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Abstract— Reversible logic has become very promising for low 

power design using emerging computing technologies. 

Reversible sequential circuits constructed by replacing the 

latches, flip-flops, and other combinational gates of traditional 

irreversible designs by their reversible counter parts leads to 

more Garbage outputs and Quantum cost which in turn 

slowdowns the circuit. Here we propose an approach of 

designing sequential circuits directly from reversible gates using 

pseudo Reed-Muller expressions representing state transition 

and the output functions of the circuit. This approach reduces 

the Quantum cost and Garbage outputs. We present designs of 

arbitrary as well as practically important sequential circuits 

such as counters and registers. 

 
Keywords — Counters, pseudo Reed–Muller(PSDRM) 

expressions, registers, reversible logic, synchronous sequential 

circuit. 
 

I. INTRODUCTION 

Irreversible logic operations dissipates kTln2 J of heat 

energy for every bit of information loss, where k is 

Boltzmann’s constant and T is the absolute temperature at 

which the operation is done. In reversible logic circuits it is a 

very important thing to reduce this heat dissipation. This heat 

can be reduced if the circuits are reversible. Generally in 

physically reversible circuits the heat dissipation is much 

more reduced. Thus it helps a lot in reducing the heat 

dissipation in the new upcoming technologies such as SFL 

technology, optical technology, quantum dot cellular 

automata technology, and nanotechnology and Quantum 

computing and quantum information. Reversible logic 

synthesis attempts are mostly concentrated on reversible 

combinational logic synthesis, but till date very few 

reversible sequential logic are developed. These methods 

present reversible designs of building blocks of sequential 

circuits such as latches and flip-flops on the top of reversible 

gates and suggest that sequential circuits be constructed by 

replacing the latches, flip-flops, and other combinational 

gates of traditional irreversible designs by their reversible 

counter parts. This method increases the Quantum cost and 

Garbage outputs. In this paper an attempt is made to design 

the reversible sequential circuits directly from reversible 

gates using pseudo Reed-Muller expressions.  

 

 

 

 

II. BACKGROUND OF REVERSIBLE LOGIC 

In case of reversible circuits number of inputs are equal to 

number of outputs. Here we not only get outputs from inputs, 

but also can recover inputs from outputs. A reversible circuit 

with n inputs/outputs is called an n×n reversible circuit. A 

reversible circuit is constructed as a network of reversible 

gates.  

 
Fig.1 Commonly used reversible gates (a) NOT gate, (b) Feynman gate, 

(c) Toffoli gate, (d) Fredkin gate. 

 

Fig.1 shows the commonly used reversible gates such as 

1×1 NOT gate, 2×2 Feynman gate, 3×3 Toffoli gate, and 3×3 

Fredkin gate. Toffoli gate may have more than three 

inputs/outputs and they are called multiple-controlled Toffoli 

gates.  

The complexity of reversible circuit design is compared in 

terms of quantum cost (the number of primitive quantum 

gates required to realize the circuit) and the number of 

garbage outputs (the final outputs that are not used as the 

primary outputs). The 1×1 and 2×2 gates are technology 

realizable primitive gates and their quantum costs are 

assumed to be one. Thus ,the quantum cost of NOT gate and 

Feynman gate is one each. Toffoli and Fredkin gates are 

macro level gates and need to be realized on the top of 2×2 

gates. The 3×3 Toffoli gate and the Fredkin gate can be 

realized using five 2×2 primitive gates, and thus their 

quantum cost is five each. The quantum costs for 4×4, 5×5, 

and 6×6 Toffoli gates are 14,20, and 32,respectively.  
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Fig.2 Reversible realizations of classical (a) two-input AND gate,(b) three 

input AND gate, and (c) two-input OR gate. 

Classical AND and OR  gates can be realized using Toffoli 

gates. Reversible realization of two and three-input AND 

gates are shown in Fig.2(a) and (b), respectively.  

Reversible realization of two-input AND gate requires five 

quantum cost and two garbage outputs and that of three-

input AND gate requires 14 quantum cost and three garbage 

outputs. Reversible realization of two-input OR gate is 

shown in Fig.2(c), which requires seven quantum cost and 

two garbage outputs. 

 

Fig.3 Reversible realization of (a) level-triggered and (b) falling edge 

triggered D flip-flops. 

