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Abstract:- Most of the researchers use the coordinate transformation
(x - ut) in order to evaluate the equation for advection-dispersion of a
moving fluid in porous media. Further, the boundary conditions C = 0
at x =ewand C = Co at x =— o for t >0 are used, which results
in a symmetrical concentration distribution. The objective of this
paper is to find the solution of differential equation in longitudinal
direction that avoids this transformation, thus giving rise to an
asymmetrical concentration distribution. It is then shown that the
solution approaches that given by symmetrical boundary conditions,
provided the dispersion coefficient D is small and the region near the
source will not be considered. The solution has been obtained for the
dispersion model of longitudinal mixing with variable coefficients in a
finite length initially solute free domain. In the beginning,
homogeneous domain is studied for dependent advection-dispersion
along with uniform flow. The solution has been obtained for the
uniform velocity by considering spatially dependent due to the
heterogeneity of the domain and the dispersion proportional to the
square of the velocity. The velocity is linearly interpolated and small
increment along the finite domain. The input condition has been
considered continuous of uniform and of increasing nature both. The
solutions are obtained for both the domains by using Duhamel’s
theorem and integral solution technique. The new independent space
and time variables processes has been introduced. The effects of the
dependency of dispersion with time and the heterogeneity of the
domain on the solute transport are studied separately with the help of
graphs.

Key words: Advection, dispersion, adsorption, Integral transforms,
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1. INTRODUCTION

In recent years, considerable interest and attention have
been directed to dispersion phenomena in flow through
porous media. Scheidegger (1954), deJong (1958), and Day
(1956) have presented statistical means to establish the
concentration distribution and the dispersion coefficient.
Advection—dispersion equation explains the solute
transport due to combined effect of convection and
dispersion in a medium. It is a partial differential equation
of parabolic type, derived on the principle of conservation
of mass using diffusion equation. Due to the growing
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surface and subsurface hydro environment degradation, the
advection—diffusion equation has drawn significant
attention of hydrologists, civil engineers and mathematical
modelers. Its analytical/numerical solutions along with an
initial condition and two boundary conditions help to
understand the contaminant or pollutant concentration
distribution behavior through an open medium like air,
rivers, lakes and porous medium like aquifer, on the basis
of which remedial processes to reduce or eliminate the
damages may be enforced. It has wide applications in other
disciplines too, like soil physics, petroleum engineering,
chemical engineering and biosciences.

In the initial works while obtaining the analytical solutions
of dispersion problems in ideal conditions, the basic
approach was to reduce the advection—dispersion equation
into a diffusion equation by eliminating the convective
term(s). It was done either by introducing moving co-
ordinates (Ogata and Banks 1961; Harleman and Rumer
1963; Bear 1972; Guvanasen and Volker 1983; Aral and
Liao 1996; Marshal et al 1996) or by introducing another
dependent variable (Banks and Ali 1964 Ogata 1970; Lai
and Jurinak 1971; Marino 1974 and Al-Niami and Rushton
1977). Then Laplace transformation technique has been
used to get desired solutions.

Some of the one-dimensional solutions have been given
(Tracy 1995, Sudheendra 2011) by transforming the non-
linear advection—diffusion equation into a linear one for
specific forms of the moisture content vs. pressure head
and relative hydraulic conductivity vs. pressure head curves
which allow both two-dimensional and three-dimensional
solutions has been derived. A method has been given to
solve the transport equations for a kinetically adsorbing
solute in a porous medium with spatially varying velocity
field and dispersion coefficients (Van Kooten 1996,
Sudheendra 2012).
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Later it has been shown that some large subsurface
formations exhibit variable dispersivity properties, either as
a function of time or as a function of distance (Matheron
and deMarsily 1980; Sposito et al 1986; Gelhar et al 1992).
Analytical solutions were developed for describing the
transport of dissolved substances in heterogeneous semi
infinite porous media with a distance dependent dispersion
of exponential nature along the uniform flow (Yates 1990,
1992). The temporal moment solution for one dimensional
advective-dispersive  solute  transport  with  linear
equilibrium sorption and first order degradation for time
pulse sources has been applied to analyze soil column
experimental data (Pang et al 2003). An analytical
approach was developed for non-equilibrium transport of
reactive solutes in the unsaturated zone during an
infiltration—redistribution cycle (Severino and Indelman
2004, Sudheendra 2014).

