
KEYWORDS: Query processing, Streams, and

Joins

1. Introduction

 In Real systems, it is difficult to maintain all the data is

stored in one large table. To do so would require

maintaining several duplicate copies of the same values

and could threaten the integrity of the data .Instead, IT

department everywhere almost always divide their data

among several different tables. Because of this, a method

is needed to simultaneously access two or more tables by

using join operation. Join is a means for combining fields

from two tables by using values common to each. Join

operation is considered as one of the fundamental

operations of relational databases and it is also difficult

operation to efficiently implement. Joins are one of the

basic constructions of SQL and databases such as, they

combine records from two or more database tables into

one row source, one set of rows with the same columns

and these columns can originate from either of the joined

tables as well as be formed using an expressions and

built-in or user-defined functions.

 Joins are used for joining records or fields from two or

more tables in a database by using a value common to

both the tables and the result set can be stored or saved in

a table [1]. There are four types of joins and they are

specified by ANSI (American National Standard Institute)

and they are INNER, OUTER, LEFT, and RIGHT. Inner

join are further classified into equi join, natural join and

cross join. Outer join are further classified as left outer

join, right outer join and full outer join. Two tables are

used as an example of joins; they are Dept ID column of

the Emp table and Dept table.

Emp Table Dept
Table
LastName DeptId Dept Id
 DeptName
Aa 11 11
 Sales
Bb 13 13
 Engineering
Cc 13 14
 Clerical
Dd 14 15
 Marketing
Ee 14

 Figure. 1 Example of Join

 Inner join are considered as a common operation of join

and they are also a default type of join based on the

predicate. They combine the values of two tables and the

results are kept in new table. Inner join has both explicit

join notation and implicit join notation. Outer join does

not expect any matching record and they does not require

each record in two tables to be joined to have a matching

record. Outer join does not have Implicit join notation.

An Adaptive Join Algorithm For Efficient Query Processing In Heterogeneous

Data Sets

 Mr. Pratik Patel Mr. A. M. Rana

 PG-Student, Department of Computer Science, Assistant Professor

 Parul Institute of Technology Department of Computer Science,

 Vadodara (Gujarat), India. Parul Institute of Technology

 Vadodara (Gujarat), India.

 Abstract: This work is focused on how join operator works in heterogeneous environment. Join is a means for
combining fields from two tables by using values common to each. Join operation is considered as one of the
fundamental operations of relational databases and it is also difficult operation to efficiently implement. The testing
of the effectiveness of join algorithms is proposed.
Adaptive join algorithms have recently attracted a lot of attention in emerging applications where data is provided

by autonomous data sources through heterogeneous network environments. In traditional join techniques, they can

start producing join results as soon as the first input tuples are available, thus improving pipelining by smoothing join

result production and by masking source or network delays. In this work, Evaluation of the performance and comparison

of Multiway join (MJoin), Double Index Nested Loop Reactive Join (DINER), and Multiple Index Nested Loop Reactive

Join (MINER).My proposed system shows that improved MINER outperforms in comparison with the previous join

algorithms in producing result tuples at a significantly higher rate, while making better use of the available memory

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

Explicit join notation and implicit join notation are the

ways of expressing join syntax and they are specified by

SQL explicit join notation uses the keyword “JOIN” and

“On” [1]

 Select * from Emp INNER JOIN Dept On Emp.DeptID =

Dept.DeptID;

 Implicit join notation list the join table and they use

select statement:-

 Select * from Emp, Dept Where Emp.DeptID =

Dept.DeptID;

 Adaptive Join: Adaptation schemes for join queries are

significantly more complicated to design and analyse

compared to those for selection ordering for several

reasons. The key performance of adaptive joins is rapid

availability of first results and a continuous rate of tuple

production. It overcomes the situation like initial delay,

slow data delivery or bursty arrival, which can affect the

efficiency of join [2] It is used for fast data delivery from

one location to another location. When first input tuple is

available then starts its joining process compared to

traditional joining processes.

2. Motivation:
Some additional challenges in adaptive joins compared to

traditional joins [3] are: The input relations are provided

by autonomous network sources. The implication is that

one has little or no control over the order or rate of arrival

of tuples. Data is transported through unreliable network

environment. It is often unsuitable or in-efficient because

most traditional join algorithms cannot produce results

until at least one of the relations is completely available,

the complete data might be available after a long time.

Sometimes these algorithms are unusable, if data is

completely available but they produce partial results. The

availability of partial join results is important for wide

range of applications. Their main advantage over

traditional join techniques is that, they can start producing

join results as soon as the first input tuples are available,

thus improving pipelining by smoothing join result

production and by masking source or network delay.

3. Objectives:
a) Experimental study of DINER (Double Index Nested

Loop Reactive Join)

b) Calculate the performance comparison of the DINER,

MINER and MJoin.

c) Evaluate the performance of MINER (Multiple Index

Nested Loop Reactive Join)

4. Dissertation work: The aim of implementing and

optimizing of MINER algorithm and comparing it with

the DINER and MJoin. In MINER, It uses homogeneous

database for higher quality join results. All the data is

stored into the buffer and data is fetched according to

their index number and apply a join query. In DINER

(Double Index Nested loop Reactive Join), it uses

heterogeneous database and it is a novel adaptive join

algorithm that supports both equality and range join

predicates. The feature of this DINER algorithm is that

they are unblocking and they deal with adaptive.

