
An Approach for Integrating Heterogeneous and

Loosely Coupled Geospatial Databases

Xia Peng
1
, Zhou Huang

2*
, Xuetong Xie

3

1
Institute of Tourism, Beijing Union University

Beijing, 100101, P. R. China
2
Institute of Remote Sensing & GIS, Peking University

Beijing, 100871, P. R. China
3
School of Geographical Sciences, Guangzhou University

Guangzhou, 510006, P. R. China

Abstract --More and more geospatial databases are deployed

on different hosts in the distributed environment currently.

These databases are often heterogeneous and loosely coupled.

They have different backup structures but can be accessed

through the same human-machine interface i.e. GSQL

(Geographic SQL). How to integrate these databases is very

crucial for geospatial applications under the Internet

environment. An approach for distributed geospatial query

processing is discussed in this paper. The detailed methods on

how to translate the global GSQL query into a distributed query

workflow is introduced. Using this method, a global geospatial

query is translated into a query workflow composed of several

local GSQL statements which can be issued onto the distributed

and heterogeneous geospatial databases.

1. INTRODUCTION

With the development of information technology,

particularly with the rapid development of distributed

computing technologies, more and more geospatial

databases are deployed on different hosts in the distributed

environment (Local Area Network or Wide Area Network

like the Internet). These databases are often heterogeneous

and loosely coupled. But applications are often attended to

perform integrated query or analysis onto the different and

distributed geospatial databases. Thus how to deal with the

distributed query processing problem is a challenging issue

in the geospatial database research area. The key to achieve

distributed query on the distributed geospatial databases is

query language processing. As a primary measure taken to

work with databases, geospatial query language is one of

the foundation elements of spatial database systems [1]. A

lot of research has been seen in this field. As indicated in

reference [2], extending SQL (Structured Query

Language), namely constructing GSQL (Geographic SQL),

is proved to be a feasible and effective method to realize

geospatial query language and to provide the support for

accessing and managing geospatial data. GSQL extended

by SQL is widely used in geospatial databases now and

adopted by OGC standards. Methods on GSQL

implementation, formal definition, geospatial predicates

and geospatial functions extension are discussed

frequently. In fact, OGC provided the specification for

simple feature operations, including the definition of

spatial operators, spatial relation measurement, and so on

[3].

On the other side, because spatial database are

commonly built upon the distributed environment, more

and more attentions are drawn to the research for

distributed spatial data management. Distributed data

storage and processing are the main features of distributed

spatial data management. Hence, the research on

processing mechanism of distributed geospatial query will

turn out to be an important subject in the field of geospatial

query language itself in addition to the research on the

geospatial database. A major problem we are facing is how

to turn the global geospatial query statement to the local

query statements which are processed in local computers

respectively. The mechanism of the distributed geospatial

query processing in the distributed environment, which is

discussed in this paper, is the key solution for this problem.

2. FORMALIZATION OF GEOSPATIAL QUERIES

ONTO THE GEOSPATIAL DATABASE

Spatial Operations can be divided into two basic types

i.e. read operation and write operation. Read operation is

more common, e.g. SELECT query or spatial analysis onto

spatial data. Write operation is used to accomplish update

tasks onto spatial data, e.g. insert or delete. Hence GSQL

query statements are classified as four sub-types: select

statement (GSQLSelect), insert statement (GSQLInsert),

update statement (GSQLUpdate) and delete statement

(GSQLDelete). In normal, the grammar of formal

languages can be defined through BNF (Backus-Naur

Form). So we propose the BNF definitions of GSQL

statements as follows:

2478

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030303

Table 1. BNF definitions of GSQL

GSQLStatement ::= (GSQLSelect | GSQLInsert |

GSQLUpdate | GSQLDelete) ";"

GSQLSelect ::=<SELECT> GSQLSelectCols (

<INTO> GSQLSelectCols)? <FROM>

GSQLTableList (GSQLWhere)? (GSQLGroupBy)? (

GSQLOrderBy)?

