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Abstract:  
The proposed   multi resolution fractals coders 

are image compression schemes that combine wavelets 

and fractals transforms. They improve the performance 

of conventional fractal compression algorithms. They 

reduce the characteristics distortions of fractal 

algorithms: blocking artifacts and image blurring, by 

better coding of high frequencies. The main idea behind 

all fractal algorithms is to exploit the similarities 

present within many natural images: one block image is 

represented by an affine transform of larger block taken 

from the image it self .The characteristics property of 

fractal coders is to exploit similarities between scales. 

Wavelets transforms perform Multiresolution 

decompositions of  images ,i.e decomposition of the 

originals  images into sub images at different scales 

.The translation of the fractal property in the wavelets 

transforms domain is straightforward .Multiresolution  

decomposition through wavelets transform of  fractals 

coded images reveal strong relationships limit the 

frequency content .Multiresolution fractals coders 

introduces degrees of freedom on these constraints   

The research is includes other extensions of the 

Multiresolution fractal coders are wavelet transform 

and fractals are wavelet transform. The Multiresolution 

fractals codes present all the advantages the 

conventional fractals coders. Good reconstructed image 

quality are obtained with multi resolution fractals 

coders at very low bit rates where they outperformed 

the JPEG standard algorithm ,both in terms of PSNR 

and direct visual evolution .Image obtained with the 

multiresolution fractals schemes are more natural 

looking than those coded with JPEG. 

Keywords: Multi resolution, wavelets transforms, 

fractals transforms 

 1 INTRODUCTION  

In the early 1980s, the wavelet transform was studied 

theoretically in geophysics and mathematics by Morlet, 

Grossman and Meyer. In the late 1980s, links with 

digital signal processing were pursued by Daubechies  

 

and Mallat, thereby putting wavelets firmly into the 

application domain. 

The Fourier transform is a tool widely used for many 

scientific purposes, and it will serve as a basis for 

another introduction to the wavelet transform A range 

of very different ideas have been used to formulate the 

human ability to view and comprehend phenomena on 

different scales. Wavelet and other multiscale 

transforms Data classification may be carried out using 

hierarchical classification. A sequence of agglomerative 

steps is used, merging data objects into a new cluster at 

each step. There is a fixed number of total operations in 

this case. Such an approach is bottom-up, starting with 

the set of data objects, considered independently. 

Spatial and other constraints may be incorporated, to 

provide segmentation or regionalization methods.  This 

approach is combinatorial since neither continuous data 

values, nor stochasticity, are presupposed An image 

represents an important class of data structures. Data 

objects may be taken as pixels, but it is more 

meaningful for image interpretation if we try, in some 

appropriate way, to take regions of the image as the 

data objects. Such regions may be approximate. One 

approach is to recursively divide the image into smaller 

regions. Such regions may be square or rectangular, to 

facilitate general implementation. Decomposition halts 

whenever a node meets a homogeneity criterion, based 

on the pixel values or gray-levels within the 

corresponding image region. A pyramid is a set of 

successively smoothed and down sampled versions of 

the original image. A wavelet is a localized function of 

mean zero. Wavelet transforms often incorporate a 

pyramidal representation of the result Wavelet 

transforms are computationally efficient, and part of the 

reason for this is that the scaling or wavelet function 

used is often of compact support, i.e. defined on a 

limited and finite domain. Wavelets also usually allow 

exact reconstitution of the original data. A sufficient 

condition for this in the case of the continuous wavelet 
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transform is that the wavelet coefficients, which allow 

reconstitution, are of zero mean. Wavelet functions are 

often wave-like but clipped to a finite domain 

.Compared to other methods  the wavelet transform can 

be determined very efficiently. Unlike scale-space 

filtering, it can introduce artifacts. To limit the 

retrograde impact of these, we may wish to develop 

other similar multiscale methods, with specific 

desirable properties. The choice of method to apply in 

practice is a function of the problem, and quite often of 

the properties of the signal. 