They can produce join result, if the one relation is

completely arriving. [4] In MJoin, It uses single

database for joining two or more tables. Firstly,

consider two tables for joining and this result is

stored in the third table. Then, this third table is join

with the another table i.e. fourth table.

LITERATURE REVIEW Existing Join

Techniques: The main three categories of join

algorithms are

a) Nested-loop join algorithm

b) Sort-merge join algorithm

c) Hash-based join algorithm

Nested-Loop Join Algorithm: - Nested-loop

join is considered as a one of the simplest algorithm

of join where, for each record of the first table the

entire records of the second table has to be scanned.

This process is repeated for each and every record of

the first table that is for all the first table records.

The loop is of two levels and they are outer loop and

the inner loop. First table loop is called as outer loop

and the second table loop are called as inner loop.

As this, Nested loop join algorithm has a repeated

input/output scans of one of the table. They are

considered as inefficient.

Let the two tables be A and B, then the algorithm of

Nested-loop algorithm are as

For each record of table A Read record from table A

For each record of table B Read record from table B

Compare the join attributes

If matched Then Store the records

Sort-Merge Join Algorithm: - Sort merge

algorithm are considered as efficient join algorithm

when compared to Nested loop join algorithm. sort

merge join algorithm have two operations and they

are sorting and merging. In sorting operation the two

tables to be joined are sorted in ascending order. In

merging operation the two sorted tables are merged.

Sort records of table A based on the join attribute

Sort records of table B based on the join attribute

Let i = 1 and j =1

Repeat Read record A(i)

Read record B(j)

If join attribute A(i) < join attribute B(j)

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

Then i++

Else If join attribute A(i) > join attribute B(j)

Then j++

Else Put records A(i) and B(j) into the Qr

 Hash Based join algorithm: - In hash based join

algorithm hashing and probing are the two processes. A

hash table is created by hashing all records of the first

table using a particular hash function. Records from the

second table are also hashed with the same hash function

and probed. If any match is found, the two records are

concatenated and placed in the query result. A decision

must be made about which table is to be hashed and

which table is to be probed. Since a hash table has to be

created, it would be better to choose the smaller table for

hashing and the larger table for probing. The hash join

algorithm is given as

Let H be a hash function

 For each record in table B

 Read a record from table B

 Hash the record based on join attribute value using

hash function H into hash table

For each record in table A

 Read a record from table A

 Hash the record based on join attribute value using H

Probe into the hash table

 If an index entry is found

 Then

Compare each record on this index entry with the record

of table S

 If matched

Then Put the pair into Qr

5. PROPOSED SYSTEM

MODULE DESCRIPTION

1. DINER (Double Index Nested-loops

Reactive) Module:
MODERN information processing is moving into a realm

where often need to process data that are pushed or pulled

from autonomous data sources through heterogeneous

networks. The key differences between DINER and

existing algorithms are 1) an intuitive flushing policy for

the Arriving phase that aims at maximizing the amount of

overlap of the join attribute values between memory

resident tuples of the two relations and 2) a lightweight

Reactive phase that allows the algorithm to quickly move

into processing tuples that were flushed to disk when both

data sources block. The key idea of our flushing policy is

to create and adaptively maintain three nonoverlapping

value regions that partition the join attribute domain,

measure the “join benefit” of each region at every

flushing decision point, and flush tuples from the region

that doesn’t produce many join results in a way that

permits easy maintenance of the three-way partition of the

values. When tuples are flushed to disk they are organized

into sorted blocks using an efficient index structure,

maintained separately for each relation (thus, the part

“Double Index” in DINER). This optimization results in

faster processing of these tuples during the Reactive and

Clean-up phases. The Reactive phase of DINER employs

a symmetric nested loop join process, combined with

novel bookkeeping that allows the algorithm to react to

the unpredictability of the data sources. The fusion of the

two techniques allows DINER to make much more

efficient use of available main memory. To demonstrate

in the experiments that DINER has a higher rate of join

result production and is much more adaptive to changes in

the environment, including changes in the value

distributions of the streamed tuples and in their arrival

rates.

2. MINER Module:
MINER extends DINER to multiday joins and it maintains

all the distinctive and efficiency

generating properties of DINER. MINER maximizes

the output rate by: 1) adopting an

efficient probing sequence for new incoming tuples

which aims to reduce the processing

overhead by interrupting index lookups early for those

tuples that do not participate in the

overall result; 2) applying an effective flushing policy that

keeps in memory the tuples that

produce results, in a manner similar to DINER; and 3)

activating a Reactive phase when all

inputs are blocked, which joins on-disk tuples while

keeping the result correct and being able

to promptly hand over in the presence of new input.

Compared to DINER, MINER faces

additional challenges namely: 1) updating and

synchronizing the statistics for each join

attribute during the online phase, and 2) more complicated

bookkeeping in order to be able to

guarantee correctness and prompt handover during

reactive phase.

