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Abstract:- Most of the researchers use the coordinate transformation 

(x - ut) in order to evaluate the equation for advection-dispersion of a 

moving fluid in porous media. Further, the boundary conditions C = 0 

at             x =  and C = C0 at x = –  for t  0 are used, which results 

in a symmetrical concentration distribution. The objective of this 

paper is to find the solution of differential equation in longitudinal 

direction that avoids this transformation, thus giving rise to an 

asymmetrical concentration distribution. It is then shown that the 

solution approaches that given by symmetrical boundary conditions, 

provided the dispersion coefficient D is small and the region near the 

source will not be considered. The solution has been obtained for the 

dispersion model of longitudinal mixing with variable coefficients in a 

finite length initially solute free domain. In the beginning, 

homogeneous domain is studied for dependent advection-dispersion 

along with uniform flow. The solution has been obtained for the 

uniform velocity by considering spatially dependent due to the 

heterogeneity of the domain and the dispersion proportional to the 

square of the velocity. The velocity is linearly interpolated and small 

increment along the finite domain. The input condition has been 

considered continuous of uniform and of increasing nature both. The 

solutions are obtained for both the domains by using Duhamel’s 

theorem and integral solution technique. The new independent space 

and time variables processes has been introduced. The effects of the 

dependency of dispersion with time and the heterogeneity of the 

domain on the solute transport are studied separately with the help of 

graphs. 

 

Key words: Advection, dispersion, adsorption, Integral transforms, 

Fick’s law,Duhamel’s theorem,  

 

1. INTRODUCTION 

 

In recent years, considerable interest and attention have 

been directed to dispersion phenomena in flow through 

porous media. Scheidegger (1954), deJong (1958), and Day 

(1956) have presented statistical means to establish the 

concentration distribution and the dispersion coefficient. 

Advection–dispersion equation explains the solute 

transport due to combined effect of convection and 

dispersion in a medium. It is a partial differential equation 

of parabolic type, derived on the principle of conservation 

of mass using diffusion equation. Due to the growing 

surface and subsurface hydro environment degradation, the 

advection–diffusion equation has drawn significant 

attention of hydrologists, civil engineers and mathematical 

modelers. Its analytical/numerical solutions along with an 

initial condition and two boundary conditions help to 

understand the contaminant or pollutant concentration 

distribution behavior through an open medium like air, 

rivers, lakes and porous medium like aquifer, on the basis 

of which remedial processes to reduce or eliminate the 

damages may be enforced. It has wide applications in other 

disciplines too, like soil physics, petroleum engineering, 

chemical engineering and biosciences.  

In the initial works while obtaining the analytical solutions 

of dispersion problems in ideal conditions, the basic 

approach was to reduce the advection–dispersion equation 

into a diffusion equation by eliminating the convective 

term(s). It was done either by introducing moving co-

ordinates (Ogata and Banks 1961; Harleman and Rumer 

1963; Bear 1972; Guvanasen and Volker 1983; Aral and 

Liao 1996; Marshal et al 1996) or by introducing another 

dependent variable (Banks and Ali 1964 Ogata 1970; Lai 

and Jurinak 1971; Marino 1974 and Al-Niami and Rushton 

1977). Then Laplace transformation technique has been 

used to get desired solutions.  

 

Some of the one-dimensional solutions have been given 

(Tracy 1995, Sudheendra 2011) by transforming the non-

linear advection–diffusion equation into a linear one for 

specific forms of the moisture content vs. pressure head 

and relative hydraulic conductivity vs. pressure head curves 

which allow both two-dimensional and three-dimensional 

solutions has been derived. A method has been given to 

solve the transport equations for a kinetically adsorbing 

solute in a porous medium with spatially varying velocity 

field and dispersion coefficients (Van Kooten 1996, 

Sudheendra 2012).  
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Later it has been shown that some large subsurface 

formations exhibit variable dispersivity properties, either as 

a function of time or as a function of distance (Matheron 

and deMarsily 1980; Sposito et al 1986; Gelhar et al 1992). 

Analytical solutions were developed for describing the 

transport of dissolved substances in heterogeneous semi 

infinite porous media with a distance dependent dispersion 

of exponential nature along the uniform flow (Yates 1990, 

1992). The temporal moment solution for one dimensional 

advective-dispersive solute transport with linear 

equilibrium sorption and first order degradation for time 

pulse sources has been applied to analyze soil column 

experimental data (Pang et al 2003). An analytical 

approach was developed for non-equilibrium transport of 

reactive solutes in the unsaturated zone during an 

infiltration–redistribution cycle (Severino and Indelman 

2004, Sudheendra 2014). 

