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Abstract— Reversible logic has become very promising for low
power design using emerging computing technologies.
Reversible sequential circuits constructed by replacing the
latches, flip-flops, and other combinational gates of traditional
irreversible designs by their reversible counter parts leads to
more Garbage outputs and Quantum cost which in turn
slowdowns the circuit. Here we propose an approach of
designing sequential circuits directly from reversible gates using
pseudo Reed-Muller expressions representing state transition
and the output functions of the circuit. This approach reduces
the Quantum cost and Garbage outputs. We present designs of
arbitrary as well as practically important sequential circuits
such as counters and registers.

Keywords — Counters, pseudo Reed—Muller(PSDRM)
expressions, registers, reversible logic, synchronous sequential
circuit.

l. INTRODUCTION

Irreversible logic operations dissipates kTIn2 J of heat
energy for every bit of information loss, where k is
Boltzmann’s constant and T is the absolute temperature at
which the operation is done. In reversible logic circuits it is a
very important thing to reduce this heat dissipation. This heat
can be reduced if the circuits are reversible. Generally in
physically reversible circuits the heat dissipation is much
more reduced. Thus it helps a lot in reducing the heat
dissipation in the new upcoming technologies such as SFL
technology, optical technology, quantum dot cellular
automata technology, and nanotechnology and Quantum
computing and quantum information. Reversible logic
synthesis attempts are mostly concentrated on reversible
combinational logic synthesis, but till date very few
reversible sequential logic are developed. These methods
present reversible designs of building blocks of sequential
circuits such as latches and flip-flops on the top of reversible
gates and suggest that sequential circuits be constructed by
replacing the latches, flip-flops, and other combinational
gates of traditional irreversible designs by their reversible
counter parts. This method increases the Quantum cost and
Garbage outputs. In this paper an attempt is made to design
the reversible sequential circuits directly from reversible
gates using pseudo Reed-Muller expressions.
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Il. BACKGROUND OF REVERSIBLE LOGIC

In case of reversible circuits number of inputs are equal to
number of outputs. Here we not only get outputs from inputs,
but also can recover inputs from outputs. A reversible circuit
with n inputs/outputs is called an nxn reversible circuit. A
reversible circuit is constructed as a network of reversible
gates.
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Fig.1 Commonly used reversible gates (a) NOT gate, (b) Feynman gate,
(c) Toffoli gate, (d) Fredkin gate.

Fig.1 shows the commonly used reversible gates such as
1x1 NOT gate, 2x2 Feynman gate, 3x3 Toffoli gate, and 3x3
Fredkin gate. Toffoli gate may have more than three
inputs/outputs and they are called multiple-controlled Toffoli
gates.

The complexity of reversible circuit design is compared in
terms of quantum cost (the number of primitive quantum
gates required to realize the circuit) and the number of
garbage outputs (the final outputs that are not used as the
primary outputs). The 1x1 and 2x2 gates are technology
realizable primitive gates and their quantum costs are
assumed to be one. Thus ,the quantum cost of NOT gate and
Feynman gate is one each. Toffoli and Fredkin gates are
macro level gates and need to be realized on the top of 2x2
gates. The 3x3 Toffoli gate and the Fredkin gate can be
realized using five 2x2 primitive gates, and thus their
quantum cost is five each. The quantum costs for 4x4, 5x5,
and 6x6 Toffoli gates are 14,20, and 32,respectively.
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Fig.2 Reversible realizations of classical (a) two-input AND gate,(b) three
input AND gate, and (c) two-input OR gate.

Classical AND and OR gates can be realized using Toffoli
gates. Reversible realization of two and three-input AND
gates are shown in Fig.2(a) and (b), respectively.

Reversible realization of two-input AND gate requires five
quantum cost and two garbage outputs and that of three-
input AND gate requires 14 quantum cost and three garbage
outputs. Reversible realization of two-input OR gate is
shown in Fig.2(c), which requires seven quantum cost and
two garbage outputs.

(a] ()

Fig.3 Reversible realization of (a) level-triggered and (b) falling edge
triggered D flip-flops.