The proposed   multi resolution fractals coders are 

image compression schemes that combine wavelets and 

fractals transforms. They improve the performance of 

conventional fractal compression algorithms The main 

idea behind all fractal algorithms is to exploit the 

similarities present within many natural images 

Wavelets transforms perform Multiresolution 

decompositions of  images ,i.e decomposition of the 

originals  images into sub images at different scales 

.The translation of the fractal property in the wavelets 

transforms domain is straightforward .Multiresolution  

decomposition through wavelets transform of  fractals 

coded images reveal strong relationships limit the 

frequency content .Multiresolution fractals coders 

introduces degrees of freedom on these constraints   

The proposed paper is includes other extensions of the 

Multiresolution fractal coders are wavelet transform 

and fractals are wavelet transform. The Multiresolution 

fractals codes present all the advantages the 

conventional fractals coders and propose solution to 

some of the drawbacks.Multiresolution fractals schemes 

are defined by many parameters: wavelet basis, number 

of bands and cut-off frequencies in the frequency 

decomposition, range block sizes. A thorough study 

still has to be performed to determine the parameters 

values yielding to the smallest image distortions for a 

target bit rate. Good reconstructed image quality are 

obtained with multiresolution fractals coders at very 

low bit rates where they outperformed the JPEG 

standard algorithm ,both in terms of PSNR and direct 

visual evolution .Image obtained with the 

multiresolution fractals schemes are more natural 

looking than those coded with JPEG. However coding 

of the low-pass components of image blocks with the 

JPEG standard is very efficient .The high pass 

components of  the multiresolution coders are may be 

incorporated in the JPEG schemes for better coding of 

high frequency components of JPEG images 

.Alternatively ,the low pass components of the 

multiresolution fractals coders may be replaced by any 

other compression schemes that performs well on low 

resolution images. 

2 .Wavelet transform and Fourier 

transform  

Wavelet transform (WT) represents an image as a sum 

of wavelet functions with different locations and scales 

.Any decomposition of an image into wavelets involves 

a pair of waveforms: one to represent the high 

frequencies corresponding to the detailed parts of an 

image (wavelet function) and one for the low 

frequencies or smooth parts of an image (scaling 

function). 

 

 
           

                  Fig 2.1: wavelet Transform 

 

Fig.2. 1 shows two waveforms of a family discovered 

in the late 1980s by Daubechies: the right one can be 

used to represent detailed parts of the image and the left 

one to represent smooth parts of the image. The two 

waveforms are translated and scaled on the time axis to 

produce a set of wavelet functions at different locations 

and on different scales. Each wavelet contains the same 

number of cycles, such that, as the frequency reduces, 

the wavelet gets longer. High frequencies are 

transformed with short functions (low scale). Low 

frequencies are transformed with long functions (high 

scale). During computation, the analyzing wavelet is 

shifted over the full domain of the analyzed function. 

The result of WT is a set of wavelet coefficients, which 

measure the contribution of the wavelets at these 

locations and scales. 

 
Wavelets can be introduced in different ways. 

In the following we can think of our input data as a 

time-varying signal. If discretely sampled, this amounts 

to considering an input vector of values. The input data 

may be sampled at discrete wavelength values, yielding 

a spectrum, or one dimensional image. A two-

dimensional, or more complicated input image, can be 

fed to the analysis engine as a rasterized data stream. 

Analysis of such a two-dimensional image may be 

carried out independently on each dimension. Without 

undue loss of generality, we will now consider each 

input to be a continuous signal or a discrete vector of 

values.  In the continuous wavelet transform, the input 

signal is correlated with an analyzing continuous 

wavelet. The latter is a function of two parameters, 

scale and position. An admissibility condition is 

required, so that the original signal can be reconstituted 

from its wavelet transform. In practice, some discrete 

version of this continuous transform will be used. A 
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later section will give definitions and will examine the 

continuous wavelet transform in more detail. The 

widely-used Fourier transform maps the input data into 

a new space, the basis functions of which are sines and 

cosines. Such basis functions extend to +∞ and −∞, 

which suggests that   Fourier analysis is appropriate for  

signals which are similarly defined on this infinite 

range, or which can be assumed to be periodic. The 

wavelet transform maps the input data into a new space, 

the basis functions of which are quite localized in 

space. They are usually of compact support. The term 

„wavelet‟ arose as a localized wave-like function. 

Wavelets are localized in frequency as well as space, 

i.e. their rate of variation is restricted. Fourier analysis 

is not local in space, but is local in frequency. Fourier 

analysis is unique, but wavelet analysis is not: there are 

many possible sets of wavelets which one can choose. 

One trade-off between different wavelet sets is between 

their compactness versus their smoothness. 

