Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCACI-2015 Conference Proceedings

An Effect of Cyber-Attacks on Session
Management

K Bhupathi Reddy
2"year MCA,
KMM Institute of post graduate
studies, Tirupati.

Abstract --An attacker specifically targeting the session
management process is growing on a daily basis. The hacker
can steal password by means of several practices, like
guessing or brute force attack etc. a lot of social websites like
Facebook and Gmail along with banks and other financial
institutions websites, are using two-factor authentication for
security. Under these fake identities, attackers can steal
sensitive data, alter private settings, and compromise website
structure and content. This article describes Web application
design flaws that could be exploited for session management
attacks and discusses these flaws' current prevalence.

Keywords: Session Management, Tokens, Session attacks,
session vulnerabilities.

I. INTRODUCTION

Today browsers have become complex software
applications. It allows users to do more than just viewing
web pages, adding up to their usability level through many
other functions. One of these functions is to manage user
passwords for different sites. The need for this option come
from the fact that Web developers implement in their
applications secure sessions that require users to
authenticate with their username and password. In
computer science, in particular networking, a session is a
semi-permanent interactive information interchange, also
known as a dialogue, a conversation or a meeting, between
two or more communicating devices, or between a
computer and user!. Session management tracks user’s
activity across sessions of interaction with a website.

Il. SESSION MANAGEMENT:

Session management most wide spread use is login, but it’s
also used when the user isn’t required to log in, as in the
case of many e-commerce websites or web based social
networks. The typical way to implement it is to associate
each user with unique identifier- the session ID or session
token. The Token implementation typically employs one of
these mechanisms:

e Tokens are stored in cookies.

e Tokens are sent in hidden fields of a specific form on
the website.

e Tokens, once created by server, are added to each link
the user clicks on.

P Ashok Kumar
2" year MCA,
KMM Institute of Post graduate
studies, Tirupati.

Dr G. V. Ramesh Babu
Asst.,Prof., Dept., of MCA
S.V.University, Tirupathi

Some application use HTTP authentication. The
Browser could use the HTTP header, rather than the
application’s web page code, to send user credentials. The
main vulnerabilities concern token generation and session
management mechanisms.

I11. SESSION MANAGEMENT TOOLS:

There are three most representative tools for
session management vulnerabilities.

e Rapid7’s Nexspose is a platform for assessing web
application vulnerabilities. The vulnerabilities which
are focused by this are SQL injection and cross-site
scripting.

e EEye analyzes a website’s structure, content, and
resources to find vulnerabilities. It focus on local
applets or objects, and hidden fields.

e Nessus is a scanner for security policy assessment
with some features for web application security, but it
doesn’t focus on session management.

IV. TOKEN GENERATION:

This kind of vulnerability lets attackers generate and use a
valid token. Tokens can be created by composing some
pieces of user information, such as a username or e-email
address. If these schemas are reversible, an attackers could
decode the token and create a valid one.

Attackers can predict tokens with higher
probability when the token-creating algorithm uses one of
three strategies. Hidden sequences generates tokens by
coding a normal sequence of numbers. In time
dependences, tokens are function of generation time. The
third strategy is the weak generation algorithm. They
employ pseudorandom number generators (PRNG’s).

V.SESSION MANAGEMENT MECHANISMS

Even if a token is properly generated and unpredictable,
attackers could intercept it. They can do this by exploiting
unencrypted transmissions or weak mechanisms for
preserving the cryptographic keys that a website uses to
generate tokens.

Volume 3, | ssue 18

Published by, www.ijert.org 1

Special Issue- 2015 International Journal of Engineering Research & Technology (IJERT)
I SSN: 2278-0181

NCACI-2015 Conference Proceedings

Another way to intercept tokens is by detecting
them from log files, such as browser logs, Web server logs,
and server proxy logs. If then token is passed as a URL,
parameter, an attacker can read it on the log.

