
An Algorithm For Lossless Text Data Compression

Rajinder Kaur
1
, Er. Monica Goyal

2

1
Student, Department of Computer Science & Engineering,

Guru Kashi University,

Talwandi Sabo, Punjab, India

2
AP, Department of Computer Science & Engineering,

Guru Kashi University,

Talwandi Sabo, Punjab, India

Abstract

In this paper we reduce the number of bits

required to represent a character by using 6-bit

binary coding instead of a 8-bit binary coding

technique. We use a numbering map for

converting the input data for introduce a way to

use the binary form in a dynamic way, which has

never used for coding data before, and we

further use 6-Digits binary representation of

alphabet with lowercase and uppercase with

some extra symbols that are most commonly

used in our text files. We found a new way to

decrease the length of the bits string, which is

only possible in 6-bit binary representation thus

drastically reducing the length of the code. In

our technique we also use the Huffman method

for increasing our methodology result

percentage.

Keywords-Lossless Data, Compression methods,

Binary Coding, Decompression.

1. Introduction

Data compression is a method to develop storage

capacity by eliminating redundancies that

happen in most text files. The compression

methods are classified in two ways, lossy and

lossless. Lossy compression method reduced file

size by eliminating some data that won’t be get

back by user after decompression, this often used

by video and audio files. But Lossless

compression method modifies each bit of data

inside file for reducing the size without losing

any information after

decompression. So this is most useful because if

file lost even a single bit after decoding, that

mean the file is corrupted. Data compression

may be used for network processing in order to

save energy because it reduces the amount of

data in order to increase the data transmitted

bandwidth and decreases transfer time. Most

data compression methods consist of one or a

combination of different data compression

methods. They are using different ideas, which

suitable for different types of data, and produce

different results, but they are all based on the

same base, because they all compress data by

removing redundancy from the original data in

the input file. The purpose of compression

having two components, an encoding algorithm

that takes a message and generates a

“compressed” output (using lesser bits), and to

decoding algorithm that gives the original

message or some approximation of it without

losing information. These two components are

typically attached together since they both have

to understand the shared compressed

representation.

Huffman algorithm is a technique for generating

the minimum redundancy code. It is using three

steps for process .The first step is to analysis the

file to be compressed and to build the code tree.

The second step is to compress the file based on
474

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70087

Huffman codes generated by the code tree in

step1. The third step is to decompress the file

back to get its original form.

2. Related Work

The data Compression methods have a long list.

In this paper we shall consider only the lossless

compression methods and not the lossy ones

because of related to our work. The work was

started with the help of Huffman, under this

technique pieces of data (segments or bits) in a

file are modified by a code of shorter length. We

also read the LZ family compression algorithms

which are mostly used in these days. After

Huffman for floating values input arithmetic

coding is a useful technique that gives good

compression ratios. Recently, there has also been

a lot of research done for finding the efficient

searching algorithms within text files

compressed by LZ family. Many searching

algorithms use indexing values for better results.

But no one of the algorithms provides desirable

results. So we work on the text files compression

using existing methods for getting good result

with the help of our developing method.

A universal method is optimal if the compressor

produces compression factors that asymptotically

meet the entropy of the input data stream for

long inputs. Compression performance: Several

factors are mainly used to express the

performance of a compression method. The

Compression ratio is one of the main factor to

express compression efficiency and is defined as

Compression ratio =Size of the output data/size

of the input data. A value of 0.7 means that after

compression the data occupies 70% of its

original size.

3. Existing Method Used By Our Algorithm:-

A basic method for data compression is Huffman

coding. It serves for several popular programs

used in personal computers. The Huffman

algorithm is simple and mainly used for creating

a Huffman code tree. The five steps for building

this tree is:

1. Start with a list of free nodes each having their

frequencies, where each node corresponds to a

symbol in the alphabet.

2. Select two free nodes with the minimum

frequencies from the list.

3. Create a parent node for these two nodes

selected and the frequency is equal to the

frequencies of the sum of two child nodes.

4. Remove the two child nodes from the list and

add the parent node to the list of free nodes.

5. Repeat the process starting from step-2 until

only a single node remains. After building the

Huffman tree, the algorithm creates a prefix code

for each symbol simply by traversing the binary

tree from the root to the node, which corresponds

to the symbol. It assigns 0 for a left branch and 1

for a right branch. The Huffman algorithm is

called as a semi adaptive or semi-static because

it requires knowledge of frequencies for each

node. Along with the compressed output, the

Huffman tree with the Huffman codes for nodes

or just the frequencies of symbols which are used

to create the Huffman tree must be stored. This

information is needed during the decompression

process.

