

An Analytical Approximate Solution for the Bratu Problem by using Nonlinearities Distribution Homotopy Perturbation Method

Mario A. Sandoval-Hernandez¹, U. Filobello-Nino², H. Vazquez-Leal^{2*}, S. E. Torreblanca Bouchan¹, O. Alvarez-Gasca², A. D. Contreras-Hernandez², B. E. Palma-Grayeb², Elisa De Leo Baquero¹, Alexis C. Bielma Pérez¹, Julio C. Vichi Mendoza¹, J. Sanchez-Orea², R. A. Callejas-Molina³, C. Hoyos-Reyes²

¹ CBTis 190, Av. 15 Col. Venustiano Carranza 2da Secc, 94297, Boca del Rio Ver., México.

² Facultad de Instrumentación Electrónica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán S/N, Xalapa, Veracruz, 91000, México.

³ Doctorado en Ciencias de la Ingeniería, Tecnológico Nacional de México en Celaya, Antonio García Cubas #600, Celaya, Guanajuato, 38010, México.

Abstract— This work introduces the nonlinearities distribution homotopy perturbation method in order to get an accurate analytical approximate solution for the relevant Bratu problem which has many applications in science and engineering. We will show that the distribution of the nonlinearities in the different iterations of the proposed method is a convenient scheme which eases the obtaining of the approximation based on elementary integrals. We will conclude that the proposed method is very convenient for practical applications.

Keywords— Bratu problem, nonlinear differential equation, approximate solution.

I. INTRODUCTION

The Bratu problem in one dimension is called Liouville-Bratu-Gelfand and has many applications in science and engineering where physical and chemical phenomena are modeled. One of the applications of this equation is in solid fuel ignition models of the thermal combustion theory [1-2]. Gelfand's differential equation with boundary value in one dimension in planar coordinates is given by [3-8].

$$u'' + \varepsilon e^{u(x)} = 0, \quad 0 < x < 1. \quad (1)$$

with boundary conditions $u(0) = u(1) = 0$.

The analytical solution of (1) is given by [3, 4]

$$u(x) = -2\ln \left[\frac{\cosh \left(\left(x - \frac{1}{2} \right) \frac{\theta}{2} \right)}{\cosh \left(\frac{\theta}{4} \right)} \right], \quad (2)$$

where θ is the solution of

$$\theta = \sqrt{2\varepsilon} \cosh \left(\frac{\theta}{4} \right). \quad (3)$$

There are three cases for the solution; if $\varepsilon > \varepsilon_c$ then the problem has zero solution, if $\varepsilon = \varepsilon_c$ there is one solution, and $\varepsilon < \varepsilon_c$ there are two solutions, where $\varepsilon_c = 3.513830719$ is the critical value and satisfies the equation.

$$1 = \frac{1}{4} \sqrt{2\varepsilon_c} \sinh \left(\frac{\varepsilon_c}{4} \right). \quad (4)$$

Different approximate methods have been applied to solve the Bratu problem. For example in [9] Chebyshev polynomials was employed in order to obtain an approximate solution for the proposed problem. In [10] the Adomian decomposition method was used to solve the equation. In [11] the B-spline method was proposed to solve the equation. In [12] the Leal-polynomials were proposed to find an accurate analytical approximate solution for (1). In [13] Perturbation Method was employed to get a handy approximate solution and so on.

This research paper is organized as follows In Section 2 we introduce the idea of Homotopy Perturbation Method (HPM). For Section 3 we briefly introduce Nonlinearities Distribution Homotopy Perturbation Method (NDHMP). Additionally Section 4 presents the application of the proposed method in the search for an analytical approximate solution for Bratu problem. Besides a discussion on the results is presented in Section 5. Finally, a brief conclusion is given in Section 6.

