
An Automatic Query Generation

For Data Web Search

Swagat Venkata Nadella
*
, H Devaraju

#
, Y Ramesh Kumar

*
,

 Final MTech student, Avanthi Institute of Engineering and Technology

(JNTUK),Cherukupally, VizianagaramDist,

Andhra Pradesh, India

Assistant professor Department of CSE, Avanthi Institute of Engineering and Technology

(JNTUK),Cherukupally,

VizianagaramDist , Andhra Pradesh, India

Associate Professor Department of CSE, Avanthi Institute of Engineering and Technology

(JNTUK),Cherukupally,

Vizianagaram,Dist ,Andhra Pradesh, India

Abstract:-Using mobile applications to retrieve and

manage data from remote servers is an essential service

today. Due to this reason developers are continuously

required to implement applications that perform this task.

In this proposed system an automated mobile applications

generator called MashQL is presented. MashQL is

intended to ease developers’ work by generating mobile

query processing that requires accessing a remote

database. It provides a user friendly interface and builds

both, the client and the server sides. It generates Java ME

applications at the client side. The remote databases are

managed using JSP and My SQL. Once information has

been retrieved, data has converted to an appropriate

format in order to store it persistently on the mobile device

using the Record Management System (RMS). In this

paper display area and resource restrictions of small cell

phone devices, currently, most reported database query

systems developed for them are only offering a small set of

pre-determined queries that can be posed by users.

Keywords: Query formulation, RDF, MashQL, J2ME

and Android.

I. INTRODUCTION

In this paper, several declarative languages for

querying and specifying views over RDF/S

description bases have been proposed in the literature

such as RQL, and RVL. However, these languages are

mainly targeting experienced users, who need to

understand not only the RDF/S data model but also

the syntax and the semantics of each language in order

to formulate a query or a view in some textual form.

Building user friendly GUIs for browsing and

seperating RDF/S description bases while exploiting

in a transparent way the

Expressiveness of declarative languages like

RQL/RVL is still an open issue for emerging SW

technology. The idea of using suitable visual

abstractions in order to access data collections

originates from the early days of the database systems.

The graphical interface presented in this paper aims to

combine the simplicity of SW browsers with the

expressiveness of DB query generators in order to

navigate the Semantic Web by generating queries on

the fly. The proposed interface, called GRQL, relies

on the full power of the RDF/S data model for

constructing, in a transparent to the end-user way,

queries expressed in a declarative language such as

RQL. More precisely, after choosing an entry point,

users can discover the individual[11] RDF/S class and

property definitions and continue browsing by

generating at each step the RQL path expressions

required to access the resources of interest.

Therefore, we believe that in order to have a

generic database query system for small mobile

devices, the system must be made supportive of

different types of queries as well as unplanned

queries. In doing so, the system should use minimal

resources possible. Thus, in this paper, we shall

introduce a new database query language that is

suitable to be implemented as the query formulation

method on display area and resource restricted mobile

devices. In our study, we have implemented the

language in a database query system[18] prototype for

mobile phones. We advocate that if the language

works on mobile phones, then it should be able to be

adopted by other “thicker” small devices. Unplanned

and imprecise queries performs very important role

Today, with the advancement of technology in both

data communication networks and accessing devices,

the above activity can be carried out using many small

mobile devices such as the Personal Digital Assistants

(PDAs),Query language can provide a much simpler

interface for users to formulate queries through mobile

phones the systems only provide minimal querying

capabilities. Hence, possible queries that can be

formulated on these systems are mostly pre-

determined by the developers as sets of options

provided on a menu. Cell phones are poor in terms of

its resources i.e. it contains less memory and also

very small display area, so implementing such

1814

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70595

method on them will make challenging and even

applicable to other device also. It provides Interface to

the user to formulate query. [10]Thus it has ability that

it supports unplanned queries in order to make it as

generic. It reduces number of queries as input,

especially in the place of relations. Most of the queries

are of these types, thus benefits resource in poor

devices.

Hence, the remainder of this paper is organized as

follows. Section 2 highlights some related works,

Third Section introduces the main concepts of the

query language, Section 4 presents the database query

system prototype for cell phones, Section 5 discusses

the usability tests conducted on the prototype, and

Section 6 provides conclusions.