GSQLInsert ::= <INSERT> <INTO> GSQLTableList (

"(" GSQLSelectCols ")" <VALUES>)? "("

GSQLSelectCols ")"

GSQLUpdate ::= <UPDATE> GSQLTableList <SET>

(GSQLUpdateAssignment (",")?)+ (GSQLWhere)?

GSQLDelete ::= <DELETE> <FROM>

GSQLTableList (GSQLWhere)?

GSQLSelectCols ::= (<ALL> | <DISTINCT>)? (

<ASTERISK> | GSQLSelectList)

GSQLSelectList ::= GSQLSumExpr (","

GSQLSumExpr)*

GSQLTableList ::= GSQLTableRef (","

GSQLTableRef)*

GSQLTableRef ::= <ID> (<ID>)?

GSQLSumExpr ::=GSQLProductExpr (("+" | "-")

GSQLProductExpr)*

GSQLAndExpr ::= GSQLNotExpr (<AND>

GSQLNotExpr)*

GSQLBetweenClause ::= (<NOT>)? <BETWEEN>

GSQLSumExpr <AND> GSQLSumExpr

GSQLColRef ::= GSQLLvalue

GSQLCompareExpr ::=(GSQLSelect | GSQLIsClause

| GSQLExistsClause | GSQLSumExpr (

GSQLCompareExprRight)?)

GSQLCompareExprRight ::=(GSQLLikeClause |

GSQLBetweenClause | GSQLCompareOp

GSQLSumExpr)

GSQLCompareOp ::= (<EQUAL> | <NOTEQUAL> |

<NOTEQUAL2> | <GREATER> |

<GREATEREQUAL> | <LESS> | <LESSEQUAL>|

<GEOOP>)

GSQLExistsClause ::= <EXISTS> "(" GSQLSelect ")"

GSQLFunction ::= (<MAX> GSQLFunctionArgs |

<MIN> GSQLFunctionArgs | <SUM>

GSQLFunctionArgs | <COUNT> GSQLFunctionArgs |

<GEOFUNCTION> GSQLFunctionArgs| <ID>

GSQLFunctionArgs)

GSQLFunctionArgs::="(" (GSQLSumExpr (","

GSQLSumExpr)*)? ")"

GSQLGroupBy ::= <GROUP> <BY>

GSQLOrderByList

GSQLIsClause ::= GSQLColRef <IS> (<NOT>)?

<NULL>

GSQLLikeClause ::= (<NOT>)? <LIKE>

GSQLPattern

GSQLLiteral ::= (<STRING_LITERAL> |

<INTEGER_LITERAL> |

<FLOATING_POINT_LITERAL> | <ASTERISK>)

GSQLLvalue ::= (GSQLLvalueTerm)

GSQLLvalueTerm ::= <ID> (<DOT> <ID>)*

GSQLNotExpr ::= (<NOT>)? GSQLCompareExpr

GSQLOrderBy ::= <ORDER> <BY>

GSQLOrderByList

GSQLOrderByElem ::= GSQLColRef (

GSQLOrderDirection)?

GSQLOrderByList ::= GSQLOrderByElem (","

GSQLOrderByElem)*

GSQLOrderDirection ::= (<ASC> | <DESC>)

GSQLOrExpr ::= GSQLAndExpr (<OR>

GSQLAndExpr)*

GSQLPattern ::= (<STRING_LITERAL>)

GSQLProductExpr ::= GSQLUnaryExpr (("*" | "/")

GSQLUnaryExpr)*

GSQLTerm ::= (("(" GSQLOrExpr ")") |

GSQLColRef | GSQLLiteral | GSQLFunction)

GSQLUnaryExpr ::= (("+" | "-"))? GSQLTerm

GSQLUpdateAssignment ::= GSQLLvalue "=" (

GSQLTerm | GSQLSumExpr)