Yet another way is to find tokens in a browser or
proxy cache, which can record the entire webpage and the
response header.

Other ways include exploiting faulty mechanisms
user to assign tokens, assigning multiple tokens to the same
user, and using static tokens for each user.

Additionally, poor session termination policies
create many opportunities for attack. To reduce the
temporal window for attacks, the session should be as short
as possible. Some applications provide no mechanism for
a session’s expiration, which enables attackers to try many
values before the session expires. When a user logs out,
logs out, the server removes that token from the user’s
browser, but if the user (or attacker) sends a previously
used token, the server receives no request at logout and
doesn’t invalidate the session. If an attacker obtains this
token, the attacker could use the session, just as the user
who never logged out could.

Attackers could intercept by following ways

e Exploiting unencrypted transmissions or weak
mechanisms for preserving the cryptographic keys
that a website uses to generate tokens.

e By detecting them from log files, such as browser
logs, Web server logs, and server proxy logs. If then
token is passed as a URL, parameter, an attacker can
read it on the log. .

e Another way is to find tokens in a browser or proxy
cache, which can record the entire webpage and the
response header. .

And also poor session termination policies create many
opportunities for attack. When a user logs out, the server
removes that token from the user’s browser, but if the user
(or attacker) sends a previously used token the server keeps
accepting it. In the worst case, the server receives no
request at logout and does not in validate the session. If an
attacker obtains this token, the attacker could use the
session, just as the user who never logged out could.

If the token is captured in a cookie, cookie parameter
settings might contain other vulnerabilities. If a cookie
does not have secure flag set, the cookie will be send in
unencrypted transmissions. If the HTTP only flag isn’t set,
attacker can catch it through cross side scripting (XSS)
attacks. Attackers could also explode a cookies scope.

V. SESSION SUSCEPTIBILITIES

e Some applications identify protected area that use
HTTPs but use the same token out side the protected
area. Attacker can obtain the token by intercepting
HTTP transmissions.

e Some application allow HTTP connections even in
protected areas, where HTTP’s should be used. So,
attackers can induce users to make an HTTP request
and then steal the token. Such attacks commonly used
phishing mails, banners, or social engineering.

e Some application use an HTTP connection to access
static content as well as images, scripts and cascading
style sheets attacker can captures tokens by
intercepting these request.

VI. ATTACKS ON SESSION

Attackers can perform attacks such as
e Session sniffing
= http packet sniffing
= log sniffing
= cache sniffing
= XSS cookie sniffing
e Predictable session ID
e Session validity
e CSRF
e Session Fixation

A. Session sniffing:
These attacks consists of passively intercepting a
sessions dataset that’s being transmitted

i. HTTP packet sniffing:

These attacks intercepts http packets. Attacker must
look at a sniffer in a machine in the network of the victim
or the organization responsible for the web application.
There are four enabling vulnerabilities.

The area of the web site doesn’t use http’s is
identifiable.

The secure flag isn’t set. The application allows http
request for pages under https. The application uses http
before authentication.

ii. Log sniffing:

These attacks obtains the token by analyzing log files
in the different systems involved in client server
communication there are two enabling vulnerabilities. The
token is transmitted as a URL parameter, in which case it
might be recorded in the log files.

The token is transmitted as hidden field and the server
accept get request in the place of post requests. Such a
request inversion could be realized by a client side script.

iii. Cache sniffing:

If the attacker accesses the browser or proxy cache, the
attacker could obtain the token in any format contain as
cookie, URL parameter, or hidden field. Cache can manage
by two types directive aren’t in the HTTP response header
and the directive cache control: private enables the cache
only on the machine on which the user is working. This is
the main risk for shared machines.

iv. XSS cookie sniffing:

A cross-site scripting attack is a kind of attack on web
applications in which attackers try to inject malicious
scripts to perform malicious actions on trusted websites. In

Volume 3, | ssue 18

Published by, www.ijert.org 2

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCACI-2015 Conference Proceedings

cross-site scripting, malicious code executes on the
browser side and affects users. Cross-site Scripting is also
known as an XSS attack. The first question that comes in
mind is why we call it "XSS" instead of "CSS." The answer
is simple and known to all who work in web development.
In web design, we have cascading style sheet s (CSS). So
cross-site scripting is called XSS so it does not get
confused with CSS.

