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Abstract: Most of the investigators use the coordinate 

transformation (z - ut) in order to solve the equation for 

dispersion of a moving fluid in porous media. Further, the 

boundary conditions C = 0 at z =  and C = C0 at z = –  for t 

0 are used, which results in a symmetrical concentration 

distribution. In this paper, the effect of adsorption has been 

studied for one-dimensional transport of pollutants through 

the unsaturated porous media. In this study, the advection-

dispersion equation has been solved analytically to evaluate 

the transport of pollutants which takes into account of 

dissipation coefficient and porosity by considering input 

concentrations of pollutants that vary with time and depth. 

The solution has been obtained using Laplace transform, 

moving coordinates and Duhamel’s theorem is used to get the 

solution in terms of complementary error function. 
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1. INTRODUCTION: 

In recent years considerable interest and attention have 

been directed to dispersion phenomena in flow through 

porous media. Scheidegger (1954), deJong (1958), and Day 

(1956) have presented statistical means to establish the 

concentration distribution and the dispersion coefficient. 

Advection–diffusion equation describes the solute transport 

due to combined effect of diffusion and convection in a 

medium. It is a partial differential equation of parabolic 

type, derived on the principle of conservation of mass 

using Fick’s law. Due to the growing surface and 

subsurface hydro environment degradation and the air 

pollution, the advection–diffusion equation has drawn 

significant attention of hydrologists, civil engineers and 

mathematical modelers. Its analytical/numerical solutions 

along with an initial condition and two boundary 

conditions help to understand the contaminant or pollutant 

concentration distribution behavior through an open 

medium like air, rivers, lakes and porous medium like 

aquifer, on the basis of which remedial processes to reduce 

or eliminate the damages may be enforced. It has wide 

applications in other disciplines too, like soil physics, 

petroleum engineering, chemical engineering and 

biosciences.  

 

In the initial works while obtaining the analytical 

solutions of dispersion problems in ideal conditions, the 

basic approach was to reduce the advection–diffusion 

equation into a diffusion equation by eliminating the 

convective term(s). It was done either by introducing 

moving co-ordinates (Ogata and Banks 1961; Harleman 

and Rumer 1963; Bear 1972; Guvanasen and Volker 1983; 

Aral and Liao 1996; Marshal et al 1996) or by introducing 

another dependent variable (Banks and Ali 1964 Ogata 

1970; Lai and Jurinak 1971; Marino 1974 and Al-Niami 

and Rushton 1977). Then Laplace transformation technique 

has been used to get desired solutions.  

 

Some of the one-dimensional solutions have been given 

(Tracy 1995) by transforming the non-linear advection–

diffusion equation into a linear one for specific forms of 

the moisture content vs. pressure head and relative 

hydraulic conductivity vs. pressure head curves which 

allow both two-dimensional and three-dimensional 

solutions to be derived. A method has been given to solve 

the transport equations for a kinetically adsorbing solute in 

a porous medium with spatially varying velocity field and 

dispersion coefficients (Van Kooten 1996, Sudheendra 

et.al. 2014).  

 

Later it has been shown that some large 

subsurface formations exhibit variable dispersivity 

properties, either as a function of time or as a function of 

distance (Matheron and deMarsily 1980; Sposito et al 
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1986; Gelhar et al 1992). Analytical solutions were 

developed for describing the transport of dissolved 

substances in heterogeneous semi infinite porous media 

with a distance dependent dispersion of exponential nature 

along the uniform flow (Yates 1990, 1992). The temporal 

moment solution for one dimensional advective-dispersive 

solute transport with linear equilibrium sorption and first 

order degradation for time pulse sources has been applied 

to analyze soil column experimental data (Pang et al 2003, 

Sudheendra et.al. 2014). An analytical approach was 

developed for non-equilibrium transport of reactive solutes 

in the unsaturated zone during an infiltration–redistribution 

cycle (Severino and Indelman 2004). 

 

The solute is transported by advection and obeys 

linear kinetics. Analytical solutions were presented for 

solute transport in rivers including the effects of transient 

storage and first order decay (Smedt 2006, Sudheendra 

2011, 2012). Pore flow velocity was assumed to be a non-

divergence, free, unsteady and non-stationary random 

function of space and time for ground water contaminant 

transport in a heterogeneous media (Sirin 2006). A two-

dimensional semi-analytical solution was presented to 

analyze stream–aquifer interactions in a coastal aquifer 

where groundwater level responds to tidal effects (Kim et 

al 2007). 

 

A more direct method is presented here for 

solving the differential equation governing the process of 

dispersion. It is assumed that the porous medium is 

homogeneous and isotropic and that no mass transfer 

occurs between the solid and liquid phases. It is assumed 

also that the solute transport, across any fixed plane, due to 

microscopic velocity variations in the flow tubes, may be 

quantitatively expressed as the product of a dispersion 

coefficient and the concentration gradient. The flow in the 

medium is assumed to be unidirectional and the average 

velocity is taken to be constant throughout the length of the 

flow field. In this paper, the solutions are obtained for two 

solute dispersion problems in a longitudinal finite length, 

respectively. In the first problem time dependent solute 

dispersion of increasing or decreasing nature along a 

uniform flow through a homogeneous domain is studied. 

The input condition is of uniform and varying nature, 

respectively. 