Compactness has implications for computational 

complexity: while the Fast Fourier Transform (FFT) 

has computational complexity O(n log n) for n-valued 

inputs, the wavelet transform is often more efficient, 

O(n).  Another point of view on the wavelet transform 

is by means of filter banks. The filtering of the input 

signal is some transformation of it, e.g. a low-pass 

filter, or convolution with a smoothing function. Low 

pass and high-pass filters are both considered in the 

wavelet transform, and their complementary use 

provides signal analysis and synthesis. The Fourier 

transform is a tool widely used for many scientific 

purposes, and it will serve as a basis for another 

introduction to the wavelet transform. For the present, 

we assume a time-varying signal. Generalization to any 

x as independent variable, or image pixels (x, y), in the 

place of time t, is immediate. The Fourier transform is 

well suited only to the study of stationary signals where 

all frequencies have an infinite coherence time, or 

otherwise expressed – the signal‟s statistical properties 

do not change over time. Fourier analysis is based on 

global information which is not adequate for the study 

of compact or local patterns. 

 

Fourier analysis uses basis functions 

consisting of sine and cosine functions. These are time-

independent. Hence the description of the signal 

provided by Fourier analysis is purely in the frequency 

domain. Music, or the voice, however, impart 

information in both the time and the frequency domain. 

The windowed Fourier transform, and the wavelet 

transform, aim at an analysis of both time and 

frequency. For non-stationary analysis, a windowed 

Fourier transform (STFT, short time Fourier transform) 

can be used.  introduced a local Fourier analysis, taking 

into account a sliding Gaussian window. Such 

approaches provide tools for investigating time as well 

as frequency. Stationarity is assumed within the 

window. The smaller the window size, the better the 

time-resolution. However the smaller the window size 

also, the more the number of discrete frequencies which 

can be represented in the frequency domain will be 

reduced, and therefore the more weakened will be the 

discrimination-potential among frequencies 

 

2.1 Applications of the wavelet transform 
The some of applications of wavelet transform are: 

 

The human visual interpretation system does a good job 

at taking scales of a phenomenon or scene into account 

simultaneously. A wavelet or other multiscale 

transform may help us with visualizing image or other 

data. A decomposition into different resolution scales 

may open up, or lay bare, faint phenomena which are 

part of what is under investigation. In capturing a view 

of multilayered reality in an image, we are also picking 

up noise at different levels. Therefore, in trying to 

specify what noise in an image is, we may find it 

effective to look for noise in a range of resolution 

levels. Such a strategy has proven quite successful in 

practice. Noise of course is pivotal for the effective 

operation of, or even selection of, analysis methods. 

Image deblurring, or disconsolation or restoration 

would be trivially solved, were it not for the difficulties 

posed by noise. Image compression would also be easy, 

were it not for the presence of what is by definition 

non-compressible, i.e. noise. Image or data filtering 

may take different forms. For instance, we may wish to 

prioritize the high-frequency (rapidly-varying) parts of 

the image, and de-emphasize the low-frequency 

(smoother) parts of the image. Or, alternatively, we 

may wish to separate noise as far as possible from real 

image signal. In the latter case, we may wish to 

„protect‟ important parts of the image from the slightest 

alteration. An image may contain smooth and sharp 

features. We may need to consider a trade-off in quality 

between results obtained for such types of features. 

Introducing an entropy constraint in the image analysis 

procedure is one way to do this. This comes under the 

general heading of regularization. An image analysis 

often is directed towards particular objects, or object 

classes, contained in the image. Template matching is 

the seeking of patterns which match a query pattern. A 

catalog or inventory of all objects may be used to 

facilitate later querying. Content-based queries may 

need to be supported, based on an image database. 

Image registration involves matching parts of images 

taken with different detectors, or taken at different 

times. A top-down approach to this problem is offered 

by a multiscale approach: the crudest, most evident, 

features are matched first; followed by increasingly 

better resolved features. In the analysis of multivariate 

data, we integrate the wavelet transform with methods 
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such as cluster analysis, neural networks and 

(supervised and unsupervised) pattern recognition. In 

all of these applications, efficiency and effectiveness 

(or quality of the result) is important. Varied 

application fields come immediately to mind: 

astronomy, remote sensing, medicine, industrial vision, 

and so on. All told, there are many and varied 

applications for the methods described in this book. 

Based on the description of many applications, we aim 

to arm the reader well for tackling other similar 

applications. Clearly this objective holds too for 

tackling new and challenging applications. 