GSQLLValueElement ::= (<NULL> | GSQLSumExpr

| GSQLSelect)

GSQLLValueList ::= GSQLLValueElement (","

GSQLLValueElement)*

GSQLWhere ::= <WHERE> GSQLOrExpr

3. QUERY PARSING APPROACH FOR GSQL

STATEMENTS

Using GSQL statements, we can depict any geospatial

query from a problem-oriented view. The differences

between GSQL and normal SQL is GSQL adds particular

geospatial functions and operations based on SQL. Some

typical GSQL queries are listed as follows:

Table 2. GSQL query examples

E1 //Get all information about the city objects.

select citty.*

from city

E2 //Get the names of the rivers whose flux is

greater than 600.

select river.name

from river

where river.flux>600

E3 //Get all information about the residences

which is within 3km distance away from the 201

national highway.

select residence.*

from residence,road

where road.name =’201’ and

withinBufferByDistance(residence.geometry,

road.geometry, 3)

To deal with distributed geospatial query processing,

the first step is understanding the GSQL query statement.

This can be achieved through the GSQL compiling

technique. Using compiling approaches a GSQL statement

2479

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030303

in form of string is translated into a well-formed query

syntax tree. The process flow for GSQL query compiling is

concluded as follows:

1) Lexical analysis. Firstly using the scanning

technique the GSQL string is split into several words i.e.

“TOKEN”.

2) Syntax analysis. Based on lexical analysis, the

tokens are processed and translated into a query syntax tree

composed of various basic query elements, e.g. table name,

attribute list and where clause.

3) Type checking. After the syntax tree is built up,

check whether all elements are matched with system

symbols or not. If there is no unmatched error, a checked

well-formed query syntax tree is built up.

4. GSQL PARSER IMPLEMENTATION

Based on the aforementioned compiling steps, we

implement a GSQL compiling tool i.e. GSQL Parser to

build geospatial query trees. GSQL Parser is able to

perform lexical analysis, syntax analysis and check the

correctness of query elements. Furthermore, GSQL Parser

provisions a GUI interface for viewing the GSQL query in

the form of both graphical tree (Figure 1) and XML (Figure

2).

Figure 1. Graphical GSQL query tree

Figure 2. Query tree after statement optimization

For example, if we want to view attribute a and b

information about the river objects, a GSQL query “select

river.a,river.b from river” is submitted. GSQL Parser

would parse the query string into a graphical tree as shown

in Figure 3, and provide an XML view of the query tree as

shown in Table 3.

Figure 3. Query tree after statement optimization

Table 3. BNF definitions of GSQL

<SELECT>

 <TableList>

 <TableElement0>

 <TableElement0_Name>river</TableElement0_Name>

 </TableElement0>

 </TableList>

 <SelectCols>

 <SelectElement0>

<SelectElement0_Expression>river.a</SelectElement0_Ex

pression>

 </SelectElement0>

 <SelectElement1>

<SelectElement1_Expression>river.b</SelectElement1_Ex

pression>

 </SelectElement1>

 </SelectCols>

</SELECT>

5. DISTRIBUTED PROCESSING MODEL FOR THE

GSQL QUERY

Under the distributed computing environment, data is

logically integrated while distributed physically [4]. A

distributed data management system should be featured

with the functions of data independence, centralized and

autonomous management, data redundancy and distributed

transaction [5]. Compared with centralized management

model, the benefits of distributed data manangement are as

follows:

(1) Meeting the need for geospatial data sharing among

different organizations. (2) Load balancing. By balancing

the load between computing nodes we can avoid system

critical bottle-neck. (3) High reliability. Geospatial data is

stored and distributed with duplicates, so accidents in

single computing note won’t cause failure of the entire

system.

Meanwhile, the query and operation on spatial data are

more complicated because of the distribution and

redundancy of data. Therefore, the research on distributed

query and operation is of great necessity.