If the input is not properly encoded and sanitized, this
injected malicious script will be sent to users. And a
browser has no way to know that it should not trust a script.
When the browser executes the script, a malicious action is
performed on the client side. Most of the times, XSS is
used to steal cookies and steal session tokens of a valid
user to perform session hijacking.

D How to Perfor ce Att =101 x|

File Edit ‘iew History Bookmarks Tools Help D‘

Adrnin Fu f
.

it the HTTP T

* Whoops! You entered

Broken Authentication and
Session Management i
A 2

‘ Read janaina \ [F@M |[%] Noevents

Fig. Cross Site Trace Attacks

Example:
Suppose there is a website with a messaging feature. In this
website, users can send messages to their contacts. A basic
form will look something like this:

<form action="sendmessage.php"
method="post"'>

<textarea name="message"> </textarea>

<input type="submit" value="send" />

</form>
When this form is submitted, the message will be stored in
the database. Another person will see the message when he
opens the message from the inbox. Suppose an attacker has
sent some cookie-stealing script in the message. This script
will be stored on the website as a message. When the other
person tries to read the message, the cookie-stealing script
will be executed and his session id is now on the attacker's
side. With a valid session id, the attacker can hijack the
other person's account.

B. Predictable session id:

The most common flaw in session ID usage has
always been predictability. As discussed earlier, the two
causes are a lack of randomness, or length, or both.

e Sequential allocation of Session ID's - Each visitor to
the site is allocated a session ID in sequential order.

Thus, by observing your own session 1D information,
the simple practice of replacing it with another value a
few iterations up or down will allow the attacker to
impersonate another user.

e Session ID values are too short - The full range of
valid session ID's could be covered during an
automated attack before there is time for the session
to expire.

e Common hashing techniques - While many
commercial web services have built in functions for
calculating hashed information, these mechanisms are
well known and available for reproduction. A hashing
function will indeed create a session ID value that
appears to be unique and great care should be taken to
ensure that predicable information is not used in the
generation of the hash. For example, there have been
cases where the "unique” hash was based upon the
local system time, and the IP address of the
connecting host. Using the same hashing function, the
attacker would be able to pre-calculate a large number
of time dependent hashes for a popular internet portal
or proxy service (i.e. AOL), and use them to brute
force any existing session from that service.

e Session Obfuscation - The use of a custom method of
obscuring data and using it for session management. It
is never a sound idea to include client or other
confidential information within a session ID. For
example, some organizations have even tried
encoding the user's name and password within the
session ID using a shifted Unicode and hexadecimal
representation of the information.

C. Session validity:
For secure applications all session information
should
be time limited and allow for client-side
cancellation
or server-side revocation.

e Client Cancellation - Many web applications fail to
allow for client-side cancellation such as "log-out”. If
the intention is to allow users to interact with the
application from anywhere, including Internet Cafes,
organizations need to be aware that other users can
use the same machine and trawl through the "history"
and cached page information. If the session has not
been cancelled, it is a trivial exercise for the next user
of the computer to "resume™ the last connection.

e Session Timeout - Again, when dealing with the
possibility of shared client computers, it is extremely
important that there is a limited lifetime (or period of
inactivity) after which the session will automatically
expire. The expiry time should be kept to a minimum
period, and is dependent upon the nature of the
application. Ideally the application should be capable
of monitoring the period of inactivity for each session
ID and be able to delete or revoke the session 1D
when a threshold has been reached.

e Server Revocation - In some circumstances it may be
necessary to cancel a session at the server- side.
Likely events include when the user leaves the
insecure part of the application and enters the secure

Volume 3, | ssue 18

Published by, www.ijert.org 3

Special Issue - 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCACI-2015 Conference Proceedings

part with a new session ID. Alternatively, should
some kind of attack be recorded by the server, it
would be advisable to revoke the session associated
with the attackers system.

