Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICESMART-2015 Conference Proceedings

An Analytical Solution of Transport of Pollutants
In Unsaturated Porous Media with and Without
Adsorption

Niranjan C. M.!

!Dept. of Mathematics,
Acharya Institute of Technology,
Bangalore, Karnataka
India.

Anitha R?,
2Dept. of Mathematics,
Nitte Meenakshi Institute of Technology,
Bangalore, Karnataka
India.

Abstract: Most of the investigators use the coordinate
transformation (z - ut) in order to solve the equation for
dispersion of a moving fluid in porous media. Further, the
boundary conditionsC=0atz=wand C=Coatz=- ofort
>0 are used, which results in a symmetrical concentration
distribution. In this paper, the effect of adsorption has been
studied for one-dimensional transport of pollutants through
the unsaturated porous media. In this study, the advection-
dispersion equation has been solved analytically to evaluate
the transport of pollutants which takes into account of
dissipation coefficient and porosity by considering input
concentrations of pollutants that vary with time and depth.
The solution has been obtained using Laplace transform,
moving coordinates and Duhamel’s theorem is used to get the
solution in terms of complementary error function.
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1. INTRODUCTION:

In recent years considerable interest and attention have
been directed to dispersion phenomena in flow through
porous media. Scheidegger (1954), deJong (1958), and Day
(1956) have presented statistical means to establish the
concentration distribution and the dispersion coefficient.
Advection—diffusion equation describes the solute transport
due to combined effect of diffusion and convection in a
medium. It is a partial differential equation of parabolic
type, derived on the principle of conservation of mass
using Fick’s law. Due to the growing surface and
subsurface hydro environment degradation and the air
pollution, the advection—diffusion equation has drawn
significant attention of hydrologists, civil engineers and
mathematical modelers. Its analytical/numerical solutions
along with an initial condition and two boundary
conditions help to understand the contaminant or pollutant
concentration distribution behavior through an open
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medium like air, rivers, lakes and porous medium like
aquifer, on the basis of which remedial processes to reduce
or eliminate the damages may be enforced. It has wide
applications in other disciplines too, like soil physics,
petroleum engineering, chemical engineering and
biosciences.

In the initial works while obtaining the analytical
solutions of dispersion problems in ideal conditions, the
basic approach was to reduce the advection—diffusion
equation into a diffusion equation by eliminating the
convective term(s). It was done either by introducing
moving co-ordinates (Ogata and Banks 1961; Harleman
and Rumer 1963; Bear 1972; Guvanasen and Volker 1983;
Aral and Liao 1996; Marshal et al 1996) or by introducing
another dependent variable (Banks and Ali 1964 Ogata
1970; Lai and Jurinak 1971; Marino 1974 and Al-Niami
and Rushton 1977). Then Laplace transformation technique
has been used to get desired solutions.

Some of the one-dimensional solutions have been given
(Tracy 1995) by transforming the non-linear advection—
diffusion equation into a linear one for specific forms of
the moisture content vs. pressure head and relative
hydraulic conductivity vs. pressure head curves which
allow both two-dimensional and three-dimensional
solutions to be derived. A method has been given to solve
the transport equations for a kinetically adsorbing solute in
a porous medium with spatially varying velocity field and
dispersion coefficients (Van Kooten 1996, Sudheendra
et.al. 2014).

Later it has been shown that some large
subsurface formations exhibit variable dispersivity
properties, either as a function of time or as a function of
distance (Matheron and deMarsily 1980; Sposito et al
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1986; Gelhar et al 1992). Analytical solutions were
developed for describing the transport of dissolved
substances in heterogeneous semi infinite porous media
with a distance dependent dispersion of exponential nature
along the uniform flow (Yates 1990, 1992). The temporal
moment solution for one dimensional advective-dispersive
solute transport with linear equilibrium sorption and first
order degradation for time pulse sources has been applied
to analyze soil column experimental data (Pang et al 2003,
Sudheendra et.al. 2014). An analytical approach was
developed for non-equilibrium transport of reactive solutes
in the unsaturated zone during an infiltration—redistribution
cycle (Severino and Indelman 2004).

The solute is transported by advection and obeys
linear Kinetics. Analytical solutions were presented for
solute transport in rivers including the effects of transient
storage and first order decay (Smedt 2006, Sudheendra
2011, 2012). Pore flow velocity was assumed to be a non-
divergence, free, unsteady and non-stationary random
function of space and time for ground water contaminant
transport in a heterogeneous media (Sirin 2006). A two-
dimensional semi-analytical solution was presented to
analyze stream-aquifer interactions in a coastal aquifer
where groundwater level responds to tidal effects (Kim et
al 2007).