 

2. MATHEMATICAL FORMULATION AND MODEL 

 

We consider one-dimensional unsteady flow 

through the semi-infinite unsaturated porous media in the 

x-z plane in the presence of a toxic material. The uniform 

flow is in the z-direction. The medium is assumed to be 

isotropic and homogeneous so that all physical quantities 

are assumed to be constant. Initially the concentration of 

the contaminant in the media is assumed to be zero and a 

constant source of concentration of strength C0 exists at the 

surface. The velocity of the groundwater is assumed to be 

constant. With these assumptions the basic equation 

governing the flow is 
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where C is the constituent concentration in the soil 

solution, t is the time in minutes, D is the hydrodynamic 

dispersion coefficient, z is the depth, u is the average pore-

water velocity and CK
n

n
d

1
 is the adsorption term. 

 

Initially saturated flow of fluid of concentration, C = 0, 

takes place in the medium. At t = 0, the concentration of 

the plane source is instantaneously changed to C = C0. 

Then the initial and boundary conditions (Fig. 1) for a 

semi-infinite column and for a step input are 
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The problem then is to characterize the concentration as a 

function of x and t. 

 

To reduce equation (1) to a more familiar form, let 
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Substitution of equation (3) reduces equation (1) to Fick’s 

law of diffusion equation 
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Figure 1 : Physical Layout of the Model 

 

The above initial and boundary conditions (2) transform to 
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It is thus required that equation (4) be solved for a time 

dependent influx of fluid at z = 0. The solution of equation 

(4) can be obtained by using Duhamel’s theorem [Carslaw 

and Jeager, 1947]. 

 

If  tzyxFC ,,,  is the solution of the diffusion 

equation for semi-infinite media in which the initial 

concentration is zero and its surface is maintained at 

concentration unity, then the solution of the problem in 

which the surface is maintained at temperature (t) is 

.),,,()(
0

 dtzyxF
t

C
t

 



  

This theorem is used principally for heat conduction 

problems, but above has been specialized to fit this specific 

case of interest. 

 

Consider now the problem in which initial concentration is 

zero and the boundary is maintained at concentration unity. 

The boundary conditions are 
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This problem can be solved by the application of the 

Laplace transform. The concentration  which is function 

of t and whatever space coordinates, say z, t, occur in the 

problem. We write 
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Hence, if equation (4) is multiplied by 
pte

 and integrated 

term by term it is reduced to an ordinary differential 

equation 
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The solution of the equation (6) can be written as 

qzqz eBeA  
 

where 
D

p
q  . 

The boundary condition as z   requires that B = 0 and 

boundary condition at z = 0 requires that 
p

A 1 , thus 

the particular solution of the Laplace transform equation is 

qze
p


1

 

The inversion of the above function is given in a table of 

Laplace transforms (Carslaw and Jaeger, 1947). The result 

is 
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Utilizing Duhamel’s theorem, the solution of the problem 

with initial concentration zero and the time dependent 

surface condition at z = 0 is  
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since 
2e  is a continuous function, it is possible 

differentiate under the integral, which gives  
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The solution of the problems is 
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the solution can be written as 
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3. Evaluation of the integral solution 

The integration of the first term of equation (9) gives 

(Pierce, 1956) 
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For convenience the second integral can be expressed in 

terms of error function (Horenstein, 1945), because this 

function is well tabulated. Noting that 
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The second integral of equation (9) can be written as 
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Since the method of reducing integral to a tabulated 

function is the same for both integrals in the right side of 

equation (10), only the first term is considered. Let 
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Similar evaluation of the second integral of equation (10) 
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Writing equation (11) in terms of the error functions, we 

get 
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Substitute the value of  tz,  in equation (3) the solution 

reduces to 
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Resubstituting the value of   and  gives 
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          (13) 

where boundaries are symmetrical the solution of the 

problem is given by the first term of equation (13). The 

second term in equation (13) is thus due to the asymmetric 

boundary imposed in a general problem. However, it 

should be noted that if a point a great distance away from 

the source is considered, then it is possible to appropriate 

the boundary conditions by   0, CtC  , which leads 

to a symmetrical solution. 

 

4. Results & Discussions: 

 

The main limitations of the analytical methods are that the 

applicability is for relatively simple problems. The 

geometry of the problem should be regular. The properties 

of the soil in the region considered must be homogeneous 

in the sub region. The analytical method is somewhat more 

flexible than the standard form of other methods for one-

dimensional transport model. Figures 1 to 4 represents the 

concentration profiles verses distance along the media for 

different values of porosity n. It is seen that for a fixed 

velocity w, dispersion coefficient D and distribution 

coefficient Kd, C/C0 decreases with depth as porosity n 

decreases due to the distributive coefficient Kd, whereas 

concentration profile versus time for different values of 

depth z. For a fixed z it is seen that concentration increases 

in the beginning due to lesser effect of dispersion 

coefficient D and reaches a steady-state value for larger 

time.  

 

 
Fig. 1: Break-through-curve for C/C0 v/s depth 

for n=0.5 and Kd=0.4 

 

 
Fig. 2: Break-through-curve for C/C0 v/s depth 

for n=0.5 and Kd=1.0 

 

       
Fig. 3: Break-through-curve for  C/C0 v/s depth 

for n=1.0 and Kd=0.4 
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Fig. 4: Break-through-curve for C/C0 v/s depth 

for n=1.0 and Kd=1.0 

 

The figures represent C/C0 verses time for different values 

of distribution coefficient Kd. It is seen that for a fixed Kd, 

concentration increases slowly up to t=10 days because of 

the less adsorption of pollutants on the solid surface and 

then reaches a constant value for larger time where the 

effect of distribution coefficient Kd is small. We conclude 

that the integral transform method is a powerful method to 

derive analytical solutions for solute transport of a 

adsorption in homogeneous porous media and under 

different flow conditions. Steady-state concentration 

distributions and temporal moments can be directly derived 

from these solutions and transient concentration 

distribution is accessible via numerical inversion. The 

derived solutions are of great value for bench-marking 

numerical reactive transport codes. 
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