Reversible realizations of level-triggered and falling-edge 

triggered D flip-flops are shown in Fig.3(a) and (b), 

respectively. In Fig.3(a), the state output is copied using a 

Feynman gate and fed back to the second input of the 

Fredkin gate. When the clock C is zero, then the feedback is 

connected to the state output maintaining the state output 

unchanged. When C becomes one, then the D input is 

connected to the state output performing the level-triggered 

load operation. This realization requires six quantum costs 

and two garbage output. In Fig. 3(b), the feedback is 

connected to the third input of the Fredkin gate. When C is 

one, then the feedback is connected to the state output 

maintaining the state output unchanged. When C becomes 

zero, then the D input is connected to the state output 

performing the falling-edge triggered load operation. This 

realization requires six quantum costs and two garbage 

output. 

III.REVERSIBLE LOGIC SYNTHESIS USING 

PSDRM EXPRESSIONS 

 
An n-variable Boolean function f(x1,x2,. . .,xi,. . . ,xn) 

can be expanded on the variable xi using any of the 

following expansions: 
 

f(x1,x2,. . . ,xi,. . .,xn) =f0⊕xif2  (positive Davio, pD) 

(1) 

f(x1,x2,. . . ,xi,. . .,xn)=f1⊕xi
'f2 (negativeDavio,nD)    (2) 

where 

f0=f(x1,. . . ,xi−1,0,xi+1,. . .,xn) 

f1=f(x1,. . . ,xi−1,1,xi+1,. . . ,xn) 
and 

                  f2=f0⊕f1. 

If we apply pD expansion on all variables of an n-
variable Boolean function f(x1,x2,. . . ,xn), then the 
resulting expression can be represented as 

 

f(x1,x2,. . . ,xn)=f00···00⊕f00···01xn⊕f00···10xn−1 

⊕f00···11xn−1xn⊕· · ·⊕f11···11x1x2· · ·xn−1xn   (3) 
 

Where the co-efficients are (∀i ∈ {0,1}n)fi  ∈ {0,1}. 
 
 

 
Fig.4 Application of pD expansion on all variables of equation 4. 

 

If a subscript of a coefficient is one, only then the 

corresponding variable appears in the un-complemented form 

in the associated product term. If a coefficient is one, only 

then the associated product term appears in the expression. 

The coefficient vector of the expression of (3) for a given n-

variable Boolean function f(x1,x2,. . .,xn) can be computed 

directly from the output vector of the given Boolean function, 

as shown in the tree of Fig.4 for a three-variable function 

                      f(x1,x2,x3)=(3,4,6,7).                              (4) 

 
The output vector of the function of (4) is 00011011. If 

we apply pD expansion on the variable x1, then f0 =0001, 

f1=1011, and f2=1010. Now ,f0 goes to the left child of the 

root and f2 goes to the right child of the root of the tree of 
Fig.4. Similarly, the pD expansion is applied on the other 
internal nodes. The leaves represent the coefficient vector of 
the expression of (3). The resulting expression is determined 
from the ones of the coefficient vector and their 
corresponding input combinations. The resulting expression 
of the tree of Fig.4 is 

                 F(x1,x2,x3) =x2x3⊕x1⊕x1x3.           (5) 

 
Fig.5 Application of nD expansion on all variables of equation 4. 

 

If we apply nD expansion on all variables of an n-variable 

Boolean function f(x1,x2,. . . ,xn), then the resulting 

expression can be represented as 
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f(x1,x2,. . . ,xn)=f00···00⊕f00···01x'n⊕f00···10x'n−1 

⊕f00···11x'n−1x'n⊕· · ·⊕f11···11x'1x'2· · ·x'n−1x'n   (6) 
 

The expression (6) is similar to (3) with the exception 

that variables appear in the complemented form. The 

computation of the coefficient vector of the expression of 

(6) for the function of (4) is shown in the tree of Fig.5. As 

we apply nD expansion on the variable x1, f1=1011goes to 

the left child of the root and f2=1010 goes to the right child 

of the root of the tree of Fig.5. Similarly, then D expansion 

is applied on the other internal nodes. Determination of the 

resulting expression from the tree of Fig.5 is similar to that 

from the tree of Fig. 4. The resulting expression of the tree 

of Fig.5 is 

      f(x1,x2,x3)=1⊕x'2⊕x'2x'3⊕x'1x'3.                   (7) 

    The trees of Figs.4 and 5 have 2n –1 internal nodes for an 

n-variable function.  If we independently choose any of the 

pD or nD expansion for each of the internal nodes, then the 

resulting expression is called PSDRM expression. There are 

22n−1 PSDRM expressions for an n-variable function and the 

expression with the minimum number of products is the 

minimum PSDRM expression. Exhaustive minimization of 

PSDRM expression is not possible and we need some sort 

of heuristics for this. In this paper, we develop our own 

heuristics tailored toward designing synchronous sequential 

circuit in Section IV. Before that, we explain  here 

determination of PSDRM expression for a given set of 

expansions for the internal nodes. We show an arbitrary 

PSDRM tree for the function of (4) in Fig.6. 