The solute is transported by advection and obeys linear
kinetics. Analytical solutions were presented for solute
transport in rivers including the effects of transient storage
and first order decay (Smedt 2006, Sudheendra 2012). Pore
flow velocity was assumed to be a non-divergence, free,
unsteady and non-stationary random function of space and
time for ground water contaminant transport in a
heterogeneous media (Sirin 2006). A two-dimensional
semi-analytical solution was presented to analyze stream-—
aquifer interactions in a coastal aquifer where groundwater
level responds to tidal effects (Kim et al 2007).

A more direct method is presented here for solving the
differential equation governing the process of dispersion. It
is assumed that the porous medium is homogeneous and
isotropic and that no mass transfer occurs between the solid
and liquid phases. It is assumed also that the solute
transport, across any fixed plane, due to microscopic
velocity variations in the flow tubes, may be quantitatively
expressed as the product of a dispersion coefficient and the
concentration gradient. The flow in the medium is assumed
to be unidirectional and the average velocity is taken to be
constant throughout the length of the flow field. In this
paper, the solutions are obtained for two solute dispersion
problems in a longitudinal finite length, respectively. In the
first problem time dependent solute dispersion of
increasing or decreasing nature along a uniform flow
through a homogeneous domain is studied. In the second
problem the medium is considered heterogeneous, hence
the velocity is considered dependent on position variable.
The velocity is linearly interpolated in position variable
which represents a small increment in the velocity from
one end to the other end of the domain. This expression
contains a parameter to represent a change in
heterogeneous from one medium to other medium.
Dispersion is assumed proportional to square of velocity. In
each problem the domain is initially solute free. The input
condition is of uniform and varying nature, respectively.
Numerical solution has also been obtained for the case in
which dispersion varies linearly with velocity and has been

compared with the analytical solution obtained in the
previous cases.

2. TEMPORALLY DEPENDENT DISPERSION ALONG
UNIFORM FLOW

Because mass is conserved, the governing differential

equation is determined to be

ng(D(x, t)@—u(x, t) C]
ot ox OX

1)
where C is solute concentration at position x along the
longitudinal direction at time t, D is dispersion coefficient
and u is the average velocity of fluid or superficial
velocity. To study the temporally dependent solute
dispersion of a uniform input concentration of continuous
nature in an initially solute free finite domain, we consider

D(x,t) = D, f (mt) and u(x, t) = u,

)
When m is a coefficient whose dimension is inverse of the
time variable. Thus f(mt) is an expression in non-
dimensional variable (mt). The expression of f(mt) = 1 for
m = 0 or t = 0. The former case represents the uniform
solute dispersion and the latter case represents the initial
dispersion. The coefficients Do and up in equation (2) may
be defined as initial dispersion coefficient and uniform
flow velocity, respectively. Thus the partial differential
equation (1) along with initial condition and boundary
conditions may be written as:
oC 0°C oC
— =D, f(mt)——u,— ®)
ot OX OX
Initially, saturated flow of fluid of concentration, C = 0,
takes place in the medium. At t = 0, the concentration of
the plane source is instantaneously changed to C = C,.
Thus, the appropriate boundary conditions are

C(x,0)=0 x>0
C(0,t)=Cyll-e™) t=0}. (4)
C(o0, 1) =0 t>0

The problem then is to characterize the concentration as a
function of x and t. where the input condition is assumed at
the origin and a second type or flux type homogeneous
condition is assumed. Cy is initial concentration. To reduce
equation (3) to a more familiar form, we take

Uy X

2D, f(mt)
C(x,t)=T(x,t)exp 2 (- nk
{4D0 f (mt) - }
(®)
Substituting equation (5) into equation (3) gives

2

6—1; =D, f(mt) ng 6)

The initial and boundary conditions (3) transform to
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(o, t):Co(l—e )exp 4|:)uft(mt)+k“(ln_n)t
Ir'(x,00=0 >
(o0, t) =0 >0

@)
It is thus required that equation (6) may be solved for a
time dependent influx of the fluid at x = 0. The solution of
equation (5) may be obtained readily by use of Duhamel’s
theorem (Carslaw and Jaeger, 1947).