II. HOMOTOPY PERTURBATION METHOD

To show how homotopy perturbation method (HPM) works, first, consider a general nonlinear differential equation as follows

$$A(u) - f(r) = 0, \quad r \in \Omega \quad (5)$$

With the boundary conditions

$$B(u, \partial u / \partial n) = 0, \quad r \in \Gamma, \quad (6)$$

where A is a general differential operator, B is a boundary operator, $f(r)$ a known analytical function and Γ is the domain boundary for Ω . In general terms, A can be divided into two operators L and N , where L is linear and N is nonlinear; so that (5) can be rewritten as

$$L(u) + N(u) - f(r) = 0. \quad (7)$$

A homotopy can be constructed as [14, 15]

$$H(U, p) = (1 - p)[L(U) - L(u_0)] + p[L(U) + N(U) - f(r)] = 0, \quad r \in \Omega, \quad (8)$$

where p is a homotopy parameter, which value varies continuously from 0 to 1, u_0 is the first approximation for the solution of (5) that satisfies the boundary conditions. The solution of (8) can be written as power series of p

$$U = v_0 + v_1 p + v_2 p^2 + \dots \quad (9)$$

Substituting (9) into (8) and equating identical powers of p terms, there can be found values for v_0, v_1, v_2, \dots when p tends to 0, we obtain the approximate solution for (1) in the form

$$U = v_0 + v_1 + v_2 + \dots \quad (10)$$

III. BASIC IDEA OF NONLINEARITIES DISTRIBUTION HOMOTOPY PERTURBATION METHOD

In [16] was introduced nonlinearities distribution homotopy perturbation method (NDHMP) with the purpose to reduce the complexity of solving differential equations in terms of power series.

To carry out the procedure a homotopy is written in the form (Vazquez-Leal et al. 2012b) [16]

$$\begin{aligned} H(U, p) &= (1-p)[L(U) - L(u_0)] + \\ p[L(U) + N(U, p) - f(r, p)] &= 0, \quad r \in \Omega. \end{aligned} \quad (11)$$

Homotopy function (11) is essentially the same as (8), except because the non-linear operator N and the non homogeneous function f , contain embedded the homotopy parameter p . The rest of the procedure coincides with that explained in the last Section.

From [14,16] we have

$$U = v_0 + v_1 p + v_2 p^2 + \dots \quad (12)$$

When p tends to 1, it is expected to get an approximate solution for (7) in the form

$$U = v_0 + v_1 + v_2 + \dots \quad (13)$$

IV. APPLICATION OF NDHMP

Next, we will employ NDHMP in order to find an analytical approximate solution for the Bratu problem.

In accordance with the proposed problem we proposed the following homotopy:

$$(1-p)y'' + p(y'' + \varepsilon e^{py(x)}) = 0, \quad (14)$$

or

$$y'' + p\varepsilon e^{py(x)} = 0. \quad (15)$$

We note exponential function contain embedded the homotopy parameter p .

After using Taylor approximation for the exponential function we obtain the following approximation as follows:

$$e^{py(x)} = 1 + py + \frac{p^2 y^2}{2} + \frac{p^3 y^3}{6} + \dots \quad (16)$$

After substituting (16) into (15) we obtain

$$y'' + p\varepsilon \left(1 + py + \frac{p^2 y^2}{2} + \frac{p^3 y^3}{6} + \dots \right) = 0, \quad (18)$$

let it be

$$y = \sum_{n=0}^{\infty} p^n y_n(x), \quad (19)$$

so that after substituting (19) into (18) and equating identical powers of p terms we obtain

$$p^0) \quad y_0'' = 0,$$

$$p^1) \quad y_1'' + \varepsilon = 0,$$

$$p^2) \quad y_2'' + \varepsilon y_0 = 0,$$

$$p^3) \quad y_3'' + \frac{\varepsilon}{2} y_0^2 = 0, \quad (20)$$

and so on.

The solutions of equations (20) which satisfy the initial conditions of the problem in accordance with the proposed problem are:

$$p^0) \quad y_0 = Ax,$$

$$p^1) \quad y_1 = -\frac{\varepsilon x^2}{2} + cx,$$

$$p^2) \quad y_2 = \frac{-\varepsilon Ax^3}{6} + Dx,$$

$$p^3) \quad y_3 = \frac{-\varepsilon A^2 x^4}{24} + Ex, \quad (21)$$

and so on.