A more direct method is presented here for
solving the differential equation governing the process of
dispersion. It is assumed that the porous medium is
homogeneous and isotropic and that no mass transfer
occurs between the solid and liquid phases. It is assumed
also that the solute transport, across any fixed plane, due to
microscopic velocity variations in the flow tubes, may be
quantitatively expressed as the product of a dispersion
coefficient and the concentration gradient. The flow in the
medium is assumed to be unidirectional and the average
velocity is taken to be constant throughout the length of the
flow field. In this paper, the solutions are obtained for two
solute dispersion problems in a longitudinal finite length,
respectively. In the first problem time dependent solute
dispersion of increasing or decreasing nature along a
uniform flow through a homogeneous domain is studied.
The input condition is of uniform and varying nature,
respectively.

2. MATHEMATICAL FORMULATION AND MODEL

We consider one-dimensional unsteady flow
through the semi-infinite unsaturated porous media in the
x-z plane in the presence of a toxic material. The uniform
flow is in the z-direction. The medium is assumed to be
isotropic and homogeneous so that all physical quantities
are assumed to be constant. Initially the concentration of
the contaminant in the media is assumed to be zero and a
constant source of concentration of strength Co exists at the
surface. The velocity of the groundwater is assumed to be
constant. With these assumptions the basic equation
governing the flow is

ac _,dC_ & _(1-n)

ot 0z° oz n

where C is the constituent concentration in the soil
solution, t is the time in minutes, D is the hydrodynamic
dispersion coefficient, z is the depth, u is the average pore-

K,C (1)

. 1-n : :
water velocity and —— K, C is the adsorption term.
n

Initially saturated flow of fluid of concentration, C = 0,
takes place in the medium. At t = 0, the concentration of
the plane source is instantaneously changed to C = C,.
Then the initial and boundary conditions (Fig. 1) for a
semi-infinite column and for a step input are

C(z,0)=0; z>0
C (0,t)=C,; t=0 @)
C(w, t)=0; t>0
The problem then is to characterize the concentration as a
function of x and t.
To reduce equation (1) to a more familiar form, let
wz wt o (1-n)

T Wr _wt_ L=y
Clz, t)=T(z, t)exp {ZD D dt} 3)

Substitution of equation (3) reduces equation (1) to Fick’s
law of diffusion equation
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Figure 1 : Physical Layout of the Model

The above initial and boundary conditions (2) transform to
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(0, t)=C, exp{ (1n”)|<t t>0
I'(z, 0)=0; 2>0
(o0, t)=0; t>0

()

It is thus required that equation (4) be solved for a time
dependent influx of fluid at z = 0. The solution of equation
(4) can be obtained by using Duhamel’s theorem [Carslaw
and Jeager, 1947].

If C= F(X, Y, z,t) is the solution of the diffusion
equation for semi-infinite media in which the initial
concentration is zero and its surface is maintained at
concentration unity, then the solution of the problem in
which the surface is maintained at temperature ¢(t) is

c =E¢(r)§F(x, y.2t-7) dr.

This theorem is used principally for heat conduction
problems, but above has been specialized to fit this specific
case of interest.

Consider now the problem in which initial concentration is
zero and the boundary is maintained at concentration unity.
The boundary conditions are

ro,t)=1; t>0
I(z,0)=0; z>0
[(0,t)=0; t>0

This problem can be solved by the application of the
Laplace transform. The concentration I which is function
of t and whatever space coordinates, say z, t, occur in the
problem. We write

00

I(z, p)= Ie"" I(z,t)dt

0

Hence, if equation (4) is multiplied by e ™ and integrated
term by term it is reduced to an ordinary differential
equation

d’T

r (6)

_P
dz> D
The solution of the equation (6) can be written as

I=Ae ™ +Be"

where z\/g.

The boundary condition as z — oo requires that B = 0 and
boundary condition at z = 0 requires that A = }/p thus

the particular solution of the Laplace transform equation is

= 1
r=—e¢%

P

The inversion of the above function is given in a table of

Laplace transforms (Carslaw and Jaeger, 1947). The result
is

r=1- erf( j 2 Te"zdn ©)
2Jbt) Jr 1

2J/Dt

Utilizing Duhamel’s theorem, the solution of the problem
with initial concentration zero and the time dependent
surface conditionatz =0 is

F=j¢ \/_ Ie‘”zdn dr

zf

2
since €7 is a continuous function, it is possible
differentiate under the integral, which gives

2 0 T z 72%D(t—r)
—— |e"dp =————¢
Jr ot J 2D (t - 1)’
2./D(t-7

The solution of the problems is

I =

J‘() /Dtr dz

b A

Letting
z

N ()

the solution can be written as
2

t— . (8
I¢[ 107 je .. (8)

2«@
since ¢(t)=C, exp [W[; a nn) K t]

particular solution of the problem can be written as

W—2+(1_H)Kth
r(u):ﬁe[4D "

0 ) 82 a ) 82
feXp o s dﬂ—feXp —u —— |du
0 H 0 H
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w?  (1-n) z
where E= || —=+ K, and
4D n 2vD

