
An Algorithm to Reduce Quantum Cost and

Garbage Outputs in Reversible Logic Circuits

Guruprasad K H
M. Tech. VLSI design and embedded systems

T.John Institute of Technology

Bangalore

Sanjay Kumar Bhagat
Asst. Professor, Dept.of E&CE.

T.John Institute of Technology

Bangalore

Abstract— Reversible logic has become very promising for low

power design using emerging computing technologies.

Reversible sequential circuits constructed by replacing the

latches, flip-flops, and other combinational gates of traditional

irreversible designs by their reversible counter parts leads to

more Garbage outputs and Quantum cost which in turn

slowdowns the circuit. Here we propose an approach of

designing sequential circuits directly from reversible gates using

pseudo Reed-Muller expressions representing state transition

and the output functions of the circuit. This approach reduces

the Quantum cost and Garbage outputs. We present designs of

arbitrary as well as practically important sequential circuits

such as counters and registers.

Keywords — Counters, pseudo Reed–Muller(PSDRM)

expressions, registers, reversible logic, synchronous sequential

circuit.

I. INTRODUCTION

Irreversible logic operations dissipates kTln2 J of heat

energy for every bit of information loss, where k is

Boltzmann’s constant and T is the absolute temperature at

which the operation is done. In reversible logic circuits it is a

very important thing to reduce this heat dissipation. This heat

can be reduced if the circuits are reversible. Generally in

physically reversible circuits the heat dissipation is much

more reduced. Thus it helps a lot in reducing the heat

dissipation in the new upcoming technologies such as SFL

technology, optical technology, quantum dot cellular

automata technology, and nanotechnology and Quantum

computing and quantum information. Reversible logic

synthesis attempts are mostly concentrated on reversible

combinational logic synthesis, but till date very few

reversible sequential logic are developed. These methods

present reversible designs of building blocks of sequential

circuits such as latches and flip-flops on the top of reversible

gates and suggest that sequential circuits be constructed by

replacing the latches, flip-flops, and other combinational

gates of traditional irreversible designs by their reversible

counter parts. This method increases the Quantum cost and

Garbage outputs. In this paper an attempt is made to design

the reversible sequential circuits directly from reversible

gates using pseudo Reed-Muller expressions.

II. BACKGROUND OF REVERSIBLE LOGIC

In case of reversible circuits number of inputs are equal to

number of outputs. Here we not only get outputs from inputs,

but also can recover inputs from outputs. A reversible circuit

with n inputs/outputs is called an n×n reversible circuit. A

reversible circuit is constructed as a network of reversible

gates.

Fig.1 Commonly used reversible gates (a) NOT gate, (b) Feynman gate,

(c) Toffoli gate, (d) Fredkin gate.

Fig.1 shows the commonly used reversible gates such as

1×1 NOT gate, 2×2 Feynman gate, 3×3 Toffoli gate, and 3×3

Fredkin gate. Toffoli gate may have more than three

inputs/outputs and they are called multiple-controlled Toffoli

gates.

The complexity of reversible circuit design is compared in

terms of quantum cost (the number of primitive quantum

gates required to realize the circuit) and the number of

garbage outputs (the final outputs that are not used as the

primary outputs). The 1×1 and 2×2 gates are technology

realizable primitive gates and their quantum costs are

assumed to be one. Thus ,the quantum cost of NOT gate and

Feynman gate is one each. Toffoli and Fredkin gates are

macro level gates and need to be realized on the top of 2×2

gates. The 3×3 Toffoli gate and the Fredkin gate can be

realized using five 2×2 primitive gates, and thus their

quantum cost is five each. The quantum costs for 4×4, 5×5,

and 6×6 Toffoli gates are 14,20, and 32,respectively.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

1

t

Fig.2 Reversible realizations of classical (a) two-input AND gate,(b) three

input AND gate, and (c) two-input OR gate.

Classical AND and OR gates can be realized using Toffoli

gates. Reversible realization of two and three-input AND

gates are shown in Fig.2(a) and (b), respectively.

Reversible realization of two-input AND gate requires five

quantum cost and two garbage outputs and that of three-

input AND gate requires 14 quantum cost and three garbage

outputs. Reversible realization of two-input OR gate is

shown in Fig.2(c), which requires seven quantum cost and

two garbage outputs.

Fig.3 Reversible realization of (a) level-triggered and (b) falling edge

triggered D flip-flops.