If C=F (X, Y, Z, t) is the solution of the diffusion

equation for semi-infinite media in which the initial
concentration is zero and its surface is maintained at
concentration unity, then the solution of the problem in

which the surface is maintained at temperature ¢(t)is
t
0
C=|¢1)=Fx,y,z,t-1)dA
! #A) < Fx v, 2,t-2)

This theorem is used principally for heat conduction
problems, but the above has been specialized to fit this
specific case of interest. Consider now the problem in
which initial concentration is zero and the boundary is
maintained at concentration unity. The boundary
conditions are

I'x,00=0 x>0
ro,t)=1 t>0 (8)
(0, t)=0 t>0

The problem is readily solved by application of the
Laplace transform which is defined as

L[T(x, t)]=T(x, p)= Te“’t r(x,t)dt (9)

Hence, if equation (6) is multiplied by e ™ and integrated
term by term it is reduced to an ordinary differential
equation

d?r —
=P T
dx? D, f(mt)
The solution of the above equation is

I'=C, e ™+C, e™ where, q = \/EE

The boundary condition as x — oo requires thatC, =0

and boundary condition at X =0 requires that C,=—

thus the particular solution of the Laplace transformed
equation is

r=lew

Y
The inversion of the above function is given in any table of
Laplace transforms. The result is

o0

rel-ef(—2 -2 [edy
2D, f(mtyt” Jz 5
24Dt
Utilizing Duhamel’s theorem, the solution of the problem
with initial concentration zero and the time dependent
surface condition at x =0 is

t 6 2 © n
F=I¢(r)aﬁ [edn|dz (o
’ 2 Dof(xmt)(t—r)

Since e is a continuous function, it is possible to
differentiate under the integral, which gives

Te_”zdn=

2,/D, f(mt)(t-7)

SIS
Q| o

X —x?2
2,/ D, f(mt)(t - z')% eXp[4D0 f(mt)(t - z')}

(11)

The solution to the problem is

- [s()em
27D, f(mt) ¢

—x? dr
4D, f(mt)(t—7) | (t—7)*
(12)

Putting A =

then the equation (12)

X
2,/D, f(mt)(t-7)

can be written as

2 L
" I ¢[ 4D, f(m t)f)e “

JW
(13)
Since
_ ult k,(L-nk
t)=C,{l-e" 0 h
#lt)=C,f1-e )exp(mof(mt) - ]te

particular solution of the problem may be written as

" t)zzco(l—e")exp( it _kd(l—n)t]

Jr 4D, f (mt) n
0 2 a 2
2 € 2 €
o5
(14)
where, o = X HoX

4D, f (mt)

——————and ¢ =
2./D, f(mt)t
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Evaluation of the integral solution

The integration of the first term of equation (14) gives
© 2
& Jr
Iexp -2 - lda=——e* (15)
0 A 2
For convenience the second integral may be expressed on
terms of error function (Horenstein, 1945), because this

function is well tabulated.
Noting that

2 2 2

Ry L S PR R gy P
A A A

The second integral of equation (14) may be written as

a 2
I:_[exp(—/lz—‘}Jdl:
0

1 ZEa 3 ’ —ZEa ( 8)2
—eclep|-|A+—=| [di+e = |exp|-|A——]| |[dA
o oo T o
(16)
Since the method of reducing integral to a tabulated

function is the same for both integrals in the right side of
equation (16), only the first term is considered. Let

Z= 8//1 and adding and subtracting

o 2
e Iexp —(£+z) dz
% Z

The integral may be expressed as

a 2
Ilzezgjexp —[/1+5j dA
0 A

© 2 o 2
:—ezg.[ 1- |exp| - £ 42 |dz4e® f op|-| S+z| |dz
ela Zz z ela z

(17)

£

Further, let, § = (— + Zj in the first term of the above
Z

equation, then

o) 0 2
l1=-e% j e’ﬂzdﬁ+e2“jexp —(£+ZJ dz.
& & Z

at+=
a a

(18)

Similar evaluation of the second integral of equation (16)
gives

) 2 o 2
l,=e% J' exp[—[j—zj }dz—e“ I exp[—[j—z) ]dz-
ela ela

&
Again substituting — # = — — Z into the first term, the
z

result is

0 2
P j e‘ﬂzdﬂ—ezg I exp —(f—zj dz
z

£ ela
—a

a

Noting that

Thus, equation (14) may be expressed as

Fx )= 2ol ) o Ut ks@onk

e Jr 4D, f (mt) n (20)
N e e g 2 [ o
e -3 J'%aeﬂdﬂ—e Ie”dﬂ

&
a+—=
[24

However, by definition,

e* je’ﬂz dg = %e’-g erfc (a + f)

o

e je‘ﬁz dg =%e‘2‘gerfc (a —fj.

a

Writing equation (20) in terms of error functions, we get

r(x t):Co(l—e’;‘)e u’t  ky@-nk
’ 2 4D, f (mt) n (21)