II.RELATED WORK

Mashup editors and visual scripting:

Some mashup editors allow people to write query

scripts inside a device, and visualize these devices and

their inputs and outputs as Boxes connected with

lines. However, when the user wants to express a

query over structured data, they have to use the formal

language of that editor. Two approaches in the

Semantic Web community are inspired by this visual

scripting. For example, Tummarello et al allow people

to write their SPARQL [11][15] queries inside a box

and link this box to another box, in order to form a

pipeline of the queries. All these visual scripting

methods a are not comparable with MashQL, as they

did not provide query formulation guide in any sense.

They have included here, because MashQL is also

inspired by the way Yahoo Pipes visualizes query

devices. However, the main purpose of MashQL is not

to visualizing such boxes and links, but rather, to help

for formulating what is inside these boxes Hence, it is

worth noting that the examples of this paper cannot be

built using Yahoo pipes. Yahoo allows limited

support for XML mashups, using scripts in YQL.

RDF QUERYING SCHEME

The results of RDF_MATCH table function

can be further processed by SQL‟s rich querying

capabilities and seamlessly combined with queries

on traditional relational data. Furthermore, the

RDF_MATCH table function invocation has

rewritten as a SQL query, thereby avoiding the run-

time table function procedural overheads. It also

enables optimization[18] of rewritten query in

conjunction with the rest of the query. The resulting

query is executed efficiently by making use of B-

tree indexes as well as specialized subject-property

materialized views. This paper describes the

functionality of the RDF_MATCH table function

for querying RDF data, which can optionally

include user defined releases, [20] and discusses its

implementation in Oracle DBMS. It also presents an

experimental study characterizing the overhead

eliminated by avoiding procedural code at runtime,

characterizing performance under various input

conditions, and demonstrating scalability using 80

million RDF triples from UniProt protein and

annotation data

Generating On the Fly Queries for the Semantic

Web

Building user-friendly GUIs for browsing and

filtering RDF/S description bases while exploiting in a

transparent way the expressiveness of declarative

query/view languages is vital for various Semantic

Web applications. In this paper we present the novel

interface, called as GRQL, which relies on the full

power of the RDF/S data model for constructing on

the fly queries expressed in RQL. More precisely, a

user can do navigate graphically through the

individual RDF/S class and property definitions and

generate transparently the RQL path expressions

required to access the resource of interest

Graphical Rql Interface (Grql):

These expressions capture accurately the meaning

of its navigation steps through the class (or property)

sub assumption and/or associations. Additionally the

users can enrich the generated queries with filtering

conditions on the attributes of the currently visited

class while they can easily specify the resource‟s class

(es) appearing in the query result. It is the best of our

knowledge. The first application is GRQL application

which is independent GUI able to generate a unique

RQL queries which captures the cumulative effect of

an entire user navigation session.

Furthermore, the word “unplanned” in database

querying is rather subjective. This is because, like any

other computer-related operations, there is always a

limit to the kind of operations which can be executed.

For database, this range of operations would [5]

depend on the level of expressiveness that a query

language exhibits. Chandra mentioned in his work that

a language can support relational level of

expressiveness at the lowest level to computable

expressiveness at the highest end; and these languages

can be of different forms. For example SQL is a

textual language which exhibits at least relational

level of expressiveness and QBE is a graphical

language which is also capable of[13] supporting

relational expressiveness. For mobile devices, only

one work which discussed the issue of language

expressiveness can be found. Polyviou, Samaras and

Evripidou discussed expressive queries in their work

which implement directory-like interface for query

formulation. However, their method is suitable only to

be used with devices that have pen input mechanism.

1815

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70595

III.THE QUERY FORMULATION LANGUAGE

We present the query formulation language

(called MashQL) in order to form a query on

structured data on the web easily. The main novelty of

the MashQL is that it allows people with limited IT

skills to explore and query one [3][9] (or multiple)

data sources without prior knowledge about the

structure, vocabulary, schema or any other technical

details of these sources. Most important thing is to be

robust and cover most cases in practice, we do not

assume that data source should contain an offline or

in line schema. This posses several language-design

and performance complexities that we tackle

fundamentally. To illustrate the query formulation

power of MashQL, and without loss of generality,

[19]we chose the Data web scenario. We can also

chose querying RDF, it is the primitive data model;

hence, MashQL can be used for querying relational

databases and XML. We present two implementations

of the MashQL, an online mashup editor, and a

Firefox can add on.