Reversible realizations of level-triggered and falling-edge

triggered D flip-flops are shown in Fig.3(a) and (b),

respectively. In Fig.3(a), the state output is copied using a

Feynman gate and fed back to the second input of the

Fredkin gate. When the clock C is zero, then the feedback is

connected to the state output maintaining the state output

unchanged. When C becomes one, then the D input is

connected to the state output performing the level-triggered

load operation. This realization requires six quantum costs

and two garbage output. In Fig. 3(b), the feedback is

connected to the third input of the Fredkin gate. When C is

one, then the feedback is connected to the state output

maintaining the state output unchanged. When C becomes

zero, then the D input is connected to the state output

performing the falling-edge triggered load operation. This

realization requires six quantum costs and two garbage

output.

III.REVERSIBLE LOGIC SYNTHESIS USING

PSDRM EXPRESSIONS

An n-variable Boolean function f(x1,x2,. . .,xi,. . . ,xn)

can be expanded on the variable xi using any of the

following expansions:

f(x1,x2,. . . ,xi,. . .,xn) =f0⊕xif2 (positive Davio, pD)

(1)

f(x1,x2,. . . ,xi,. . .,xn)=f1⊕xi
'f2 (negativeDavio,nD) (2)

where

f0=f(x1,. . . ,xi−1,0,xi+1,. . .,xn)

f1=f(x1,. . . ,xi−1,1,xi+1,. . . ,xn)
and

 f2=f0⊕f1.

If we apply pD expansion on all variables of an n-
variable Boolean function f(x1,x2,. . . ,xn), then the
resulting expression can be represented as

f(x1,x2,. . . ,xn)=f00···00⊕f00···01xn⊕f00···10xn−1

⊕f00···11xn−1xn⊕· · ·⊕f11···11x1x2· · ·xn−1xn (3)

Where the co-efficients are (∀i ∈ {0,1}n)fi ∈ {0,1}.

Fig.4 Application of pD expansion on all variables of equation 4.

If a subscript of a coefficient is one, only then the

corresponding variable appears in the un-complemented form

in the associated product term. If a coefficient is one, only

then the associated product term appears in the expression.

The coefficient vector of the expression of (3) for a given n-

variable Boolean function f(x1,x2,. . .,xn) can be computed

directly from the output vector of the given Boolean function,

as shown in the tree of Fig.4 for a three-variable function

 f(x1,x2,x3)=(3,4,6,7). (4)

The output vector of the function of (4) is 00011011. If

we apply pD expansion on the variable x1, then f0 =0001,

f1=1011, and f2=1010. Now ,f0 goes to the left child of the

root and f2 goes to the right child of the root of the tree of
Fig.4. Similarly, the pD expansion is applied on the other
internal nodes. The leaves represent the coefficient vector of
the expression of (3). The resulting expression is determined
from the ones of the coefficient vector and their
corresponding input combinations. The resulting expression
of the tree of Fig.4 is

 F(x1,x2,x3) =x2x3⊕x1⊕x1x3. (5)

Fig.5 Application of nD expansion on all variables of equation 4.

If we apply nD expansion on all variables of an n-variable

Boolean function f(x1,x2,. . . ,xn), then the resulting

expression can be represented as

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

2

f(x1,x2,. . . ,xn)=f00···00⊕f00···01x'n⊕f00···10x'n−1

⊕f00···11x'n−1x'n⊕· · ·⊕f11···11x'1x'2· · ·x'n−1x'n (6)

The expression (6) is similar to (3) with the exception

that variables appear in the complemented form. The

computation of the coefficient vector of the expression of

(6) for the function of (4) is shown in the tree of Fig.5. As

we apply nD expansion on the variable x1, f1=1011goes to

the left child of the root and f2=1010 goes to the right child

of the root of the tree of Fig.5. Similarly, then D expansion

is applied on the other internal nodes. Determination of the

resulting expression from the tree of Fig.5 is similar to that

from the tree of Fig. 4. The resulting expression of the tree

of Fig.5 is

 f(x1,x2,x3)=1⊕x'2⊕x'2x'3⊕x'1x'3. (7)

 The trees of Figs.4 and 5 have 2n –1 internal nodes for an

n-variable function. If we independently choose any of the

pD or nD expansion for each of the internal nodes, then the

resulting expression is called PSDRM expression. There are

22n−1 PSDRM expressions for an n-variable function and the

expression with the minimum number of products is the

minimum PSDRM expression. Exhaustive minimization of

PSDRM expression is not possible and we need some sort

of heuristics for this. In this paper, we develop our own

heuristics tailored toward designing synchronous sequential

circuit in Section IV. Before that, we explain here

determination of PSDRM expression for a given set of

expansions for the internal nodes. We show an arbitrary

PSDRM tree for the function of (4) in Fig.6.