Substituting (21) into (13)

$$y(x) = (A + K)x - \frac{\varepsilon x^2}{2} - \frac{\varepsilon Ax^3}{6} - \frac{\varepsilon A^2 x^4}{24}, \quad (22)$$

where the constant K is given by

$$K = c + D + E. \quad (23)$$

With the end to get a better precision, we will determine the value of K , from the requiring that the approximate solution satisfy the real value for $x=0.5$. As a consequence (22) adopts the following form:

$$y(x) = \left(\frac{A^2}{384} + 0.0208A + 0.256817 \right) x - \frac{\varepsilon x^2}{2} - \frac{\varepsilon A x^3}{6} - \frac{\varepsilon A^2 x^4}{24}. \quad (24)$$

With the purpose to verify the accuracy of the proposed approximation we propose the value $\varepsilon=0.5$ in such a way that (24) assumes the form

$$y(x) = \left(\frac{A^2}{384} + 0.0208A + 0.256817 \right) x - \frac{x^2}{4} - \frac{A x^3}{12} - \frac{A^2 x^4}{48}. \quad (25)$$

With the end to determinate A we apply the condition $y(1)=0$ to (25) to generate the following algebraic equation

$$\frac{7A^2}{384} + \frac{3A}{48} - 0.006817 = 0. \quad (26)$$

The solution to this equation is substituted into (25) to obtain

$$y(x) = 0.2590x - \frac{x^2}{4} - 0.008817x^3 - 0.0002332x^4. \quad (27)$$

Figure 1 compares (27) with the numerical solution for (1) with $\varepsilon = 0.5$.

Although the precision of (27) is clear at sight, from Table 1 is clear the precision of the proposed solution.

V. DISCUSSION

In this work NDHPM was employed in order to find an approximate solution, for the nonlinear ordinary differential equation that describes the relevant Bratu problem that models the solid fuel ignition which rises of the thermal combustion theory. One of the great advantages of the proposed method is that it systematically distribute the nonlinearity term in the different iterations which ease the obtaining of an analytical approximate solution. The procedure consisted in ensure that the approximate solution satisfy the real value for $x=0.5$ and pose an algebraic equation for determining an unknown parameter A. The solution of this equation was obtained from the boundary condition $y(1) = 0$ This solution provides the sought analytical approximation solution.

Figure 1 shows the comparison between numerical solution and approximate solution (27) for $\varepsilon=0.5$. It can be noticed that curves are in good agreement, whereby it is clear that the proposed method is potentially useful in the search for approximate solutions of nonlinear problems definite with boundary conditions.

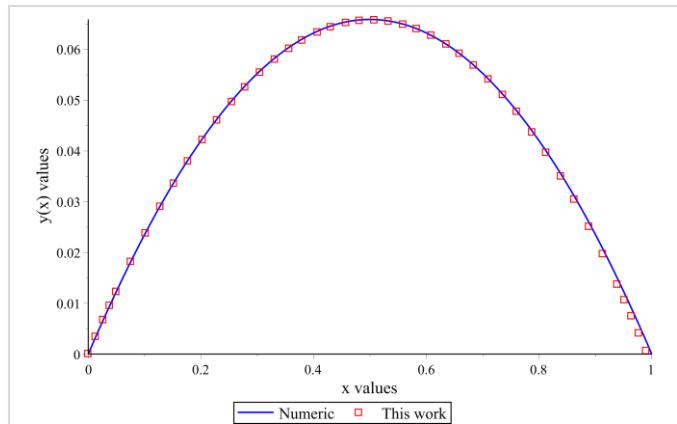


Figure 1. Comparison between numerical solution and approximate solution (27) for $\varepsilon = 0.5$

On the other hand, Table 1 shows a more detailed comparison between numerical solution for (1) and approximation (27) of this work for $\varepsilon=0.5$. The mentioned table shows that the relative error is less than one percent for most of the interval. It is clear that (27), is competitive taking into account that the proposed method required to solve essentially elementary integrals and an algebraic equation. From above it is very important to emphasize that, it is possible to improve the accuracy of our approximation performing more iterations from the homotopy (18).

V1. CONCLUSION

This work presented method NDHPM with the purpose to calculate an analytical approximate solution for the Bratu problem. The method basically works calculating elementary integrals after distributing the nonlinear term in the several iterations of the method in order to ease the procedure. As a matter of fact the method expressed the solution of a differential equation in terms of the solution of one or more algebraic equations. The application of the proposed method in this work showed the convenience of employ NDHPM as a practical tool with the purpose to obtain accuracy solutions for boundary value problems instead of using other more sophisticated and cumbersome procedures.

x	Exact	(19)	Error relative
0.1	0.0235388	0.0233909	0.62%
0.2	0.0420135	0.0417257	0.68%
0.3	0.0552701	0.05494305	0.59 %
0.4	0.0632473	0.06297601	0.42%
0.5	0.0659146	0.06575212	0.24%
0.6	0.0632473	0.06319330	0.085%
0.7	0.0552701	0.0552158	0.098%
0.8	0.0420135	0.04173050	0.67%
0.9	0.0235388	0.02264238	3.8%

Table 1: Comparison between (27), and exact solution using $\varepsilon=0.5$

ACKNOWLEDGMENTS

Authors would like to thank Roberto Ruiz Gomez for his contribution to this project.