4. PROPOSED ALGORITHM

To improve the compression ratio for text files, a

compression algorithm is designed which is

specialized for text application protocols, instead

of general purpose compression methods. The

basic idea of the specialized compression

algorithm is the introduction of a specific

encoding scheme which is actually used an

improved version of Huffman encoding scheme

for all redundant words in a text files.

We have implemented the algorithm on c#

platform with vb.net beans framework.

Bit Reduction Algorithm-

Data compression is always useful for encoding

information using lesser number of bits than the

original representation it would use. There are

many applications where the size of information

would be critical. In data communication, the

size of data can affect the storage cost. This

algorithm was originally implemented for use in

475

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70087

a text file like message communication

application. The idea in is this program reduces

the standard 8-bit encoding to some application

using specific 5-bit encoding system and then

pack into a byte array. This method will reduce

the size of a string considerably when the string

is lengthy and the compression ratio is not

affected by the content of the string.The

Algorithm

1. Compression: -

Let’s assume that we have a input string with 8

characters. If we put this on a byte array, we get

a byte array with the size of 8. A single character

will need 8 bits if the characters are represented

with ASCII values. A set of 8 bits can represent

2
8
 different characters. But if we consider the

application, a simple text data might be included

only around 26 different characters. Therefore it

is need to have 5-bit encoding which can give up

to 2
5
 different characters to represent. For

converting into the new 5-bit encoding, we

assign new values to the alphabet characters like

| a = 1 | b=2 | c=3 | d=4 | e=5 | f=6 | g=7 | h=8 |. If

we look more closely at the new byte array, it

will look like the following (the values of

characters are in binary representation).

00000001|00000010|00000011|00000100|00000

101|00000110|00000111|00001000| But we use 8

bytes for storing the 8 characters. In the next

step, we will cut three bits from the position of

3rd bit from the left side and extract the 5 least

significant bits. The result will be shows as

follows:

|00001|00010|00011|00100|00101|00110|00111|0

1000|.Now we have reduced 8 bytes to 5 bytes.

The next step shows how these 5 bytes convert

to the 8 bytes and we get the original

information.

2. Decompression: -

When an array of bytes is shown, each character

should be represented in the binary form. Then

all the 1’s and 0’s should be arranged as their

index values and all data split to the sets of five

bits. After splitting data, it will be as follows:

Code |00001 000|10 00011 0|0100 0010|1 00110

00|111 01000| then these sets converted to

decimal values represent the characters that we

have compressed. Code |00001 = 1(a) 000|10 = 2

(b) 00011 = 3(c) 0|0100 = 4 (d) 0010|1 = 5 (e)

00110 = 6 (f) 00|111 = 7 (g) 01000| = 8 (h). Then

the information will be shown in original form as

“abcdefgh”.

5. Result:-

Snapshot

Lenth of

Text

No. of

Experiments

Out Put Bytes

Saved

100 5 75 25

149 15 112 98

427 33 321 106

572 19 429 143

700 4 525 175

6. Conclusion

In our paper a new text data compression

algorithm is produced. The most important

feature of our algorithm is its simplicity. An

entirely different technique is developed to

decrease the size of text files. The technique of

’saving space’ have shown in this algorithm.

Since every character is taken care of, so the

output codes do not depend upon the
476

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70087

redundancy, like the traditional compression

algorithms. After the code formulation, ASCII

code modifies the binary numbers, which finally

reduce the file size. A lot of research and

findings led to the conclusion that there are no

such algorithms in data compression that

emphasis on different compression based on

number theory and bit reduction.

7. References:-

1.S. S. Nayak, S.P Sahoo, R. Matta, and S. k.

Pattanayak,”A Modified Approach to Lossless

data compression method” International Journal

of Research in Engineering, IT and Social

Sciences,November 2012

2. N. PM, Dr. R.M.Chezian,”A Survey on

lossless dictionary based data compression

algorithms” (Februray 2013)

3. P.Yellamma Dr.N. Challa,” Performance

Analysis Of Different Data Compression

Techniques On Text File”, International Journal

of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October – 2012

4. J.Abel, W.Teahan,”Universal Text

Preprocessing For Data Compression”(IEEE)

5. S Sankar ,Dr. S Nagarajan,” A Comparative

Study: Data Compression on TANGLISH

Natural Language Text”, International Journal

of Computer Applications (0975 – 8887) Volume

38– No.3, January 2012

6. Md. R. Hasan, “ Data Compression using

Huffman based LZW Encoding Technique “,

International Journal of Scientific & Engineering

Research, Volume 2, Issue 11, November-2011

7. M. Gupta B. Kumar,” Web Page Compression

using Huffman Coding Technique”,

International Conference on Recent Advances

and Future Trends in Information Technology

(iRAFIT2012).

477

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70087