Fig.6 Arbitrary PSDRM tree for the equation 4.

The resulting PSDRM expression from the tree of Fig.6 is

f(x1,x2,x3)= x3⊕x'2 x3⊕x1x'3. (8)

The PSDRM expression of (8) can be realized using

reversible gates, as shown in Fig.7, which is self-explanatory.

Fig.7 Reversible realization of PSDRM equation 8.

The circuit of Fig.7 requires two NOT gates, one Feynman

gate, and two 3×3 Toffoli gates. Therefore, its quantum cost

is 2×1+1×1+2×5=13. The circuit of Fig.7 has one primary
output and three unused outputs. Therefore, it has three
garbage outputs.

IV. DESIGN OF SYNCHRONOUS SEQUENTIAL

CIRCUIT USING PSDRM EXPRESSION

Design of synchronous sequential circuit involves design

of next state logic and output logic. In this paper, we do not

use any flip-flop to store the present state; rather we take the

feedback directly from the present state output as the input

to the next state logic. This special design approach needs

special method of designing the next state logic discussed in

the following.

For designing the next state logic of a level-triggered

Sequential circuit, we construct transition table considering

the clock (designated C), the present states (designated Q)

,and the inputs (if any) as the inputs and the next states

(designated Q+) as the outputs. State transition diagram of An

arbitrary sequential circuit with two-bit states Q1Q0, one

input x, and one output z is shown in Fig.8

Fig.8 State transition diagram of an arbitrary sequential circuit

 The corresponding transition table is shown in Table I.

 Table I. State transition table.

Determination of the minimized PSDRM expression from

the output vector of the next state Q1+ from Table I is shown

in the PSDRM tree of Fig.9.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

3

Fig.9 Determination of the PSDRM expression for the next state Q1+ of

the transition table.

Observation of the transition table of Table I shows that

for C=0, the next state relationship is simply Q+=Q to
provide the feedback needed for maintaining the state
unchanged. In the PSDRM expression, this relationship can
be maintained only if pD expansion is applied at the root and
its left descendents, as shown at the left side of the cut shown
in Fig.9. For heuristic minimization of the PSDRM
expression for the next state, at the right descendents of the
root, we apply either pD or nD expansion, which produce the
minimum number of ones in the next level, as shown at the
right side of the cut of Fig.9. For example, the sub vector for
the right child of the root of Fig.9 is 10101011. The pD
expansion produces two sub vectors 1010and0001 in the next
level, which have three ones. However, the nD expansion
produces sub vectors 1011 and 0001 in the next level, which
have four ones. Therefore, we choose pD expansion for this
node. The tie is broken by choosing pD expansion over nD
expansion. This heuristic produces local minimum at every
internal node with the hope to produce overall global
minimum. Using this minimization technique, we constructed
the PSDRM tree of Fig.9.

 Q1
+=Q1⊕CQ'0⊕CxQ1Q0 (9)

Q0
+=Q0⊕CQ0⊕CQ1Q'0⊕CxQ'1 (10)

Algorithm 1. Algorithm for Determining Next State

Expressions

1) Let the sequential circuit has m inputs and n-bit states.

Construct a(1+m+n)-input and n-output truth

table representing the transition table of the

sequential circuit considering the clock, the inputs,

and the present states as inputs and the next states as

outputs. Construct PSDRM tree using steps 2 and 3.

2) At the root and its left descendents, apply pD

expansion.

3) At the right descendents of the root, apply either pD

or nD expansion that produces the minimum number

of ones at the next level of the tree. Break the tie by

choosing pD expansion.

4) Determine PSDRM expressions for the next states

from the constructed PSDRM trees.

The PSDRM expression for the next state Q1+ is

determined from the PSDRM tree of Fig.9, as shown in (9).

The PSDRM expression for the next state Q0+ can be

determined in the similar manner and is determined, as

shown in (10).

 Table II. Truth table of output z of the sequential circuit of fig.8

 Algorithm 2. Algorithm for Determining the Output

Expression

1) Let the sequential circuit has m inputs, n-bit states,

and

Y outputs. Construct a(m+n)-input and y-output truth

table representing the output functions of the

sequential circuit considering the inputs and the

present states as inputs and the y outputs as outputs.