Reversible realizations of level-triggered and falling-edge
triggered D flip-flops are shown in Fig.3(a) and (b),
respectively. In Fig.3(a), the state output is copied using a
Feynman gate and fed back to the second input of the
Fredkin gate. When the clock C is zero, then the feedback is
connected to the state output maintaining the state output
unchanged. When C becomes one, then the D input is
connected to the state output performing the level-triggered
load operation. This realization requires six quantum costs
and two garbage output. In Fig. 3(b), the feedback is
connected to the third input of the Fredkin gate. When C is
one, then the feedback is connected to the state output
maintaining the state output unchanged. When C becomes
zero, then the D input is connected to the state output
performing the falling-edge triggered load operation. This
realization requires six quantum costs and two garbage
output.

III.REVERSIBLE LOGIC SYNTHESIS USING
PSDRM EXPRESSIONS

An n-variable Boolean function f(x1,x2,....Xi,...,Xn)
can be expanded on the variable xj using any of the

following expansions:

f(x1,X2,. . . Xi,. . .,xn) =fo®xif2 (positive Davio, pD)

1)
f(X1,X2,. . . Xi,. . .,xn)=f1@®X; f2 (negativeDavio,nD)  (2)
where

fo=f(x1,. .. ,Xi-1,0,Xi+1,. . -,Xn)
fi=f(x1,...,Xi-1,1,Xi+1,...,Xn)
and

fo=fo®f1.
If we apply pD expansion on all variables of an n-
variable Boolean function f(x1,x2,...,Xn), then the
resulting expression can be represented as

f(X1,X2,. . . :Xn) =f00.-00® foo--01Xn®Too--10Xn-1
®F00-11Xn-1Xn® " - ®F11..11X1X0 - Xn-1Xn (3)

Where the co-efficients are (Vi € {0,1}"f; € {0,1}.
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Fig.4 Application of pD expansion on all variables of equation 4.

If a subscript of a coefficient is one, only then the
corresponding variable appears in the un-complemented form
in the associated product term. If a coefficient is one, only
then the associated product term appears in the expression.
The coefficient vector of the expression of (3) for a given n-
variable Boolean function f(x1,x2,...,xn) can be computed
directly from the output vector of the given Boolean function,
as shown in the tree of Fig.4 for a three-variable function

f(x1,x2,x3)=(3,4,6,7). (4)

The output vector of the function of (4) is 00011011. If
we apply pD expansion on the variable x1, then fo =0001,
f1=1011, and f,=1010. Now ,fo goes to the left child of the
root and f2 goes to the right child of the root of the tree of
Fig.4. Similarly, the pD expansion is applied on the other
internal nodes. The leaves represent the coefficient vector of
the expression of (3). The resulting expression is determined
from the ones of the coefficient vector and their
corresponding input combinations. The resulting expression
of the tree of Fig.4 is

F(X1,X2,X3) =X2X3®X1®X1X3. (5)
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Fig.5 Application of nD expansion on all variables of equation 4.

If we apply nD expansion on all variables of an n-variable
Boolean function f(x1,X2,...,Xn), then the resulting
expression can be represented as
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f(x1,X2,. .. ,Xn)=Fo0--00®f00--01X'"n®f00--10X'n-1
®f00.-11X"n-1X'n® - ®F11..11X"1X "2 X"n-1X"n (6)

The expression (6) is similar to (3) with the exception
that variables appear in the complemented form. The
computation of the coefficient vector of the expression of
(6) for the function of (4) is shown in the tree of Fig.5. As
we apply nD expansion on the variable x1, fi=1011goes to

the left child of the root and f2=1010 goes to the right child
of the root of the tree of Fig.5. Similarly, then D expansion
is applied on the other internal nodes. Determination of the
resulting expression from the tree of Fig.5 is similar to that
from the tree of Fig. 4. The resulting expression of the tree
of Fig.5is

f(X1,X2,X3)=1®X"2®X"2X'3BX"1X'3. (7)

The trees of Figs.4 and 5 have 2" -1 internal nodes for an
n-variable function. If we independently choose any of the
pD or nD expansion for each of the internal nodes, then the
resulting expression is called PSDRM expression. There are
22"-1 pPSDRM expressions for an n-variable function and the
expression with the minimum number of products is the
minimum PSDRM expression. Exhaustive minimization of
PSDRM expression is not possible and we need some sort
of heuristics for this. In this paper, we develop our own
heuristics tailored toward designing synchronous sequential
circuit in Section IV. Before that, we explain here
determination of PSDRM expression for a given set of
expansions for the internal nodes. We show an arbitrary
PSDRM tree for the function of (4) in Fig.6.
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Fig.6 Arbitrary PSDRM tree for the equation 4.