 

3. Multi resolution 
Fractal T performs multi resolution image analysis. The 

result of multi resolution analysis is simultaneous 

image representation on different resolution (and 

quality) levels . The resolution is determined by a 

threshold below which all fluctuations or details are 

ignored. The difference between two neighboring 

resolutions represents details. Therefore, an image can 

be represented by a low-resolution image 

(approximation or average part) and the details on each 

higher resolution level. Let us consider a one-

dimensional (1-D) function f(t). At the resolution „j‟ 

level, the approximation of the function. The intuition 

behind using lossy compression for denoising may be 

explained as follows. A signal typically has structural 

correlations that a good coder can exploit to yield a 

concise representation. White noise, however, does not 

have structural redundancies and thus is not easily 

compressible. Hence, a good compression method can 

provide a suitable model for distinguishing between 

signal and noise. The discussion will be restricted to 

wavelet-based coders, though these insights can be 

extended to other transform domain coders as well. A 

concrete connection between lossy compression and 

denoising can easily be seen when one examines the 

similarity between thresholding and quantization, the 

latter of which is a necessary step in a practical lossy 

coder. That is, the quantization of wavelet coefficients 

with a zero-zone is an approximation to the 

thresholding function (see Fig. 2.1). Thus, provided that 

the quantization outside of the zero-zone does not 

introduce significant distortion, it follows that wavelet-

based lossy compression achieves denoising. With this 

connection in mind, the threshold choice aids the lossy 

coder to choose its zero-zone, and the resulting coder 

achieves simultaneous denoising and compression if 

such property is desired. 

 

The multi resolution support of an image describes in a 

logical or boolean way whether an image I contains 

information at a given scale j and at a given position (x, 

y). If M(I)(j, x, y) = 1 (or true), then I contains 

information at scale j and at the position (x, y).M 

depends on several parameters: 

 

• The input image. 

• The algorithm used for the multiresolution 

decomposition. 

• The noise. 

• All constraints we want the support additionally to 

satisfy. 

Such a support results from the data, the treatment 

(noise estimation, etc.), and from knowledge on our 

part of the objects contained in the data (size of objects, 

alignment, etc). 

 

The wavelet transform of an image by an algorithm 

such as the `a trous one produces a set {wj} at each 

scale j. This has the same number of pixels as the 

image. The original image c0 can be expressed as the 

sum of all the wavelet planes and the smoothed array cp 

and a pixel at position x, y can be expressed also as the 

sum over all the wavelet coefficients at this position, 

plus the smoothed array. The multi resolution support 

will be obtained by detecting at each scale the 

significant coefficients. The multi resolution support is 

defined by: 

          M(j, x, y) =1 if wj(x, y) is significant 

                             0 if wj(x, y) is not significant 

3.1. Algorithm: 

The algorithm to create the multiresolution support is as 

follows: 

1. We compute the wavelet transform of the image. 

2. We estimate the noise standard deviation at each 

scale. We deduce the statistically significant level at 

each scale. 

3. The binarization of each scale leads to the 

multiresolution support. 

4. Modification using a priori knowledge (if desired). 

The multiresolution support allows us to integrate, in a 

visualizable manner, and in a way which is very 

suitable for ancillary image alteration, information 

coming from data, knowledge, and processing. 

 

4. Related work: 
Image Processing is defined as analyzing and 

manipulating images.  Image Compression has become 

the most recent emerging trend throughout the world. 

Some of the common advantages image compressions 

over the internet are reduction in time of webpage 

uploading and downloading and lesser storage  space  

in  terms  of  bandwidth.  Compressed  images also 

make it possible to view more images in a shorter  

period of  time .Image  compression  is  essential  
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where  images  need to  be  stored,  transmitted  or 

viewed quickly  and  efficiently.  The benefits  can be  

classified under two  ways  as  

follows:  First,  even  uncompressed raw  images  can  

be  stored  and transmitted easily. Secondly, 

compression provides better  resources for transmission 

and storage. Image compression is  the representation 

of image in a digitized form with a few bits 

maintenance only allowing acceptable level of image 

quality. Compression addresses the problem of 

reducing the amount of data required to represent a 

digital image. A good compression scheme  is  always  

composed of  many  compression  methods namely 

wavelet transformation, predicative coding, and vector 

quantization and so on.  Wavelet  transformation  is  an  

essential  coding technique  for  both  spatial  and 

frequency  domains,  where  it  is  used to divide  the  

information  of  an  image  into  approximation  and  

detail  sub  signals .  Artificial Neural Networks (ANN) 

is also used for image compression. It is a system where 

many algorithms  are  used. 