3. Evaluation of the integral solution

The integration of the first term of equation (9) gives
(Pierce, 1956)

o0

jeiﬂ g =) K,C zﬁe’zg

0

For convenience the second integral can be expressed in
terms of error function (Horenstein, 1945), because this
function is well tabulated. Noting that

g e)
—,uz——zz—(,u+—j +2¢
u 7

2
:_(ﬂ_fJ _2¢
u

The second integral of equation (9) can be written as
a 82
2
| = fexp(—ﬂ ——z]dﬂ
0 H

el o o (-]}

(10)

Since the method of reducing integral to a tabulated
function is the same for both integrals in the right side of

&
equation (10), only the first term is considered. Let a = —

y7i
and adding and subtracting, we get

e% Texp{—(a+£} }da.
5 a

The integral can be expressed as

a 2
I:ezgj'exp —(,u+£j du
0 H

=% T(l_izj -exp {—(£+a] }da
s\ a a
+e25Texp {—(£+a) }da.
a
A

(o

in the first term of the above equation, then

Further, let

0 o 2
|, =% je’ﬂzdﬂ+e2€je>@ —(f+aj da.
" 7 a

Similar evaluation of the second integral of equation (10)

gives
l,=¢% Texp {—(g—a) ]da—e“ Texp {—(g—a) ]da
o L\e oL\

. i & . .
Again substituting — f = — —a into the first term, the
a

result is

o © 2
l,=e% j'e’ﬂzdﬂ—e’zgjexp {—(f—a) }da.
£ 7 a

2
—[f—aj —Zg]da
a

a

Noting that

2 ©
exp —[a+f) +23] da:jexp
: 9

|
7

Substitute this into equation (10) gives

| =e % Teﬂzdﬂ—ezg Teﬂzdﬁ.

£
“+a
a a

Thus, equation (9) can be expressed as

W—2+ a-n Ky J t

r(z,t)= % e(‘“D "

\/; R T -p? 2¢ T -p?
Te —Ee J'e dg—e Ie dg | (11)

Lt—a Zta
a a
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However, by definition

je 7 dp = \/_ezgerfc [a+£)

(24

a+*
also,

"2 Teﬁzdﬁ= \/_ 2{1+ erf (a—fﬂ

(24

Writing equation (11) in terms of the error functions, we

get
& &
eerfc (a + j +e%erfe [a - ﬂ
o o

Substitute the value of F(Z, t) in equation (3) the solution

r(z,t)zczoe{“wg ol

reduces to

C 1 Wz 2¢ & —2¢ 3
—=—exp| —||e“erfc| a+— |+e “erfc| a——||.
C, 2 2D a a

(12)
Resubstituting the value of ¢ and o gives

g—lexp |:£:| exp \/W_2+(1_n)|( Z
C, 2 |2D 4D n °JJD

\/Wt+(1 n)Kt
n

-erfc

2\/_

w>  (1-n) z
exp | —| | — K
o \/4D TTh D

z wt (1 n)
-erfc \/ Kt 13
2Dt n (49

where boundaries are symmetrical the solution of the
problem is given by the first term of equation (13). The
second term in equation (13) is thus due to the asymmetric
boundary imposed in a general problem. However, it
should be noted that if a point a great distance away from
the source is considered, then it is possible to appropriate

the boundary conditions by C(— 0, t)z C,, which leads
to a symmetrical solution.

4. Results & Discussions:

The main limitations of the analytical methods are that the
applicability is for relatively simple problems. The
geometry of the problem should be regular. The properties
of the soil in the region considered must be homogeneous
in the sub region. The analytical method is somewhat more

flexible than the standard form of other methods for one-
dimensional transport model. Figures 1 to 4 represents the
concentration profiles verses distance along the media for
different values of porosity n. It is seen that for a fixed
velocity w, dispersion coefficient D and distribution
coefficient Kq, C/Co decreases with depth as porosity n
decreases due to the distributive coefficient Kq, whereas
concentration profile versus time for different values of
depth z. For a fixed z it is seen that concentration increases
in the beginning due to lesser effect of dispersion
coefficient D and reaches a steady-state value for larger
time.

w=0.0111Tm/hr, D = 11.24cm"/hr, n = 0.5, kd = 0.4
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Fig. 1: Break-through-curve for C/Cy v/s depth
for n=0.5 and K4=0.4
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Fig. 2: Break-through-curve for C/Cy v/s depth
for n=0.5 and K¢=1.0
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Fig. 3: Break-through-curve for C/C, v/s depth
for n=1.0 and Ks=0.4
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Fig. 4: Break-through-curve for C/Cy v/s depth
for n=1.0 and K4=1.0

The figures represent C/Co verses time for different values
of distribution coefficient Kg. It is seen that for a fixed Kg,
concentration increases slowly up to t=10 days because of
the less adsorption of pollutants on the solid surface and
then reaches a constant value for larger time where the
effect of distribution coefficient Kq is small. We conclude
that the integral transform method is a powerful method to
derive analytical solutions for solute transport of a
adsorption in homogeneous porous media and under
different flow conditions. Steady-state concentration
distributions and temporal moments can be directly derived
from these solutions and transient concentration
distribution is accessible via numerical inversion. The
derived solutions are of great value for bench-marking
numerical reactive transport codes.
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