The resulting PSDRM expression from the tree of Fig.6 is
f(X1,X2,X3)= X3®X'2 X3®X1X'3. (8)

The PSDRM expression of (8) can be realized using
reversible gates, as shown in Fig.7, which is self-explanatory.
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Fig.7 Reversible realization of PSDRM equation 8.

3

The circuit of Fig.7 requires two NOT gates, one Feynman
gate, and two 3x3 Toffoli gates. Therefore, its quantum cost
is 2x1+1x1+2x5=13. The circuit of Fig.7 has one primary
output and three unused outputs. Therefore, it has three
garbage outputs.

IV. DESIGN OF SYNCHRONOUS SEQUENTIAL
CIRCUIT USING PSDRM EXPRESSION

Design of synchronous sequential circuit involves design
of next state logic and output logic. In this paper, we do not
use any flip-flop to store the present state; rather we take the
feedback directly from the present state output as the input
to the next state logic. This special design approach needs
special method of designing the next state logic discussed in
the following.

For designing the next state logic of a level-triggered
Sequential circuit, we construct transition table considering
the clock (designated C), the present states (designated Q)
,and the inputs (if any) as the inputs and the next states
(designated Q+) as the outputs. State transition diagram of An
arbitrary sequential circuit with two-bit states Q1QO0, one
input x, and one output z is shown in Fig.8
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Fig.8 State transition diagram of an arbitrary sequential circuit

The corresponding transition table is shown in Table I.

CeQlO0 | Q100 | ceigo | o1 o0
0000 00 1000 10
0001 01 1001 00
0010 10 1010 01
0011 11 1011 10
0100 0i) 1100 11
0101 01 1101 01
0110 10 1110 01
0111 11 1111 010

Table |. State transition table.

Determination of the minimized PSDRM expression from

the output vector of the next state Q1* from Table | is shown
in the PSDRM tree of Fig.9.

Volume 3, | ssue 19

Published by, www.ijert.org 3



Special Issue- 2015 International Journal of Engineering Research & Technology (IJERT)
I SSN: 2278-0181

ICESMART-2015 Conference Proceedings

il b= —splornld

COLLCORL 1000 T

LU L T T TR L-'.'.Z|I||||II {01 1000 1001 1o ToF Lk DT Inpe

Fig.9 Determination of the PSDRM expression for the next state Q1* of
the transition table.

Observation of the transition table of Table | shows that
for C=0, the next state relationship is simply Q*=Q to
provide the feedback needed for maintaining the state
unchanged. In the PSDRM expression, this relationship can
be maintained only if pD expansion is applied at the root and
its left descendents, as shown at the left side of the cut shown
in Fig.9. For heuristic minimization of the PSDRM
expression for the next state, at the right descendents of the
root, we apply either pD or nD expansion, which produce the
minimum number of ones in the next level, as shown at the
right side of the cut of Fig.9. For example, the sub vector for
the right child of the root of Fig.9 is 10101011. The pD
expansion produces two sub vectors 1010and0001 in the next
level, which have three ones. However, the nD expansion
produces sub vectors 1011 and 0001 in the next level, which
have four ones. Therefore, we choose pD expansion for this
node. The tie is broken by choosing pD expansion over nD
expansion. This heuristic produces local minimum at every
internal node with the hope to produce overall global
minimum. Using this minimization technique, we constructed
the PSDRM tree of Fig.9.

Q1"=Q:1®CQ'®CxQ1Qo 9)
Q0+=Q0®CQO®CQ1Q'0®CXQ'1 (20)

Algorithm 1. Algorithm for Determining Next State
Expressions

1) Let the sequential circuit has m inputs and n-bit states.
Construct a(l+m+n)-input and n-output truth
table representing the transition table of the
sequential circuit considering the clock, the inputs,
and the present states as inputs and the next states as
outputs. Construct PSDRM tree using steps 2 and 3.

2) At the root and its left descendents, apply pD
expansion.

3) At the right descendents of the root, apply either pD
or nD expansion that produces the minimum number
of ones at the next level of the tree. Break the tie by
choosing pD expansion.

4) Determine PSDRM expressions for the next states
from the constructed PSDRM trees.