 

The solute is transported by advection and obeys linear 

kinetics. Analytical solutions were presented for solute 

transport in rivers including the effects of transient storage 

and first order decay (Smedt 2006, Sudheendra 2012). Pore 

flow velocity was assumed to be a non-divergence, free, 

unsteady and non-stationary random function of space and 

time for ground water contaminant transport in a 

heterogeneous media (Sirin 2006). A two-dimensional 

semi-analytical solution was presented to analyze stream–

aquifer interactions in a coastal aquifer where groundwater 

level responds to tidal effects (Kim et al 2007). 

 

A more direct method is presented here for solving the 

differential equation governing the process of dispersion. It 

is assumed that the porous medium is homogeneous and 

isotropic and that no mass transfer occurs between the solid 

and liquid phases. It is assumed also that the solute 

transport, across any fixed plane, due to microscopic 

velocity variations in the flow tubes, may be quantitatively 

expressed as the product of a dispersion coefficient and the 

concentration gradient. The flow in the medium is assumed 

to be unidirectional and the average velocity is taken to be 

constant throughout the length of the flow field. In this 

paper, the solutions are obtained for two solute dispersion 

problems in a longitudinal finite length, respectively. In the 

first problem time dependent solute dispersion of 

increasing or decreasing nature along a uniform flow 

through a homogeneous domain is studied. In the second 

problem the medium is considered heterogeneous, hence 

the velocity is considered dependent on position variable. 

The velocity is linearly interpolated in position variable 

which represents a small increment in the velocity from 

one end to the other end of the domain. This expression 

contains a parameter to represent a change in 

heterogeneous from one medium to other medium. 

Dispersion is assumed proportional to square of velocity. In 

each problem the domain is initially solute free. The input 

condition is of uniform and varying nature, respectively. 

Numerical solution has also been obtained for the case in 

which dispersion varies linearly with velocity and has been 

compared with the analytical solution obtained in the 

previous cases. 

 

2. TEMPORALLY DEPENDENT DISPERSION ALONG 

UNIFORM FLOW 

Because mass is conserved, the governing differential 

equation is determined to be  
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where C is solute concentration at position x along the 

longitudinal direction at time t, D is dispersion coefficient 

and u is the average velocity of fluid or superficial 

velocity. To study the temporally dependent solute 

dispersion of a uniform input concentration of continuous 

nature in an initially solute free finite domain, we consider 

 mtfDtxD 0),(   and 
0),( utxu   

 

  (2) 

When m is a coefficient whose dimension is inverse of the 

time variable. Thus f(mt) is an expression in non-

dimensional variable (mt). The expression of f(mt) = 1 for 

m = 0 or t = 0. The former case represents the uniform 

solute dispersion and the latter case represents the initial 

dispersion. The coefficients D0 and u0 in equation (2) may 

be defined as initial dispersion coefficient and uniform 

flow velocity, respectively. Thus the partial differential 

equation (1) along with initial condition and boundary 

conditions may be written as: 
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Initially, saturated flow of fluid of concentration, C = 0, 

takes place in the medium. At t = 0, the concentration of 

the plane source is instantaneously changed to C = C0. 

Thus, the appropriate boundary conditions are  
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The problem then is to characterize the concentration as a 

function of x and t. where the input condition is assumed at 

the origin and a second type or flux type homogeneous 

condition is assumed. C0 is initial concentration. To reduce 

equation (3) to a more familiar form, we take  
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Substituting equation (5) into equation (3) gives 
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The initial and boundary conditions (3) transform to    
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It is thus required that equation (6) may be solved for a 

time dependent influx of the fluid at x = 0. The solution of 

equation (5) may be obtained readily by use of Duhamel’s 

theorem (Carslaw and Jaeger, 1947).  

 

If  tzyxFC ,,,  is the solution of the diffusion 

equation for semi-infinite media in which the initial 

concentration is zero and its surface is maintained at 

concentration unity, then the solution of the problem in 

which the surface is maintained at temperature  t is 

               dtzyxF
t
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This theorem is used principally for heat conduction 

problems, but the above has been specialized to fit this 

specific case of interest. Consider now the problem in 

which initial concentration is zero and the boundary is 

maintained at concentration unity. The boundary 

conditions are 
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The problem is readily solved by application of the 

Laplace transform which is defined as 
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Hence, if equation (6) is multiplied by 
pte

 and integrated 

term by term it is reduced to an ordinary differential 

equation 
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The boundary condition as x  requires that 2C  = 0 

and boundary condition at 0x  requires that
p

C
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thus the particular solution of the Laplace transformed 

equation is 
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The inversion of the above function is given in any table of 

Laplace transforms. The result is  
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Utilizing Duhamel’s theorem, the solution of the problem 

with initial concentration zero and the time dependent 

surface condition at x =0 is  
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Since 
2e is a continuous function, it is possible to 

differentiate under the integral, which gives 
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The solution to the problem is  
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Putting 
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particular solution of the problem may be written as 
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where, 
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Evaluation of the integral solution 

 

The integration of the first term of equation (14) gives 
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For convenience the second integral may be expressed on 

terms of error function (Horenstein, 1945), because this 

function is well tabulated. 