The MASHQL:

MashQL assumes the queried data set is

structured as (or mapped into) a directed labeled

graph, similar one but not necessarily the exact RDF

syntax. A data set G is a set of triples <Subject,

Predicate, Object >. A subject and a predicate can

only be a unique identifier I (URL or a key). An object

can be a unique identifier I or a literal L. The only

difference with the RDF model is that we allow an

identifier to be any form of a key (i.e., weaker than a

URI). Allowing this would simplify the use of

MashQL for querying databases. Relational databases

(or XML) can be mapped easily to this primitive data

model.

Query Formulation Algorithm:

We present the novel query formulation

algorithm, in which the complexity and the

responsibility of understanding a data source [17]

(even if it is schema free) are moved from the user to

the query editor. This allows end users to navigate

easily and query an unknown data graph(s). i.e,,

people can learn the content and the structure of a

data set while navigating it. The algorithm is not

required the data to contain specific information or

tags, except being symantically correct RDF, as

discussed in the query model.

FROM Id Triples t1, Id Triples t2. Id Triples t3

 WHERE t1.PropertyID = 14 AND t2.PropertyID = 11

 AND t2. Object ID = 4 AND t3.PropertyID = 29

Then a self-join query is generated based on

matching variables across triples (e.g. '?r') in the

pattern:

WHERE t1.SubjectID = t2.SubjectID AND

 t2.SubjectID = t3.SubjectID

Next, the internal IDs are joined with the UriMap

table to generate the join result in the URI (and

literal) format:

SELECT u1.UriValue r, u2.UriValue c,

u2.Type c$type, u3.UriValue a,

u3.Type a$type

FROM UriMap u1, UriMap u2, UriMap u3

WHERE t1.SubjectID = u1.UriID AND

 t1.ObjectID = u2.UriID AND

 t3.ObjectID = u3.UriID

Note that „r‟ is a URI, so there is no type

associated, whereas „c‟ and „a‟ have a date

type (c$type, a$type) associated.

Query language for mobile phones:

Prior to the construction of the query language, a

small survey involving 45 fourth year students from

the Department of Computer and Information

Sciences (CIS) at University Technology

PETRONAS, Malaysia (UTP) who had just returned

from an eight-month industrial internship program,

was conducted for gathering the types of queries users

would normally issue to a database. In the survey, a

test database schema (of a university scenario) was

presented to the respondents in a narrative form.

Based on the scenario, each respondent was asked to

provide at least five possible queries that they may

want to issue to the database. As a result, 262 queries

were returned. Based on the major query operation

each query required, five different query groups were

identified. The five groups were selection, projection,

join, set difference and union.

To cater for the above requirement, a free-form

query language is proposed. Free-form is a concept

which is based on the universal relation [14]. It can be

used to reduce the number of terms needed in a query.

Especially for queries of the join type, the number of

query terms can be greatly reduced by not specifying

the foreign key relationships between them. The

universal relation concept has been known to be

applied in keyword-based querying [7][8]. However, it

Varies to keyword-based querying which uses

Database instances as query terms, the approach that

we opted for our language uses schema terms instead.

It is due to several reasons which are related to the

accessing devices that we are using, i.e., the cell

phones.

1816

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70595

IV.ANDROID

Figure .1 Android Phones

About J2ME:

In order to show that our language can support its

intended capabilities, one prototype was developed.

This prototype consists of a J2ME midlet for the

interface on the Java phone emulator, and several Java

servlets for the execution of queries. The interface

developed follows the guidelines given in most

references on J2ME such as those of Mahmoud [15]

which suggested that an interface for small devices

should be simple and use as many as possible high-

level APIs.

Android is a software platform and operating

system for cell phone devices, based on the Linux

kernel, and developed by Google after that the Open

Handset Alliance. It is allowing the developers to

write managed code in the Java and, controlling the

device via Google-developed Java libraries(Fig.1).

Applications written in C and other languages can be

compiled to ARM native code and run, but the

development path has not officially supported by

Google.