[ezgerfc(a + gj + ez‘ferfc[a - 8]}
(04 (04

Thus, Substitution into equation (5) the solution is

C(x1) _1 erfc (a_gJﬂLe“erfC [a+8)
C,li-e”) 2 a a

Re-substituting for € and a. gives

X —ut
erfc| ————— |+
C(xt) 1 (2 Dof(mt)tJ
Coli-e7) 2 ux X + Ut
exp er
D, f (mt) 2D, f(mt)t
Re-substitute the value of the u in terms of uo, we get

X — Uyt
erfc| —— |+
c(x,t) 1 2,/D, f(mt)t
Coil—e’;’ti 2 exp[ Uy X ]erf[ X + Uyt J

D, f (mt) 2,/D, f(mt)t
(22)
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where boundaries are symmetrical the solution of the
problem is given by the first term the equation (22). The
second term is equation (22) is thus due to the asymmetric
boundary imposed in the more general problem. However,
it should be noted also that if a point a great distance away
from the source is considered, then it is possible to

approximate the boundary condition by C(_“?t)=q
which leads to a symmetrical solution.

3. SPATIALLY DEPENDENT DISPERSION ALONG
NON-UNIFORM FLOW

The heterogeneity of porous domain was defined by scale
dependent dispersion and flow through the medium has
been considered uniform Yates (1992) but the flow
velocity may also depend upon position variable in case
the domain is heterogeneous. Zoppou and Knight (1997)

have considered the velocity as U = £X, and the solute
dispersion proportional to square of velocity, i.e., as
D = a x*; in a semi-infinite domain X, < X < 0. But

these expressions do not reflect real variations due to
heterogeneity of the medium because as X — oo,
dispersion and velocity also become too large. In fact the
variation in velocity due to heterogeneity should be small
so that the velocity at each position satisfies the Darcy’s
law in case the medium is porous or satisfies the laminar
condition of the flow in a non-porous medium, an essential
conditions for the velocity parameter, u in the advection-
diffusion equation. This factor is taken care of in the
present work and velocity is linearly interpolated in
position variable such that it increases from a value up at x

= 0 to a value (1+ b)uoat X =L, where b may be a real
constant. Thus
u(x,t) =u, (1+ax), (23a)

Where & = b/ L , is the parameter accounting for the
heterogeneity of the medium. It should be small so that the
increase in velocity is of small order. Solute dispersion is
assumed proportional to square of the velocity so we
consider

D(x,t) = D, (L +ax)? (23b)
As ax is a non-dimensional term hence Do and up are
dispersion coefficient and velocity, respectively at the
origin (x = 0) of the medium. The domain is assumed
initially solute free. An input concentration is assumed at
the origin and a flux type homogeneous condition is
assume at the other end of the domain. Then advection-
diffusion equation assumes the form

oC o°C oC
E = DO(1+ aX)2 y — UO(1+ aX)& (24)

It is further reduced into a partial differential equation with
constant coefficients by using a transformation. Ultimately
we use the same initial and boundary conditions to solve
the above dispersion problem for dependent dispersion
non-uniform. The procedure is same as solved in the
earlier case. Then the desired solution may be written as

X — Uy L+ ax)t}L (25)

c(xt) erf{zm ax)y/D,t

1
c, 2 Uy (@ + ax)x X+ Uo L+ ax)t
0 f 0
exp{Do(“ ax)’ ere 21+ ax),/D,t
A plot of logarithmic probability graph of the above
solution is given for various values of the dimensionless

group 77=D3/ WX The figure shows that as n becomes
small the concentration distribution becomes nearly

symmetrical about the value & = 1 (ie., &=Ust/X).
However, for large values of n asymmetrical concentration
distributions become noticeable. This indicates that for
large value of D or small values of distance x the
contribution of the second term in equation (25) becomes
significant as & approaches unity.