 
 

Fig.6 Arbitrary PSDRM tree for the equation 4. 

 

The resulting PSDRM expression from the tree of Fig.6 is 

f(x1,x2,x3)= x3⊕x'2 x3⊕x1x'3.                   (8) 
 

The PSDRM expression of (8) can be realized using 

reversible gates, as shown in Fig.7, which is self-explanatory. 

 
Fig.7 Reversible realization of PSDRM equation 8. 

 

The circuit of Fig.7 requires two NOT gates, one Feynman 

gate, and two 3×3 Toffoli gates. Therefore, its quantum cost 

is 2×1+1×1+2×5=13. The circuit of Fig.7 has one primary 
output and three unused outputs. Therefore, it has three 
garbage outputs. 

 

IV. DESIGN OF SYNCHRONOUS SEQUENTIAL 

CIRCUIT USING PSDRM EXPRESSION 

Design of synchronous sequential circuit involves design 

of next state logic and output logic. In this paper, we do not 

use any flip-flop to store the present state; rather we take the 

feedback directly from the present state output as the input 

to the next state logic. This special design approach needs 

special method of designing the next state logic discussed in 

the following. 

For designing the next state logic of a level-triggered 

Sequential circuit, we construct transition table considering 

the clock (designated C), the present states (designated Q) 

,and the inputs (if any) as the inputs and the next states 

(designated Q+) as the outputs. State transition diagram of An 

arbitrary sequential circuit with two-bit states Q1Q0, one 

input x, and one output z is shown in Fig.8 

 
Fig.8 State transition diagram of an arbitrary sequential circuit 

 

 The corresponding transition table is shown in Table I. 

 

 
                           Table I. State transition table. 

Determination of the minimized PSDRM expression from 

the output vector of the next state Q1+ from Table I is shown 

in the PSDRM tree of Fig.9. 
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Fig.9 Determination of the PSDRM expression for the next state Q1+ of 

the transition table. 

Observation of the transition table of Table I shows that 

for C=0, the next state relationship is simply Q+=Q to 
provide the feedback needed for maintaining the state 
unchanged. In the PSDRM expression, this relationship can 
be maintained only if pD expansion is applied at the root and 
its left descendents, as shown at the left side of the cut shown 
in Fig.9. For heuristic minimization of the PSDRM 
expression for the next state, at the right descendents of the 
root, we apply either pD or nD expansion, which produce the 
minimum number of ones in the next level, as shown at the 
right side of the cut of Fig.9. For example, the sub vector for 
the right child of the root of Fig.9 is 10101011. The pD  
expansion produces two sub vectors 1010and0001 in the next 
level, which have three ones. However, the nD expansion 
produces sub vectors 1011 and 0001 in the next level, which 
have four ones. Therefore, we choose pD expansion for this 
node. The tie is broken by choosing pD expansion over nD 
expansion. This heuristic produces local minimum at every 
internal node with the hope to produce overall global 
minimum. Using this minimization technique, we constructed 
the PSDRM tree of Fig.9.  

     Q1
+=Q1⊕CQ'0⊕CxQ1Q0                     (9) 

Q0
+=Q0⊕CQ0⊕CQ1Q'0⊕CxQ'1          (10) 

 

Algorithm 1.  Algorithm  for  Determining  Next  State 

Expressions 

 
1) Let the sequential circuit has m inputs and n-bit states. 

Construct a(1+m+n)-input and n-output truth 

table representing the transition table of the 

sequential circuit considering the clock, the inputs, 

and the present states as inputs and the next states as 

outputs. Construct PSDRM tree using steps 2 and 3. 

2) At the root and its left descendents, apply pD 

expansion. 

3) At the right descendents of the root, apply either pD 

or nD expansion that produces the minimum number 

of ones at the next level of the tree. Break the tie by 

choosing pD expansion. 