2) From the output vector of each of the output

functions, construct PSDRM tree using step 3.

3) At all nodes, choose pD or nD expansion that

produces the minimum number of ones at the next

level. Break the tie by choosing pD expansion.

4) Determine PSDRM expressions for the outputs from

the constructed PSDRM trees.

The generic algorithm for determining next state

expressions is given in Algorithm1. For simplicity, we use

minimized PSDRM expressions for synthesizing the output

functions, which may not be the minimum. The truth table for

the output function of the sequential circuit of Fig.8 is shown

in Table II. In this case, we use the heuristic algorithm shown

in Algorithm2 for minimizing the PSDRM expression. The

determined PSDRM expression for the output z is shown as

 z=Q'0⊕x. (11)

Fig.10 Reversible realization of the level-triggered sequential circuit of

Fig.8 using equations of (9)-(11)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

4

Fig.11 Reversible realization of the synchronous sequential circuit of

Fig.8 with asynchronous parallel load capacity.

The next state expressions of (9) and (10) are realized in

the next state determination part of the circuit of Fig.10. To

provide feedback from the state outputs, the state outputs are

copied using Feynman gates in the feedback part. The output

expression of (11) is realized in the output part. The realized

sequential circuit is a level-triggered circuit.

This realization needs one 5×5 Toffoli gate, two 4×4

Toffoli gates, two 2×3 Toffoli gates, six Feynman gates, and

two NOT gates. Therefore, its quantum cost is 66. The circuit

has two garbage outputs.

Asynchronous parallel load facility may be incorporated

in the sequential circuit of Fig.10 by adding Fredkin gate in

between the next state determination part and the feedback

part of the circuit, as shown in Fig.11. When L=0,

independent of the value of C, the state value available at
the output of the next state determination part will pass to

the state output. When L=1, irrespective of the value of C,

the data input D will be copied to the state output. However,

when C=1, the loaded value of the next state will be fed

back and used in the next state determination circuit. It may
happen that the next state determination may not be

complete within the remaining part of the clock pulse
making the next state ambiguous. Thus, load should be done

asynchronously when C =0. When C=0, if the L input is

changed back to zero after the parallel load is done, the

loaded state will remain unchanged at the state output, since

loaded state will be fed back through the next state
determination circuit to the state output. The circuit of

Fig.11 has two more Fredkin gates than that of Fig.10. Thus,

the quantum cost of the circuit of Fig.11 is 76. The circuit
of Fig.11 has five garbage outputs.

Fig.12 Reversible realization of the synchronous sequential circuit of

Fig.8 with falling-edge triggering and asynchronous parallel load facility.

The level-triggered sequential circuit with parallel load

facility of Fig.11 can be made falling-edge triggered by

adding falling-edge triggered D flip- flop of Fig.3(b) in

between the next state determination and the load parts of

the circuit, as shown in Fig.12, but taking the feedback from

the state output of the feedback part. When C=0, the next

state determination part will simply pass the state feedback

to its output and this output will then be passed to the state

output through the D input of the D flip-flop of the falling-

edge triggering part and the Fredkin gate of the load part

(provided L=0) to maintain the state output unchanged.

When C=1, the next state determination part will compute

the next state based on the present state feedback to it and

the external input, but the D flip-flop of the falling- edge

triggering part will provide the feedback of the state output

to maintain the state output unchanged. Now, when the C

input goes back to zero after the next state determination is

complete, the computed next state will be passed to the state

output through the D input of the D flip-flop of the falling-

edge triggering part and the Fredkin gate of the load part

making the circuit falling-edge triggered. The circuit of the

Fig.12 has two more Fredkin gates and two more Feynman

gates than that of Fig.11. Thus, its quantum cost is 88. The

circuit of Fig.12 has seven garbage outputs.

The circuit of Fig. 12 is a general sequential circuit

having input, output, and state changes. We have simulated

the circuit using Verilog HDL to test the correctness of the

design and the simulation output is shown below.

Fig.13 Verilog HDL simulation of the sequential circuit of Fig. 12

For complexity comparison, we have designed the

synchronous sequential circuit of Fig.8 using classical

technique using D flip-flop and the resulting circuit is shown

in Fig.14.