4. RESULTS AND DISCUSSIONS

Concentration values are evaluated from the four analytical
solutions discussed in a finite domain at times t
(years) = 1.0, 2.0, 3.0 and 4.0, for input values Co = 1.0, Ug
=0.11 (km/year), Do = 50 (km?/year). Figures 1 represents
temporal dependent concentration dispersion pattern of
uniform input and input of increasing nature, respectively
along a uniform flow through a homogeneous medium,
described by the analytical solutions, equation (22),
respectively. In figure 1, the uniform input concentration
value is 1.0 at all times and the concentration value at x =0
increases with time. Thus the respective input boundary
conditions are satisfied. In the figure the dotted curves
represents the solutions for an expression f(mt) = exp(—mt)
which is of decreasing nature. In the figures the solid curve
represents the respective solutions at t = 1.0 (year), for
another expression f(mt) = exp(mt), which is of increasing
nature. It may be observed that in case of uniform input the
concentration value at a particular position is higher for the
latter expression of f(mt) than that for the former
expression of f(mt). The difference increases with the
distance along the domain. But in case of an input
concentration of increasing nature its value is less for
increasing nature of f(mt) than that for decreasing nature of
f(mt). This trend is of diminishing nature up to x = 2.0,
beyond which the trend reverses. For all the curves drawn
in figure 1, a value m(year)—1 = 1.0 is chosen. Both the
analytical solutions of section 2 may be solved using other
expressions of f(mt) which satisfy the conditions stated at
the outset of the section 2.
1

- - D =D, exp(-m1t)
0.8 —D = D, exp(mt)
0.6
04
v t-40y
v
0.2 TR v Ae_,.
=10y
0 S S ——|
0 10 20 30 40 50

X (km)
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Figure 1: Temporal dependent solute dispersion
along uniform flow of uniform input

described by solution (equation 22).
1 : e
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. 08
Q
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Figure 2: Break through curve for dispersion along with uniform flow.
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Figure 3: Spatially dependent solute dispersion along with non-uniform
flow input described by solution (equation 25).
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Figure 4: Break through curve for dispersion
along with non-uniform flow.

The distribution is symmetrical for values of x chosen
some distance from the source. An example of break
through curves obtained for dispersion in a cylindrical
vertical column is shown as Figure 2. The theoretical curve
was obtained by neglecting the second term of equation
(22).

Figure 3 gives the concentration values evaluated from
analytical solutions (equations 25) for spatially dependent
dispersion of uniform input and input of increasing nature,
respectively, along non-uniform flow, through an
heterogeneous domain. The solid curves in figure 3
represent the solution (equation 30) in which a value a =
1.0 (km™) is taken. Using expressions it may be evaluated
that due to the heterogeneity of the medium, the velocity u
varies from a value of 0.11 (km/year) to a value of 0.22
(km/year) and dispersion D varies from a value of 0.21
(km/year) to a value of 0.42 (km/year), along the domain 0
< x(km) < 1. This figure also shows the effect of
heterogeneity on the dispersion pattern. A dotted curve is
drawn for the value a = 0.1 (km™). It may be observed that
the concentration values evaluated from the solution
(equation 25) along a medium of lesser heterogeneity
(which introduces lesser variation in velocity and
dispersion along the column), are slightly higher than those
at the respective positions of a medium of higher
heterogeneity, near the origin but decrease at faster rate as
the other end of the medium is approached. This
comparison is done at t = 2.0 (year). This value is chosen
to ensure that the factor (up — aDo) in condition remains
positive for the values chosen for u, and Do. The
distribution is symmetrical for values of x chosen some
distance from the source. A break through curve is
obtained for dispersion in for different depth as shown in
Figure 4. The theoretical curve was obtained by neglecting
the second term of equation (25).

5. CONCLUSIONS

Consideration of the governing differential equation for
dispersion in flow through porous media give rise to a
solution that is not symmetrical about x = ug t for large
values of 7. Experimental evidence, however, reveals that
Do is small. This indicates that, unless the region close to
the source is considered, the concentration distribution is

C 1
approximately symmetrical. Theoretically, C_ — — only
0
as n — 0; however, only errors of the order of magnitude
of experimental errors are introduced in the ordinary
experiments if a symmetrical solution is assumed

The solution is obtained for one dimensional advection —
diffusion equation with variable coefficients along with
two set of boundary conditions in an initially solute free
finite domain have been obtained in two cases:
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1. temporal dependent dispersion along with
uniform flow through homogeneous medium and

2. spatially dependent dispersion along non-uniform
flow through heterogeneous medium which solute
dispersion is assumed proportional to the square
of velocity.

The application of a new transformation which introduces
another space variable, on the advection-diffusion equation
makes it possible to use Laplace transformation technique
in getting the solution. Numerical solution has been
obtained using a two-level explicit finite difference
scheme. The respective analytical and numerical solutions
have also been compared and very good agreement
between the two has been found. The analytical solution of
the second problem in case of uniform input has been
compared with the numerical solution of same problem but
assuming dispersion varying with velocity. Such analytical
solutions may serve as tools in validating numerical
solutions in more realistic dispersion problems facilitating
to assess the transport of pollutants solute concentration
away from its source along a flow through soil medium,
through aquifers and through oil reservoirs.
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