The PSDRM expression for the next state Q1* s
determined from the PSDRM tree of Fig.9, as shown in (9).
The PSDRM expression for the next state QO0* can be
determined in the similar manner and is determined, as
shown in (10).

xQ100 z | xQ100 z
000 1 100 0
001 0 101 1
010 1 110 0
011 0 111 1

Table Il. Truth table of output z of the sequential circuit of fig.8

Algorithm 2. Algorithm for Determining the Output
Expression

1) Let the sequential circuit has m inputs, n-bit states,
and
Y outputs. Construct a(m+n)-input and y-output truth
table representing the output functions of the
sequential circuit considering the inputs and the
present states as inputs and the y outputs as outputs.

2) From the output vector of each of the output
functions, construct PSDRM tree using step 3.

3) At all nodes, choose pD or nD expansion that
produces the minimum number of ones at the next
level. Break the tie by choosing pD expansion.

4) Determine PSDRM expressions for the outputs from
the constructed PSDRM trees.

The generic algorithm for determining next state
expressions is given in Algorithml. For simplicity, we use
minimized PSDRM expressions for synthesizing the output
functions, which may not be the minimum. The truth table for
the output function of the sequential circuit of Fig.8 is shown
in Table I1. In this case, we use the heuristic algorithm shown
in Algorithm2 for minimizing the PSDRM expression. The
determined PSDRM expression for the output z is shown as

z=Q'o®X. (12)
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Fig.10 Reversible realization of the level-triggered sequential circuit of
Fig.8 using equations of (9)-(11)

Volume 3, | ssue 19

Published by, www.ijert.org 4



Special Issue- 2015 International Journal of Engineering Research & Technology (IJERT)
I SSN: 2278-0181

ICESMART-2015 Conference Proceedings

Next state determination Load Feedbuck | Cutput

|
| x
™ x?\ .

AN

[ T

v

T

| or
o'

| a

|

|

i

|

[

|

o110
w1

sy
vy

D

0
v @

Pany
Q
N

Do

I
e

o

0

Fig.11 Reversible realization of the synchronous sequential circuit of
Fig.8 with asynchronous parallel load capacity.

The next state expressions of (9) and (10) are realized in
the next state determination part of the circuit of Fig.10. To
provide feedback from the state outputs, the state outputs are
copied using Feynman gates in the feedback part. The output
expression of (11) is realized in the output part. The realized
sequential circuit is a level-triggered circuit.

This realization needs one 5x5 Toffoli gate, two 4x4
Toffoli gates, two 2x3 Toffoli gates, six Feynman gates, and
two NOT gates. Therefore, its quantum cost is 66. The circuit
has two garbage outputs.

Asynchronous parallel load facility may be incorporated
in the sequential circuit of Fig.10 by adding Fredkin gate in
between the next state determination part and the feedback
part of the circuit, as shown in Fig.11. When L=0,
independent of the value of C, the state value available at
the output of the next state determination part will pass to

the state output. When L=1, irrespective of the value of C,
the data input D will be copied to the state output. However,
when C=1, the loaded value of the next state will be fed
back and used in the next state determination circuit. It may
happen that the next state determination may not be
complete within the remaining part of the clock pulse
making the next state ambiguous. Thus, load should be done
asynchronously when C =0. When C=0, if the L input is
changed back to zero after the parallel load is done, the
loaded state will remain unchanged at the state output, since
loaded state will be fed back through the next state
determination circuit to the state output. The circuit of
Fig.11 has two more Fredkin gates than that of Fig.10. Thus,
the quantum cost of the circuit of Fig.11 is 76. The circuit
of Fig.11 has five garbage outputs.
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Fig.12 Reversible realization of the synchronous sequential circuit of
Fig.8 with falling-edge triggering and asynchronous parallel load facility.