Noting that 
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The second integral of equation (14) may be written as 

 

































































 





 




















0 0

2

2

2

2

0

2

2
2

expexp
2

1

exp

dede

dI
     

(16) 

Since the method of reducing integral to a tabulated 

function is the same for both integrals in the right side of 

equation (16), only the first term is considered. Let 
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Further, let, 
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Similar evaluation of the second integral of equation (16) 

gives 
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Again substituting z
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result is 
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Thus, equation (14) may be expressed as 
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However, by definition, 
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Also,                                       
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Writing equation (20) in terms of error functions, we get 
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   (21) 

Thus, Substitution into equation (5) the solution is  
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Re-substituting for  and  gives 
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Re-substitute the value of the u in terms of u0, we get 
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(22) 
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where boundaries are symmetrical the solution of the 

problem is given by the first term the equation (22). The 

second term is equation (22) is thus due to the asymmetric 

boundary imposed in the more general problem. However, 

it should be noted also that if a point a great distance away 

from the source is considered, then it is possible to 

approximate the boundary condition by   0, CtC  , 

which leads to a symmetrical solution. 

 

3. SPATIALLY DEPENDENT DISPERSION ALONG 

NON-UNIFORM FLOW 

 

The heterogeneity of porous domain was defined by scale 

dependent dispersion and flow through the medium has 

been considered uniform Yates (1992) but the flow 

velocity may also depend upon position variable in case 

the domain is heterogeneous. Zoppou and Knight (1997) 

have considered the velocity as xu  , and the solute 

dispersion proportional to square of velocity, i.e., as 
2xD  ; in a semi-infinite domain  xx0

. But 

these expressions do not reflect real variations due to 

heterogeneity of the medium because as x , 

dispersion and velocity also become too large. In fact the 

variation in velocity due to heterogeneity should be small 

so that the velocity at each position satisfies the Darcy’s 

law in case the medium is porous or satisfies the laminar 

condition of the flow in a non-porous medium, an essential 

conditions for the velocity parameter, u in the advection-

diffusion equation. This factor is taken care of in the 

present work and velocity is linearly interpolated in 

position variable such that it increases from a value u0 at x 

= 0 to a value   01 ub at x = L, where b may be a real 

constant. Thus 

)1(),( 0 axutxu  ,                     (23a) 

Where Lba  , is the parameter accounting for the 

heterogeneity of the medium. It should be small so that the 

increase in velocity is of small order. Solute dispersion is 

assumed proportional to square of the velocity so we 

consider 
2

0 )1(),( axDtxD 
  

(23b) 

As ax is a non-dimensional term hence D0 and u0 are 

dispersion coefficient and velocity, respectively at the 

origin (x = 0) of the medium. The domain is assumed 

initially solute free. An input concentration is assumed at 

the origin and a flux type homogeneous condition is 

assume at the other end of the domain. Then advection-

diffusion equation assumes the form 

   
x

C
axu
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C
axD

t

C




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







11 02

2
2

0  (24) 

It is further reduced into a partial differential equation with 

constant coefficients by using a transformation. Ultimately 

we use the same initial and boundary conditions to solve 

the above dispersion problem for dependent dispersion 

non-uniform. The procedure is same as solved in the 

earlier case. Then the desired solution may be written as  
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0
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0
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1

1
exp

12

1

2

1,
    (25) 

A plot of logarithmic probability graph of the above 

solution is given for various values of the dimensionless 

group xuD 00 . The figure shows that as  becomes 

small the concentration distribution becomes nearly 

symmetrical about the value  = 1 (i.e., xtu0 ). 

However, for large values of  asymmetrical concentration 

distributions become noticeable. This indicates that for 

large value of D or small values of distance x the 

contribution of the second term in equation (25) becomes 

significant as  approaches unity.  