The reversible circuit corresponding to the classical circuit

of Fig.14 is shown in Fig.15. The level-triggered D flip-flops

(FF0 and FF1) are replaced by their reversible counterparts,

as shown in Fig.3(a). The AND (A1–A6) and the OR gates

(O1–O3) are replaced by their reversible counterparts, as

shown in Fig.2. The circuit of Fig.15 needs five NOT gates,

five Feynman gates, two Fredkin gates, one 4×4 Toffoli gates,

and eight 3×3 Toffoli gates. Thus, its quantum cost is 74. The

circuit has 11 garbage outputs.

The complexity comparison of the direct design of Fig.10

and the replacement design of Fig.15 is shown in Table III.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

5

Fig.14 Classical design of the synchronous sequential circuit of Fig.8

Table III. Comparison of realization of Fig. 8 using the direct design

method and the replacement design.

Fig.15 Reversible realization of sequential circuit of Fig.14 using

replacement technique

V. DESIGN OF COUNTERS

Let us consider the PSDRM expressions for the next states of

four-bit up counter as follows:

Q3
+=Q3⊕CQ2Q1Q0 (12)

Q2
+=Q2⊕CQ1Q0 (13)

Q1
+=Q1⊕CQ0 (14)

Q0
+=Q0⊕C (15)

Fig.16 Reversible realization of four –bit level-triggered up counter using

the PSDRM expressions (12)-(15).

Reversible realization of four bit level-triggered up counter

using the PSDRM expressions of (12)–(15) is shown in

Fig.16.This realization requires one 5×5 Toffoli gate, one

4×4 Toffoli gate, one 3×3 Toffoli gate, and five Feynman

gates. Thus the Quantum cost is 44. It has one Garbage

output.

We can provide this counter with asynchronous parallel load

using the technique of Fig. 11 which will require 64 Quantum

cost and six Garbage outputs.

 VI. DESIGN OF REGISTERS

We have determined the PSDRM expressions for the next

states of four-bit level-triggered SISO shift register as

follows:

Q3
+ = Q3 ⊕ C Q3 ⊕ C (M'DR ⊕ M Q2)

(16)

Q2
+ = Q2 ⊕ C Q2 ⊕ C (M'Q3 ⊕ M Q1)

(17)

Q1
+ = Q1 ⊕ C Q1 ⊕ C (M'Q2 ⊕ M Q0)

(18)

Q0
+ = Q0 ⊕ C Q0 ⊕ C (M'Q1 ⊕ M DL) (19)

Fig.17 Realization four-bit level-triggered SISO right/left shift register using

the expressions of (16)-(19).

Realization of four-bit level-triggered SISO shift register

using the expressions of (16)-(19) is shown in Fig.17. The

multiplexing operation of right-most parts of (16)-(19) can be

implemented using Fredkin gates. Therefore the circuit of

Fig.16 requires eight 3×3 Toffoli gates, four Fredkin gates,

and eight Feynman gates. Thus the Quantum cost is 68. The

circuit has eight Garbage outputs.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

6

VII. CONCLUSION

Reversible logic plays an important role in emerging

computing technologies due to its low power consumption.

However, only a very limited works have been reported on

reversible sequential circuit design. In this paper, we present

a novel approach of direct design of sequential circuit with

reversible gates using PSDRM expressions describing the

state transitions and output functions of the circuit. With this

approach we can reduce Quantum cost and Garbage outputs.

REFERENCES

[1] R. Landauer, “Irreversibility and heat generation in the

computation process,” IBM J. Res. Develop., vol. 44, pp. 183–191,
Jan. 2000.

[2] V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, and G. I.
Bourianoff, “Limits to binary logic switch scaling—A Gedanken
model,” Proc. IEEE, vol. 91, no, 11, pp. 1934–1939, Nov. 2003.

[3] C. Bennett, “Logical reversibility of computations,” IBM J.
Res.Develop., vol. 17, no. 6, pp. 525–532, 1973.

[4] J. Ren and V. K. Semenov, “Progress with physically and logically
reversible superconducting digital circuits,” IEEE Trans. Appl. Super-
cond., vol. 21, no. 3, pp. 780–786, Jun. 2011.

[5] J. Ren, V. K. Semenov, Y. A. Polyakov, D. V. Averin, and J.-S.
Tsai, “Progress towards reversible computing with nsquid arrays,”
IEEE Trans. Appl. Supercond., vol. 19, no. 3, pp. 961–967, Jun.
2009.

 [6] V. V. Shende, A. Prasad, I. Markov, and J. Hayes, “Synthesis of
reversible logic circuits,” IEEE Trans. Comput.-Aided Design
Integr.Circuits Syst., vol. 22, no. 6, pp. 710–722, Jun. 2003.