4) Determine PSDRM expressions for the next states 

from the constructed PSDRM trees. 

 
 

The PSDRM expression for the next state Q1+  is 

determined from the PSDRM tree of Fig.9, as shown in (9).  

The PSDRM expression for the next state Q0+ can be 

determined in the similar manner and is determined, as 

shown in (10). 

             Table II. Truth table of output z of the sequential circuit of fig.8 

 

  Algorithm 2. Algorithm for Determining the Output              

Expression  

 
1) Let the sequential circuit has m inputs, n-bit states, 

and 

Y outputs. Construct a(m+n)-input and y-output truth 

table representing the output functions of the 

sequential circuit considering the inputs and the 

present states as inputs and the y outputs as outputs. 

2) From the output vector of each of the output 

functions, construct PSDRM tree using step 3. 

3) At all nodes, choose pD or nD expansion that 

produces the minimum number of ones at the next 

level. Break the tie by choosing pD expansion. 

4) Determine PSDRM expressions for the outputs from 

the constructed  PSDRM trees. 

 
 

The generic algorithm for determining next state 

expressions is given in Algorithm1. For simplicity, we use 

minimized PSDRM expressions for synthesizing the output 

functions, which may not be the minimum. The truth table for 

the output function of the sequential circuit of Fig.8 is shown 

in Table II. In this case, we use the heuristic algorithm shown 

in Algorithm2 for minimizing the PSDRM expression. The 

determined PSDRM expression for the output z is shown as 

                      z=Q'0⊕x.                            (11) 

 

 
Fig.10 Reversible realization of the level-triggered sequential circuit of 

Fig.8 using equations of (9)-(11) 
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Fig.11 Reversible realization of the synchronous sequential circuit of 

Fig.8 with asynchronous parallel load capacity. 
 

The next state expressions of (9) and (10) are realized in 

the next state determination part of the circuit of Fig.10. To 

provide feedback from the state outputs, the state outputs are 

copied using Feynman gates in the feedback part. The output 

expression of (11) is realized in the output part. The realized 

sequential circuit is a level-triggered circuit.  

This realization needs one 5×5 Toffoli gate, two 4×4 

Toffoli gates, two 2×3 Toffoli gates, six Feynman gates, and 

two NOT gates. Therefore, its quantum cost is 66. The circuit 

has two garbage outputs. 

Asynchronous parallel load facility may be incorporated 

in the sequential circuit of Fig.10 by adding Fredkin gate in 

between the next state determination part and the feedback 

part of the circuit, as shown in Fig.11. When L=0, 

independent of the value of C, the state value available at 
the output of the next state determination part will pass to 

the state output. When L=1, irrespective of the value of C, 

the data input D will be copied to the state output. However, 

when C=1, the loaded value of the next state will be fed 

back and used in the next state determination circuit. It may 
happen that the next state determination may not be 

complete within the remaining part of the clock pulse 
making the next state ambiguous. Thus, load should be done 

asynchronously when C =0. When C=0, if the L input is 

changed back to zero after the parallel load is done, the 

loaded state will remain unchanged at the state output, since 

loaded state will be fed back through the next state 
determination circuit to the state output. The circuit of 

Fig.11 has two more Fredkin gates than that of Fig.10. Thus, 

the quantum cost of the circuit of Fig.11 is 76. The circuit 
of Fig.11 has five garbage outputs. 

 

Fig.12 Reversible  realization of the synchronous sequential circuit of 

Fig.8 with falling-edge triggering and asynchronous parallel load facility. 

The level-triggered sequential circuit with parallel load 

facility of Fig.11 can be made falling-edge triggered by 

adding falling-edge triggered D flip- flop of Fig.3(b) in 

between the next state determination and the load parts of 

the circuit, as shown in Fig.12, but taking the feedback from 

the state output of the feedback part. When C=0, the next 

state determination part will simply pass the state feedback 

to its output and this output will then be passed to the state 

output through the D input of the D flip-flop of the falling- 

edge triggering part and the Fredkin gate of the load part 

(provided L=0) to maintain the state output unchanged. 

When C=1, the next state determination part will compute 

the next state based on the present state feedback to it and 

the external input, but the D flip-flop of the falling- edge 

triggering part will provide the feedback of the state output 

to maintain the state output unchanged. Now, when the C 

input goes back to zero after the next state determination is 

complete, the computed next state will be passed to the state 

output through the D input of the D flip-flop of the falling- 

edge triggering part and the Fredkin gate of the load part 

making the circuit falling-edge triggered. The circuit of the 

Fig.12 has two more Fredkin gates and two more Feynman 

gates than that of Fig.11. Thus, its quantum cost is 88. The 

circuit of Fig.12 has seven garbage outputs. 