Figure.2 Application Framework

Open Handset Alliance:

Open Handset Alliance, is a consortium of several

companies which including the Google, , Intel,

Motorola, HTC, T-Mobile, Qualcomm Sprint Nextel

and NVIDIA, ... These are the companies which aim

to develop technologies that will significantly lower

the cost of developing and distributing mobile devices

and services. Android platform is the first step in this

direction -- a fully integrated mobile "software stack"

that includes of middleware and an operating system,

user-friendly interface and applications.

Operating System:

Android uses Linux for its device drivers,

memory management ,networking and process

management. However you will never be

programming to this layer directly. Next is the

Android runtime, it includes the Dalvik Virtual

Machine. It runs the dex files, which are converted at

compile time from standard class and jar files. This

files are more efficient and compact than class files,

one important consideration for limited memory and

battery powered devices are Android targets. The

Android runtime is also a part of core java libraries..

They are written in Java, as is everything above this

layer. Here, it provides a substantial subset of the Java

5 Standard Edition includes Collections, I/O,

packages and so forth.

Architecture:

A central design point of the Android security

architecture has no application, by default, it has

permission to perform any operations that would

adversely impact other applications, the operating

system(Fig.2), or the user. This includes reading or

writing the user's private data (such as contacts or e-

mails), writing or reading another application files

also, performing network access, keeping the devices

awake, etc.

Performance:

Devices hosting Android applications have

limited capabilities. That's why code should be

efficient, avoid all unnecessary memory allocations,

method calls (it takes a lot of time) and so on.

IDE and Tools:

Although it is possible to develop Android apps

with every modern IDE Google recommends doing so

is by using the Eclipse IDE with a special plug-in

called ADT (Android Development Tools). The ADT

1817

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70595

makes use of all the Dev Tools that come with the

SDK and therefore supports and simplifies all the

steps from assembling the classes over packaging and

signing to running the final application on the

emulator. The ADT is not just speeding up the testing

process but also relieves the developers work in terms

of UI creation and application description. For that

reason the ADT offers the developer graphical

representations of what has otherwise have to be

written in XML. We can only hope that the next

versions of Android have overcome the actual

limitations and that the future possibilities became a

reality.

Programming language:

The officially supported programming language

on the Android platform is Java. It is also

recommended to have some knowledge of XML as the

descriptor file as well as the user interface of an

application is based on that. As the Linux kernel of

the Android platform is based upon an ARM

processor architecture it would also be possible to

write code in C or other languages and compile it to

ARM native code.

V.SYSTEM PROTOTYPE

Figure.3 Free Form Query Language in Phone

The mobile phones which accepts different types

of queries as well as unplanned queries, by allowing

imprecise inputs. Since mobile phones are poor in

terms of resources as compared to other mobile

devices, the success of implementing such a method

on them would mean it is applicable to the other

devices. Free form language can provide a much

simpler interface for users to formulate queries. The

language helps in reducing the number of query inputs

especially in cases where joins of relations are needed.

Since the majority of queries which might be issued

are of this type, providing such a method would

benefit users of resource-poor devices. Using the

structure above (Fig.3), queries such as q1, q2, q3 and

q4 below are all valid queries. Queries, q1 combines

two relations, while, q2 combines two attributes (not

necessarily from the same table). A query which

combines a relation and an attribute is also acceptable

(see q3) and the order of the terms in the query can be

reversible as well. A query, q4, which combines two

conditions, is also allowable.

q1: STUDENT SUBJECT

q2: SUBJECT. Sub name STAFF. Stafname

q3: SUBJECT STAFF.stafname

q4:STAFF.stafID=‟e0001‟AND SUBJECT.subjcrhr>2

Furthermore, the language also allows a union or

a set difference query to be implemented by including

the respective operator once, anywhere in the query.

However, the position of the set operator determines

the components of

The query which needs to be manipulated. For

example, a query, q5, requests for students to be

combined with staff who teaches third year students.
q5: STUDENT.studname U STUDENT.studyear=3

 STAFF.stafname

q6: STUDENT.studname STUDENT.studyear=3 U

 STAFF.stafname

q7: STUDENT.studname STUDENT.studyear=3 U

 STAFF.stafname TEMP1

q8: TEMP1 SUBJECT

Server

In our project, we are using MySQL as the data

server and Apache Tomcat 5.0 as the web server.

These two are the main core of the server side

programming. Our application has been deployed in

the Apache Tomcat so that all kind of Http Requests

and response can be handled easily. All the parameters

passed from the request can be retrieved using the get

Parameter () method of Http Request Object.

