with another value a

few iterations up or down will allow the attacker to

impersonate another user.

 Session ID values are too short - The full range of

valid session ID's could be covered during an

automated attack before there is time for the session

to expire.

 Common hashing techniques - While many

commercial web services have built in functions for

calculating hashed information, these mechanisms are

well known and available for reproduction. A hashing

function will indeed create a session ID value that

appears to be unique and great care should be taken to

ensure that predicable information is not used in the

generation of the hash. For example, there have been

cases where the "unique" hash was based upon the

local system time, and the IP address of the

connecting host. Using the same hashing function, the

attacker would be able to pre-calculate a large number

of time dependent hashes for a popular internet portal

or proxy service (i.e. AOL), and use them to brute

force any existing session from that service.

 Session Obfuscation - The use of a custom method of

obscuring data and using it for session management. It

is never a sound idea to include client or other

confidential information within a session ID. For

example, some organizations have even tried

encoding the user's name and password within the

session ID using a shifted Unicode and hexadecimal

representation of the information.

C. Session validity:

 For secure applications all session information

should

 be time limited and allow for client-side

cancellation

 or server-side revocation.

 Client Cancellation - Many web applications fail to

allow for client-side cancellation such as "log-out". If

the intention is to allow users to interact with the

application from anywhere, including Internet Cafes,

organizations need to be aware that other users can

use the same machine and trawl through the "history"

and cached page information. If the session has not

been cancelled, it is a trivial exercise for the next user

of the computer to "resume" the last connection.

 Session Timeout - Again, when dealing with the

possibility of shared client computers, it is extremely

important that there is a limited lifetime (or period of

inactivity) after which the session will automatically

expire. The expiry time should be kept to a minimum

period, and is dependent upon the nature of the

application. Ideally the application should be capable

of monitoring the period of inactivity for each session

ID and be able to delete or revoke the session ID

when a threshold has been reached.

 Server Revocation - In some circumstances it may be

necessary to cancel a session at the server- side.

Likely events include when the user leaves the

insecure part of the application and enters the secure

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

3

part with a new session ID. Alternatively, should

some kind of attack be recorded by the server, it

would be advisable to revoke the session associated

with the attackers system.

D. CSRF (Cross-Site Request Forgery):

 Attackers can potentially hijack sessions without

 even knowing session tokens:

 Browser always includes cookies in requests to a

 particular server.

E. Session obsession:

 The attackers fixes the token before the victim’s

 authentication. The attack has three steps:

i. Session setup.

ii. Session Fixation.

iii. Session entrance.

i. Session setup:

 The attacker creates a session on the server (a trap

 session) and receives or creates the token. In some

 cases, the attackers must keep the session alive

 (“session maintenance”) by sending requests at

 regular intervals.

ii. Session Fixation:

 The attacker introduce the token into the victim’s

 browser.

iii. Session entrance:

 The attacker wait for the user to the enter the

session,

 at which time the attacker can also enter.

Fig. Session Fixation

VII. ANAYSIS OF CURRENT VULNERABITIES

The assessment provides recommendations for

improvements and revised procedures. Our security

specialists have the knowledge of current

technologies and the solid experience necessary to

design:

 Perimeter protection

 Access control

 Video surveillance

 Intrusion detection

 Counter-terrorism and threat mitigation

systems

Fig. 1. Survey on current Vulnerabilities

VIII. SOLUTIONS

A. Use Message Authentication Codes (MACs) to

validate the sensitive data.

1. MAC function takes arbitrary-length text, secret

key, produces a MAC that provides a unique

signature for the text.

2. Without knowing the key, cannot generate a valid

MAC.

3. Server includes MAC with data sent to the

browser.

4. Browser must return both MAC and data.

B. Keep The State On The Server

1. Session could include state from several different

pages; must keep all of this information separate.

2. User can display a form, go onto other pages,

come back to form, and submit: still need state

information.

3. Can't keep forever: results into much session state

on server.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

4

X CONCLUSION

The stateless nature of HTTP requires organizations to use

their own custom method of managing state through the

use of session specific information. While there are a

number of ways of implementing a session management

solution, there are benefits and restrictions to each

implementation. It is vital that developers understand both

the mechanisms available to them, as well as the

limitations. For applications requiring an application user

to authenticate to access resources, it is imperative that the

session management process is implemented securely.

XI REFERENCES

[1] http://www.google.com

[2] http://web.stanford.edu/~ouster/cgi-bin/cs142-
 fall10/lecture.php?topic=secSession.

[3] http://www.technicalinfo.net/papers/WebBasedSessionManagement.

html
[4] http://resources.infosecinstitute.com/how-to-prevent-cross-site-

scripting-

 attacks/
[5] http://www.specialresponse.com/security-srvey-vulnerability-

 assessment.php

[6] http://paulsparrows.files.wordpress.com/2012/06/distribution-attack-
 techniques-may-2012.png

[7] http://www.owasp.org/images/b/b6/Code_Injection.JPG

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

5