The circuit of Fig. 12 is a general sequential circuit 

having input, output, and state changes. We have simulated 

the circuit using Verilog HDL to test the correctness of the 

design and the simulation output is shown below. 

 
Fig.13 Verilog HDL simulation of the sequential circuit of Fig. 12 

 

For complexity comparison, we have designed the 

synchronous sequential circuit of Fig.8 using classical 

technique using D flip-flop and the resulting circuit is shown 

in Fig.14. 

 

The reversible circuit corresponding to the classical circuit 

of Fig.14 is shown in Fig.15. The level-triggered D flip-flops 

(FF0 and FF1) are replaced by their reversible counterparts, 

as shown in Fig.3(a). The AND (A1–A6) and the OR gates 

(O1–O3) are replaced by their reversible counterparts, as 

shown in Fig.2. The circuit of Fig.15 needs five NOT gates, 

five Feynman gates, two Fredkin gates, one 4×4 Toffoli gates, 

and eight 3×3 Toffoli gates. Thus, its quantum cost is 74. The 

circuit has 11 garbage outputs. 

 

The complexity comparison of the direct design of Fig.10 

and   the replacement design of Fig.15 is shown in Table III. 
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Fig.14 Classical design of the synchronous sequential circuit of Fig.8 

 

 
Table III. Comparison of realization of Fig. 8 using the direct design 

method and the replacement design. 

 

 
Fig.15 Reversible realization of sequential circuit of Fig.14 using 

replacement technique 

 

V. DESIGN OF COUNTERS 

 

Let us consider the PSDRM expressions for the next states of 

four-bit up counter as follows: 

 

Q3
+=Q3⊕CQ2Q1Q0        (12) 

Q2
+=Q2⊕CQ1Q0            (13) 

Q1
+=Q1⊕CQ0                  (14) 

Q0
+=Q0⊕C                     (15) 

 

 

 
Fig.16 Reversible  realization of four –bit level-triggered up counter using 

the PSDRM expressions (12)-(15). 

 

Reversible realization of four bit level-triggered up counter 

using the PSDRM expressions of (12)–(15) is shown in 

Fig.16.This realization requires one 5×5 Toffoli gate, one 

4×4 Toffoli gate, one 3×3 Toffoli gate, and five Feynman 

gates. Thus the Quantum cost is 44. It has one Garbage 

output. 

We can provide this counter with asynchronous parallel load 

using the technique of Fig. 11 which will require 64 Quantum 

cost and six Garbage outputs. 

  

                  VI. DESIGN OF REGISTERS 

 

We have determined the PSDRM expressions for the next 

states of four-bit level-triggered SISO shift register as 

follows: 

Q3
+ = Q3 ⊕ C Q3 ⊕ C ( M'DR ⊕ M Q2 )

 
(16) 

Q2
+ = Q2 ⊕ C Q2 ⊕ C ( M'Q3 ⊕ M Q1 )

 
(17) 

Q1
+ = Q1 ⊕ C Q1 ⊕ C ( M'Q2 ⊕ M Q0 )

 
(18) 

Q0
+ = Q0 ⊕ C Q0 ⊕ C ( M'Q1 ⊕ M DL )       (19) 

 
Fig.17 Realization four-bit level-triggered SISO right/left shift register using 

the expressions of (16)-(19). 

 

Realization of four-bit level-triggered SISO shift register 

using the expressions of (16)-(19) is shown in Fig.17. The 

multiplexing operation of right-most parts of (16)-(19) can be 

implemented using Fredkin gates. Therefore the circuit of 

Fig.16 requires eight 3×3 Toffoli gates, four Fredkin gates, 

and eight Feynman gates. Thus the Quantum cost is 68. The 

circuit has eight Garbage outputs. 
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VII. CONCLUSION 

 

Reversible logic plays an important role in emerging 

computing technologies due to its low power consumption. 

However, only a very limited works have been reported on 

reversible sequential circuit design. In this paper, we present 

a novel approach of direct design of sequential circuit with 

reversible gates using PSDRM expressions describing the 

state transitions and output functions of the circuit. With this 

approach we can reduce Quantum cost and Garbage outputs.  
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