Not like the centralized query, the distributed query is

processed by multiple data nodes. Spatial data is cut into

slices which are logically as a whole and physically stored

in different data nodes. Therefore, when the distributed

2480

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030303

query (namely global query) is submitted, we need to parse

the global query into subsidiary queries which are

processed in individual data notes respectively. At the same

time, for the parsing of global query, data redundancy and

duplicate both provided the possibility of parallel

processing and raised the problem of data consistency. As

for the geospatial data, the general distributed geospatial

query process can be summarized as the following three

steps:

(1) Query decomposition. After understanding the query

semantic through GSQL parsing, the global query

submitted by users is converted and decomposed into a

combination of multiple sub-queries. During this step,

geospatial data distribution status is required, which is

provided by the geospatial data resource list.

(2) Processing sub-queries. The sub-queries are

combined and sent to individual nodes for processing. The

query result of each sub-query is sent back and assembled

into the final result. The operations in this step are

undertaken by the distributed processing engine.

(3) Displaying query result. Users can get the

information of the query result intuitively through the

graphical interface.

Figure 4 illustrates a typical distributed geospatial query

process. A user submit a global query in form of GSQL

string and the query datasets road and residence are

distributed on different hosts. Hence, the query string

would be parsed automatically, and then decomposed into

several sub-queries which are issued onto different data

nodes.

Figure 4. Distributed query processing demonstration

6. DISTRIBUTED GEOSPATIAL QUERY

PROCESSING EXAMPLE

Suppose a user submit a global GSQL statement: “select

river.name from river where river.flux>600”, and the

distributed computing environment is composed of 3 data

nodes: {node1, node2, node3}. The distributed geospatial

query process is illustrated as follows:

(1) The construction of GSQL query tree

The query string: “select river.name from river where

river.flux>600”, through lexical analysis and syntax

analysis, is transformed into the query tree shown in Figure

5.

Figure 5. Geospatial query syntax tree

(2) GSQL workflow building

The node list (regardless of origin and duplicate)

retrieved through spatial resource list interface is { node1,

node2, node3}, the GSQL workflow constructed by our

method is shown in Figure 6.

Figure 6. Distributed geospatial query workflow

From the figure we could see the workflow is a typical

MapReduce process. Three sub-queries are issued onto

node1,node2 and node3 in parallel and then a union

operation is performed to reduce the results. After

execution of the reduce operation the whole distributed

query process is completed.

7. CONCLUSIONS

Nowadays, various applications of distributed geospatial

database are increasing. The mechanism of distributed

geospatial query processing is a major problem toward this

issue. The work carried out in this paper mainly includes

the following aspects:

(1) Analyzing the characteristics of geospatial query.

The general BNF definitions of GSQL query language are

discussed.

(2) Implementing a GSQL Parser that enables lexical

analysis, syntax analysis and query tree construction. The

parser provisions both graphical tree and XML view for

geospatial queries.

(3) Three major steps of distributed GSQL query

processing is thoroughly discussed, and a demonstration

geospatial query is provided to describe the query process.

Furthermore, study on distributed GSQL query

optimization based on dynamic strategies will be

performed to improve the query efficiency.

2481

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030303

REFERENCES

[1] S. Shekhar, S. Chawla. Spatial Databases——A Tour[M]. Prentice

Hall,2003.

[2] M. J. Egenhofer. SpatialSQL,A query and presentation
language[J].IEEE Transactionson Knowledgeand Data

Engineering,1994,6(1):86-95.

[3] OpenGIS Consortium Inc.OpenGIS simple features specification for
SQL1.1[S/OL], http://www.opengis.org/docs/99-049.pdf,1999.

[4] R. A. Haraty, R. C. Fany. Query Acceleration in Distributed
Database Systems[J]. Colombian Journal of Coputation,

2001,2(1):19-34.

[5] M Tamer Ozsu, Patrick Valduriez. Principles of Distributed
Database Systems[M].Tsinghua Press,2002.

2482

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS030303