Connection:

The Connection between the Client (i.e. J2ME

application in mobile) and the Web Server is

maintained by the object Http Connectionin javax.

Microedition.io. Http Connection. Using this

connection module we could retrieve the database

information by passing the Http Request. The

requesting attributes is sent as the parameters of the

url built for Http Connection.

1818

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70595

Design of the Application:

According to the request sent by the client, the

server processes the data and it is responded to the

client, which is further received by the help of open

Data InputStream() in Http Connection Object. So the

client application is designed according to the Field

information of the tables retrieved from the server.

Activity Manager Manages the lifecycle of

applications. This cycle through various states:

Started, Running, Background, Killed. Maintains a

common stack allowing the user to navigate from one

application to another. Content Provider Allows one

application to make its data available to another. For

example, the contacts application makes its data

available to other applications that may need it. The

phone or email application may need to consult

contacts.

Query Generation:

The design of the application is done by the data

types which we used in the database. The choice

which we are about to use, according the query will be

generated behind the screen. After the complete

operation of selecting the choices we are supposed to

execute the query by passing it as the parameter to the

server through Http Request.

VI.CONCLUSIONS

We conclude that it is possible to develop a

database query formulation system for smart phones

which accepts unplanned queries, by allowing free-

form inputs. As cell phones are poor in terms of

resources as compared to other mobile devices, the

successfulness of implementing such a method on

them would mean it is applicable to the other devices.

Indefinite query method in the form of free-form

language can provide a much simpler interface for

users to formulate queries. The method can also

helpful in reducing the number of query inputs,

particularly in cases where joins of relations are

needed. Since most of queries which might be issued

are of this type (as seen by the queries given by

respondents), providing such a method would benefit

users of resource smart phone devices.

REFERENCES

[1]. R. Alonso, and H. F. Korth, “Database system issues in

nomadic computing”, in Proc. 1993 SIGMOD Conference,

Washington D.C., 1993, pp. 388-392.
[2]. K.Hung, and Y-T. Zhang, “Implementation of a WAP- Based

telemedicine system for patient monitoring,” IEEE

Transactions on Information Technology in Biomedicine, Vol.
7, No. 2, June 2003, pp. 101-107.

[3]. A. Koyama, N. Takayama, L. Barolli, Z. Cheng, and N.

Kamibayashi, “An agent based campus information providing
system for cellular phone,” in Proc. 1st International

Symposium on Cyber Worlds, Tokyo,2002, pp. 339-345.

[4]. P. Boonsrimuang, H. Kobayashi, and T. Paungma, “Mobile

Internet navigation system,” in Proc. 5th IEEE International
Conference on High Speed Networks and Multimedia

Communications, Jeju Island, 2002, pp.325-328.

[5]. A. Bergstrom, P. Jaksetic, and P. Nordin, “Enhancing
information retrieval by automatic acquisition of textual

relations using Genetic programming,” in Proc IUI 2000, New

Orlean, 2000, pp. 29-32.
[6]. H-M. Lee, S-K. Lin, and C-W. Huang, “Interactive query

expansion based on fuzzy association thesaurus for web

information retrieval, “ in Proc. IEEE International Fuzzy
Systems Conference, Melbourne, 2001,pp. 724-727.

[7]. S. Agrawal, S. Chaudhuri, and G. Das, “DBXplorer: A system

for keyword-based search over relational databases,” in Proc.

IEEE 18
th

International Conference on Data Engineering

(ICDE‟02), San Jose, 2002, pp. 5-16.

[8]. P. Calado, A.S. da Silva, A.H.F. Laender, B.A. Ribeiro-Neto,

and R.C.Viera, “A Bayesian network approach to searching
web databases through keyword-based queries, “ Information

Processing and Management, Vol. 40, No. 5, September 2004,

pp. 773-790.
[9]. N. Athanasis, V. Christophides, and D. Kotzinos, “Generating

On the Fly Queries for the Semantic Web,” Proc. Int‟l

Semantic Web Conf. (ISWC ‟04), 2004.
[10]. BEA Systems, Inc., “BEA AquaLogic Data Services Platform

- XQuery Developer‟s Guide. Version 2.5,” 2005.

1819

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70595