 [7] D. Maslov and G. W. Dueck, “Reversible cascades with minimal
garbage,” IEEE Tran. Comput.-Aided Design Integr. Circuits Syst.,
vol. 23, no. 11, pp. 1497–1509, Nov. 2004.

 [8] K. N. Patel, J. P. Hayes, and I. L. Markov, “Fault testing for
reversible circuits,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 23, no. 8, pp. 410–416, Aug. 2004.

 [9] D. P. Vasudevan, P. K. Lala, J. Di, and J. P. Parkerson, “Reversible-
logic design with online testability,” IEEE Trans. Instrum. Meas.,
vol. 55, no. 2, pp. 406–414, Apr. 2006.

 [10] V. V. Shende, I. L. Markov, and S. S. Bullock, “Synthesis of
quantum- logic circuits,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 25, no. 6, pp. 1000–1010, Jun. 2006.

 [11] P. Gupta, A. Agarwal, and N. K. Jha, “An algorithm for synthesis
of reversible logic circuits,” IEEE Trans. Comput.-Aided Design
Integr.Circuits Syst., vol. 25, no. 11, pp. 2317–2330, Nov. 2006.

 [12] D. Maslov, G. W. Dueck, D. M. Miller, and C. Negrevergne,
“Quantum circuit simplification and level compaction,” IEEE Trans.
Comput.Aided Design Integr. Circuits Syst., vol. 27, no. 3, pp. 436–
444, Mar. 2008.

 [13] D. Große, R. Wille, G. Dueck, and R. Drechsler, “Exact
multiple control Toffoli network synthesis with SAT techniques,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 28,
no. 5, pp. 703–715,May 2009.

 [14] S. Mahammad and K. Veezhinathan, “Constructing online testable
circuits using reversible logic,” IEEE Trans. Instrum. Meas., vol.
59, no. 1, pp. 101–109, Jan. 2010.

 [15] T. Toffoli, “Reversible computing,” MIT Lab. Comput. Sci.,
Cambridge, MA, USA, Tech. Rep. MIT/LCS/TM-151, 1980.

 [16] J. E. Rice, “A new look at reversible memory elements,” in Proc.

IEEE ISCAS, May 2006, pp. 243–246.
 [17] S. K. S. Hari, S. Shroff, S. N. Mohammad, and V. Kamakoti,

“Efficient building blocks for reversible sequential circuit design,”
in Proc. 49th IEEE MWSCAS, Aug. 2006, pp. 437–441.

 [18] H. Thapliyal and A. P. Vinod, “Design of reversible sequential
elements with feasibility of transistor implementation,” in Proc.
ISCAS, 2007, pp. 625–628.

 [19] M.-L. Chuang and C.-Y. Wang, “Synthesis of reversible sequential
elements,” ACM J. Emerg. Technol., vol. 3, no. 4, pp. 1–19, 2008.

 [20] H. Thapliyal and N. Ranganathan, “Design of reversible
sequential circuits optimizing quantum cost, delay and garbage
outputs,” ACM J. Emerg. Technol. Comput. Syst., vol. 6, no. 4, pp.
14:1–14:35, 2008.

 [21] M. Haghparast and M. S. Gharajeh, “Design of a nanometric
reversible 4-bit binary counter with parallel load,” Austral. J. Basic
Appl. Sci., vol. 5, no. 7, pp. 63–71, 2011.

 [22] M. H. A. Khan and M. Perkowski, “Synthesis of reversible
synchronous counters,” in Proc. 41st IEEE ISMVL, May 2011, pp.
242–247.

[23] J. Hu, G. Ma, and G. Feng, “Efficient algorithm for positive-
polarity Reed-Muller expansions of reversible circuits,” in Proc.
ICM, Dec. 2006, pp. 63–66.

[24] Y. Pang, S. Wang, Z. He, J. Lin, S. Sultana, and K. Radecka, “Positive
Davio-based synthesis algorithm for reversible logic,” in Proc.
29th ICCD, Oct. 2011, pp. 212–218.

 [25] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N.
Margolus,P. Shor, et al., “Elementary gates for quantum
computation,” Phy. Rev. A, vol. 52, no. 5, pp. 3457–3467, 1995.

 [26] D. M. Miller, R. Wille, and Z. Sasanian, “Elementary quantum gate
realizations for multiple-controlled Toffoli gates,” in Proc. 41st IEEE
ISMVL, May 2011, pp. 288–293.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

7