The level-triggered sequential circuit with parallel load
facility of Fig.11 can be made falling-edge triggered by
adding falling-edge triggered D flip- flop of Fig.3(b) in
between the next state determination and the load parts of
the circuit, as shown in Fig.12, but taking the feedback from
the state output of the feedback part. When C=0, the next
state determination part will simply pass the state feedback
to its output and this output will then be passed to the state
output through the D input of the D flip-flop of the falling-
edge triggering part and the Fredkin gate of the load part
(provided L=0) to maintain the state output unchanged.
When C=1, the next state determination part will compute
the next state based on the present state feedback to it and
the external input, but the D flip-flop of the falling- edge
triggering part will provide the feedback of the state output
to maintain the state output unchanged. Now, when the C
input goes back to zero after the next state determination is
complete, the computed next state will be passed to the state
output through the D input of the D flip-flop of the falling-
edge triggering part and the Fredkin gate of the load part
making the circuit falling-edge triggered. The circuit of the
Fig.12 has two more Fredkin gates and two more Feynman
gates than that of Fig.11. Thus, its quantum cost is 88. The
circuit of Fig.12 has seven garbage outputs.

The circuit of Fig. 12 is a general sequential circuit
having input, output, and state changes. We have simulated
the circuit using Verilog HDL to test the correctness of the
design and the simulation output is shown below.

L]
LA
L

L

e .
Asynchronous Load Néxt state determination  Updating present state at falling edge

Fig.13 Verilog HDL simulation of the sequential circuit of Fig. 12

For complexity comparison, we have designed the
synchronous sequential circuit of Fig.8 using classical
technique using D flip-flop and the resulting circuit is shown
in Fig.14.

The reversible circuit corresponding to the classical circuit
of Fig.14 is shown in Fig.15. The level-triggered D flip-flops
(FFO and FF1) are replaced by their reversible counterparts,
as shown in Fig.3(a). The AND (A1-A6) and the OR gates
(O1-03) are replaced by their reversible counterparts, as
shown in Fig.2. The circuit of Fig.15 needs five NOT gates,
five Feynman gates, two Fredkin gates, one 4 x4 Toffoli gates,

and eight 3x3 Toffoli gates. Thus, its quantum cost is 74. The
circuit has 11 garbage outputs.

The complexity comparison of the direct design of Fig.10
and the replacement design of Fig.15 is shown in Table III.
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Fig.14 Classical design of the synchronous sequential circuit of Fig.8

Direct | Replacement % improvement over
design design replacement design
Quantum cost 66 74 10.81
(Garbage outputs 2 11 81.82

Table I1l. Comparison of realization of Fig. 8 using the direct design

method and the replacement design.
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Fig.15 Reversible realization of sequential circuit of Fig.14 using

replacement technique

V. DESIGN OF COUNTERS

Let us consider the PSDRM expressions for the next states of

four-bit up counter as follows:

Q3"=Q3®CQ2Q:1Q0  (12)
Q2"=Q2&CQ1Qo (13)
Q:1"=Q18CQo (14)
Qo"=Qo®C (15)
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Fig.16 Reversible realization of four —bit level-triggered up counter using
the PSDRM expressions (12)-(15).

Reversible realization of four bit level-triggered up counter
using the PSDRM expressions of (12)—(15) is shown in
Fig.16.This realization requires one 5x5 Toffoli gate, one
4x4 Toffoli gate, one 3x3 Toffoli gate, and five Feynman
gates. Thus the Quantum cost is 44. It has one Garbage
output.

We can provide this counter with asynchronous parallel load
using the technique of Fig. 11 which will require 64 Quantum
cost and six Garbage outputs.

VI. DESIGN OF REGISTERS
We have determined the PSDRM expressions for the next

states of four-bit level-triggered SISO shift register as
follows:

a1
e

g
A~

o
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Q2 = Q®CQ®C(MQ:s® MQ1) (17
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Fig.17 Realization four-bit level-triggered SISO right/left shift register using
the expressions of (16)-(19).

Realization of four-bit level-triggered SISO shift register
using the expressions of (16)-(19) is shown in Fig.17. The
multiplexing operation of right-most parts of (16)-(19) can be
implemented using Fredkin gates. Therefore the circuit of
Fig.16 requires eight 3x3 Toffoli gates, four Fredkin gates,
and eight Feynman gates. Thus the Quantum cost is 68. The
circuit has eight Garbage outputs.
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VIl. CONCLUSION

Reversible logic plays an important role in emerging
computing technologies due to its low power consumption.
However, only a very limited works have been reported on
reversible sequential circuit design. In this paper, we present
a novel approach of direct design of sequential circuit with
reversible gates using PSDRM expressions describing the
state transitions and output functions of the circuit. With this
approach we can reduce Quantum cost and Garbage outputs.
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