Wavelet analysis is  based on a decomposition of a 

signal  using an orthonormal family  of  basic functions 

.Wavelets  are  well  suited for  the analysis  of  

transient  and  time-varying  signals  . The  wavelet  

transform has  been  developed  as  an  alternate  

approach  to  Short  Time  Fourier  transform  to 

overcome  the  resolution  problem.  The wavelets 

transform is computed separately for different segments 

of the time domain signal at different frequencies. This 

approach is called Multi resolution analysis, as it 

analyzes the signal at different frequencies giving 

different resolutions. 

The constraints imposed on images by fractal coders do 

not exist within original images. The formulation of the 

fractal property in the Haar wavelet transform domain 

is thus modified to improve the conventional fractal 

algorithm. A new fractal coder is implemented: high 

frequencies are better rendered if two different fractal 

transforms are used inside the algorithm. The wavelet 

transform is applied once to the original image, yielding 

to a low resolution image and three detail images. 

These three detail images are recombined to obtain a 

high-pass image. The low-resolution image one fourth 

the original size, is coded with a first fractal code. The 

image obtained after iteration of this fractal code from 

any original image is used to compute a second fractal 

code to represent the high-pass original image. At the 

decoder, the reconstructed image is the combination of 

the low-resolution image obtained with the first fractal 

code and the detail image obtained with the second 

fractal code.  The modification of the fractal coding 

algorithm may be generalized to any kind of frequency 

decomposition. The generalized multi resolution fractal 

coder is decomposed into two steps. First, a wavelet 

transform is applied to the original image. Two 

subimages are obtained, a low resolution one and a 

detail one. For the low-resolution image a first fractal 

code is computed. For the detail subimage, a second 

fractal code is derived using information from the 

image obtained with the first fractal code. The decoding 

part iterates the first fractal code to construct an 

approximation of the low-resolution subimage. From 

this image and the second fractal code, an 

approximation of the detail subimage is reconstructed. 

The coded image is obtained by a combination of these 

sub images using an inverse wavelet transform 

 

5. Results and evaluation: 
 

Multiresolution fractal schemes are defined by many 

parameters: wavelet basis, number of bands and cut-off 

frequencies in the frequency decomposition, range 

block sizes. A thorough study still has to be performed 

to determine the parameters values yielding to the 

smallest image distortions for a target bit rate. Good 

reconstructed image quality are obtained with 

multiresolution fractal coders at very low bit rates 

where they outperformed the JPEG standard algorithm, 

both in terms of PSNR and direct visual evaluation. 

Images obtained with the multiresolution fractal 

schemes are more natural-looking than those coded 

with JPEG. However, coding of the low-pass 

components of image blocks with the JPEG standard is 

very efficient. The high-pass component of the 

multiresolution coders may be incorporated in the JPEG 

scheme for a better coding of high frequency 

components of JPEG images. Alternatively, the low 

pass component of the multiresolution fractal coders 

may be replaced by any other compression schemes that 

perform well on low resolution images.   

 

Figures below shows “Baboon” image (512 . 512): (a) 

original image, (b)  fractal algorithm (PSNR = 17.87 

dB, 0.016 bpp), multiresolution fractal coder  

 

 
              (a)original Image 
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     (b)   Multi resolution fractal coder        

Future scope: 

Future work includes other extensions of the 

multiresolution fractal coders. The two basis blocks of 

multiresolution fractal coders are wavelet transform and 

fractal transform. Only separable wavelets have been 

considered, either orthonormal or bi-orthogonal. Other 

multiresolution decomposition schemes may considered 

non-separable wavelets. The implemented fractal 

algorithm may also be improved to take into account 

domain block isometries or recursive splitting of range 

blocks . 
 

 

4. CONCLUSION: 

 
Multiresolution fractal coders present all the advantages 

of conventional fractal coders and propose solutions to 

some of their drawbacks.  Image quality of 

reconstructed images is good, even for very low bit 

rates.  The characteristic distortions of fractal coders are 

reduced: blocking artifacts are less annoying, images 

are less blurred.  For the implemented conventional 

fractal coder, the achievable bit rates are very limited. 

This range is drastically increased with the 

multiresolution coders. Since successive steps of the 

multiresolution fractal coders correspond to more and 

more details, these algorithms may be incorporated in a 

hierarchical scheme and progressive transmission to 

adapt to time-varying channel or display resources. 
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