 

4. RESULTS AND DISCUSSIONS 

 

Concentration values are evaluated from the four analytical 

solutions discussed in a finite domain           at times t 

(years) = 1.0, 2.0, 3.0 and 4.0, for input values C0 = 1.0, u0 

= 0.11 (km/year), D0 = 50 (km2/year).  Figures 1 represents 

temporal dependent concentration dispersion pattern of 

uniform input and input of increasing nature, respectively 

along a uniform flow through a homogeneous medium, 

described by the analytical solutions, equation (22), 

respectively. In figure 1, the uniform input concentration 

value is 1.0 at all times and the concentration value at x = 0 

increases with time. Thus the respective input boundary 

conditions are satisfied. In the figure the dotted curves 

represents the solutions for an expression f(mt) = exp(−mt) 

which is of decreasing nature. In the figures the solid curve 

represents the respective solutions at t = 1.0 (year), for 

another expression f(mt) = exp(mt), which is of increasing 

nature. It may be observed that in case of uniform input the 

concentration value at a particular position is higher for the 

latter expression of f(mt) than that for the former 

expression of f(mt). The difference increases with the 

distance along the domain. But in case of an input 

concentration of increasing nature its value is less for 

increasing nature of f(mt) than that for decreasing nature of 

f(mt). This trend is of diminishing nature up to x = 2.0, 

beyond which the trend reverses. For all the curves drawn 

in figure 1, a value m(year)−1 = 1.0 is chosen. Both the 

analytical solutions of section 2 may be solved using other 

expressions of f(mt) which satisfy the conditions stated at 

the outset of the section 2.  
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Figure 1: Temporal dependent solute dispersion 

along uniform flow of uniform input 

described by solution (equation 22).

 
Figure 2: Break through curve for dispersion along with  uniform flow. 

 
Figure 3: Spatially dependent solute dispersion along with non-uniform 

flow input described by solution (equation 25). 

        
Figure 4: Break through curve for dispersion 

along with non-uniform flow. 

 

The distribution is symmetrical for values of x chosen 

some distance from the source. An example of break 

through curves obtained for dispersion in a cylindrical 

vertical column is shown as Figure 2. The theoretical curve 

was obtained by neglecting the second term of equation 

(22). 

 

Figure 3 gives the concentration values evaluated from 

analytical solutions (equations 25) for spatially dependent 

dispersion of uniform input and input of increasing nature, 

respectively, along non-uniform flow, through an 

heterogeneous domain. The solid curves in figure 3 

represent the solution (equation 30) in which a value a = 

1.0 (km−1) is taken. Using expressions it may be evaluated 

that due to the heterogeneity of the medium, the velocity u 

varies from a value of 0.11 (km/year) to a value of 0.22 

(km/year) and dispersion D varies from a value of 0.21 

(km/year) to a value of 0.42 (km/year), along the domain 0 

≤ x(km) ≤ 1. This figure also shows the effect of 

heterogeneity on the dispersion pattern. A dotted curve is 

drawn for the value a = 0.1 (km−1). It may be observed that 

the concentration values evaluated from the solution 

(equation 25) along a medium of lesser heterogeneity 

(which introduces lesser variation in velocity and 

dispersion along the column), are slightly higher than those 

at the respective positions of a medium of higher 

heterogeneity, near the origin but decrease at faster rate as 

the other end of the medium is approached. This 

comparison is done at t = 2.0 (year). This value is chosen 

to ensure that the factor (u0 − aD0) in condition remains 

positive for the values chosen for u0 and D0. The 

distribution is symmetrical for values of x chosen some 

distance from the source. A break through curve is 

obtained for dispersion in for different depth as shown in 

Figure 4. The theoretical curve was obtained by neglecting 

the second term of equation (25).  

 

5. CONCLUSIONS 

 

Consideration of the governing differential equation for 

dispersion in flow through porous media give rise to a 

solution that is not symmetrical about x = u0 t for large 

values of . Experimental evidence, however, reveals that 

D0 is small. This indicates that, unless the region close to 

the source is considered, the concentration distribution is 

approximately symmetrical. Theoretically, 
2

1

0


C

C
 only 

as   0; however, only errors of the order of magnitude 

of experimental errors are introduced in the ordinary 

experiments if a symmetrical solution is assumed  

 

The solution is obtained for one dimensional advection – 

diffusion equation with variable coefficients along with 

two set of boundary conditions in an initially solute free 

finite domain have been obtained in two cases: 
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1. temporal dependent dispersion along with 

uniform flow through homogeneous medium and 

2. spatially dependent dispersion along non-uniform 

flow through heterogeneous medium which solute 

dispersion is assumed proportional to the square 

of velocity. 

 

The application of a new transformation which introduces 

another space variable, on the advection-diffusion equation 

makes it possible to use Laplace transformation technique 

in getting the solution. Numerical solution has been 

obtained using a two-level explicit finite difference 

scheme. The respective analytical and numerical solutions 

have also been compared and very good agreement 

between the two has been found. The analytical solution of 

the second problem in case of uniform input has been 

compared with the numerical solution of same problem but 

assuming dispersion varying with velocity. Such analytical 

solutions may serve as tools in validating numerical 

solutions in more realistic dispersion problems facilitating 

to assess the transport of pollutants solute concentration 

away from its source along a flow through soil medium, 

through aquifers and through oil reservoirs. 
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