D. CSRF (Cross-Site Request Forgery):
Attackers can potentially hijack sessions without
even knowing session tokens:
Browser always includes cookies in requests to a
particular server.

E. Session obsession:
The attackers fixes the token before the victim’s
authentication. The attack has three steps:
i Session setup.
ii. Session Fixation.
iii. Session entrance.

i. Session setup:
The attacker creates a session on the server (a trap
session) and receives or creates the token. In some
cases, the attackers must keep the session alive
(“session maintenance”) by sending requests at
regular intervals.

ii. Session Fixation:
The attacker introduce the token into the victim’s
browser.

iii. Session entrance:

The attacker wait for the user to the enter the
session,

at which time the attacker can also enter.

Session Fixation Bug

Username

Password

ou are not logeed i

?\i I.I;J

(V‘g T | Console HTML 55 Script DOM Net | Cookies »

Default (Accept cookies) -

.Jo'| Cookies - Filter~
Name Value Domain Raw Size

Cookies are Deleted parmanently, can't
recover from previous session via firebug...

Fig. Session Fixation

VII.ANAYSIS OF CURRENT VULNERABITIES

The assessment provides recommendations for
improvements and revised procedures. Our security
specialists have the knowledge of current
technologies and the solid experience necessary to
design:

Perimeter protection

Access control

Video surveillance

Intrusion detection

Counter-terrorism and threat mitigation
systems

Distribution Of Targets
May 2012

gy, 3%

B Government
NEducation
1 Law Enforcement
B Onling Services
B 0nline Games
0 Poltical Organizations
B Government Contractor
BEntertainment
E-Commerce
W 5enice Provider
W Generic Orgs
Military
Other

Fig. 1. Survey on current VVulnerabilities

VIIl. SOLUTIONS

A. Use Message Authentication Codes (MACs) to

validate the sensitive data.

1. MAC function takes arbitrary-length text, secret

key, produces a MAC that provides a unique
signature for the text.

2. Without knowing the key, cannot generate a valid

MAC.

3. Server includes MAC with data sent to the

browser.

4. Browser must return both MAC and data.
B. Keep The State On The Server

1. Session could include state from several different

pages; must keep all of this information separate.

2. User can display a form, go onto other pages,

come back to form, and submit: still need state
information.

3. Can't keep forever: results into much session state

on server.

Volume 3, | ssue 18

Published by, www.ijert.org 4

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCACI-2015 Conference Proceedings

X CONCLUSION

The stateless nature of HTTP requires organizations to use
their own custom method of managing state through the
use of session specific information. While there are a
number of ways of implementing a session management
solution, there are benefits and restrictions to each
implementation. It is vital that developers understand both
the mechanisms available to them, as well as the
limitations. For applications requiring an application user
to authenticate to access resources, it is imperative that the
session management process is implemented securely.

XI REFERENCES

[1] http://www.google.com
[2] http://web.stanford.edu/~ouster/cgi-bin/cs142-
fall10/lecture.php?topic=secSession.
[3] http://www.technicalinfo.net/papers/WebBasedSessionManagement.
html
[4] http://resources.infosecinstitute.com/how-to-prevent-cross-site-
scripting-
attacks/
[5] http://www.specialresponse.com/security-srvey-vulnerability-
assessment.php
[6] http://paulsparrows.files.wordpress.com/2012/06/distribution-attack-
techniques-may-2012.png
[7] http://www.owasp.org/images/b/b6/Code_Injection.JPG

Volume 3, | ssue 18 Published by, www.ijert.org 5