REFERENCES

- [1] A.S. Mounim and BM de Dormale, From the fitting techniques to accurate schemes for the liouville-bratu-gelfand problem, Numerical Methods for Partial Differential Equations, 2006, 22(4), 761–775.
- [2] S. Li and S.J. Liao, An analytic approach to solve multiple solutions of a strongly nonlinear problem, Applied mathematics and computation, 2005, 169(2), 854–865.
- [3] Jacobsen, J. and Schmitt, K. (2002) The Liouville-Bratu-Gelf and Problem for Radial Operators. Journal of Differential Equations, 184, 283-298.
- [4] Ascher, U.M., Matheij, R. and Russell, R.D. (1995) Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Society for Industrial and Applied Mathematics, Philadelphia. <https://doi.org/10.1137/1.9781611971231>
- [5] Boyd, J.P. (2003) Chebyshev Polynomial Expansions for Simultaneous Approximation of Two Branches of a Function with Application to the One-Dimensional Bratu Equation. Applied Mathematics and Computation, 142, 189-200.
- [6] Boyd, J.P. (1986) An Analytical and Numerical Study of the Two-Dimensional Bratu Equation. Journal of Scientific Computing, 2, 183-206. <https://doi.org/10.1007/BF01061392>
- [7] Buckmire, R. (2003) Investigations of Nonstandard, Mickens-Type, Finite-Difference Schemes for Singular Boundary Value Problems in Cylindrical or Spherical Coordinate. Numerical Methods for Partial Differential Equations, 19, 380-398. <https://doi.org/10.1002/num.10055>
- [8] Aregbesola, Y. (2003) Numerical Solution of Bratu Problem Using the Method of Weighted Residual. Electronic Journal of Southern African Mathematical Sciences Association, 3, 1-7.
- [9] J.P. Boyd, Chebyshev polynomial expansions for simultaneous approximation of two branches of a function with application to the one-dimensional bratu equation, Applied mathematics and computation, 2003, 143(2-3), 189–200.
- [10] A.M. Wazwaz, Adomian decomposition method for a reliable treatment of the bratu type equations. Applied Mathematics and Computation, 2005, 166(3), 652–663.
- [11] H. Caglar, N. Caglar, M. A. Ozer, A. Valar3stos, and A.N. Anagnostopoulos. B-spline method for solving Bratu's problem. International Journal of Computer Mathematics, 87(8): 1885–1891, 2010.
- [12] Vazquez-Leal, Hector, Mario Alberto Sandoval-Hernandez, Uriel Filobello-Nino, and Jesus Huerta-Chua. "The novel Leal-polynomials for the multi-expansive approximation of nonlinear differential equations." Heliyon 6, no. 4 (2020): e03695.
- [13] Filobello-Nino, Uriel, Hector Vázquez-Leal, K. Boubaker, Y. Khan, A. Perez-Sesma, A. Sarmiento-Reyes, V. M. Jimenez-Fernandez et al. "Perturbation method as a powerful tool to solve highly nonlinear problems: the case of Gelfand's equation." Asian Journal of Mathematics & Statistics 6, no. 2 (2013): 76
- [14] He JH (1998) A coupling method of a homotopy technique and a perturbationtechnique for nonlinear problems. Int J Non-Linear Mech 35:1:37–43,doi:10.1016/S0020-7462(98)00085-7
- [15] He JH (1999) Homotopy perturbation technique. Comput Methods Applied Mech Eng 178:257–262, doi:10.1016/S0045-7825(99)00018-3
- [16] Vazquez-Leal H, Sarmiento-Reyes A, Khan Y, Filobello-Nino U, Diaz-Sanchez A (2012b) Rational biparameter homotopy perturbation method and Laplace-Padé coupled version. J Appl Math 2012(923975):21, doi:10.1155/2012/923975