3. Memory Allocated DINER & MINER Module
To investigate the impact that several parameters
may have on the performance of
the DINER algorithm, through a detailed sensitivity
analysis. Moreover To evaluate the
performance of MINER when vary the amount of memory
allocated to the algorithm and the
number of inputs. The main findings of this study
include:

 A Faster Algorithm. DINER provides
 result tuples at a
significantly higher rate, up to three times

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

in some cases, than existing adaptive join
algorithms during the online phase. This
also leads to a faster computation of the
overall join result when there are bursty
tuple arrivals.

 A Leaner Algorithm. The DINER
algorithm further improves its relative
performance to the compared
algorithms in terms of produced
tuples during the online phase in more
constrained memory environments.
This is mainly attributed to our novel
flushing policy.

 A More Adaptive Algorithm. The
DINER algorithm has an even larger
performance advantage over existing
algorithms, when the values of the join
attribute are streamed according to a
no stationary process. Moreover,

 It better adjusts its execution when
there are unpredictable delays in tuple
arrivals, to produce more result tuples
during such delays.

 Suitable for Range Queries. The
DINER algorithm can also be applied
to joins involving range conditions for
the join attribute. PMJ also supports
range queries but, it is a generally
poor choice since its performance is
limited by its blocking behavior.

An Efficient Multiway Join Operator. MINER
retains the advantages of DINER when multiple
inputs are considered. MINER provides tuples at a
significantly higher rate compared to MJoin
during the online phase. In the presence of four
relations, which represents a challenging setup, the
percentage of results obtained by MINER during
the arriving phase varies from 55 percent (when
the allocated memory is 5 percent of the total input
size) to more than 80 percent (when the allocated
memory size is equal to 20 percent of the total input
size).

6. The contributions of this project:-
 To introduce DINER a novel adaptive join

algorithm that supports both equality and range

join predicates. DINER builds on an intuitive

flushing policy that aims at maximizing the

productivity of tuples that are kept in memory.

 DINER is the first algorithm to address the need

to quickly respond to bursts of arriving data

during the Reactive phase. To propose a novel

extension to nested loops join for processing

disk-resident tuples when both sources block,

while being able to swiftly respond to new data

arrivals.

 To introduce MINER, a novel adaptive multiway

join algorithm that maximizes the output rate,

designed for dealing with cases where data are

held by multiple remote sources. To provide a

thorough discussion of existing algorithms,

including identifying some important limitations,

such as increased memory consumption because

of their inability to quickly switch to the

Arriving phase and not being responsive enough

when value distributions

 To provide an extensive experimental study of

DINER including performance comparisons to

existing adaptive join algorithms and a

sensitivity analysis. The results demonstrate the

superiority of DINER in a variety of realistic

scenarios. During the online phase of the

algorithm, DINER manages to produce up to

three times more results compared to previous

techniques. The performance gains of DINER

are realized when using both real and synthetic

data and are increased when fewer resources

(memory) are given to the algorithm. To also

evaluate the performance of MINER, and to

show that it is still possible to obtain early a

large percentage of results even in more

elaborated setups where data are provided

through multiple inputs. The experimental study

shows that the performance of MINER is 60

times higher compared to the existing MJoin

algorithm when a four-way star join is executed

in a constrained memory environment.

7. PERFORMANCE ANALYSIS

To demonstrate DINER’s superior performance over a

variety of real and synthetic data sets in an environment

without network congestion or unexpected source delays.

To plot the cumulative number of tuples produced by the

join algorithms over time, during the online phase for the

CSCO stock and the Weather data sets.To observe that

DINER has a much higher rate of tuples produced that all

other competitors. For the stock data,while RPJ is not able

to produce a lot of tuples initially, it manages to catch up

with XJoin at the end. To compare DINER to RPJ and

HMJ on the real data sets when to vary the amount of

available memory as a percentage of the total input size.

The y axis represents the tuples produced by RPJ and

HMJ at the end of their online phase (i.e., until the two

relations have arrived in full) as a percentage of the

number of tuples produced by DINER over the same time.

The DINER algorithm significantly outperforms RPJ and

HMJ, producing up to 2.5 times more results than the

competitive techniques. The benefits of DINER are more

significant when the size of the available memory given

to the join algorithms is reduced. In the next set of

experiments, to evaluate the performance of the

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

algorithms when synthetic data are used. In all runs, each

relation contains 100,000 tuples.

8. CONCLUSIONS
In this work, to introduce DINER, a new adaptive

join algorithm for maximizing the output rate of

tuples, when two relations are being streamed to and

joined at a local site. The advantages of DINER

stem from 1) its intuitive flushing policy that

maximizes the overlap among the join attribute

values between the two relations, while flushing to

disk tuples that do not contribute to the result and 2)

a novel re-entrant algorithm for joining disk resident

tuples that were previously flushed to disk.

Moreover, DINER can efficiently handle join

predicates with range conditions, a feature unique to

this technique. To also present a significant

extension to this framework in order to handle

multiple inputs. The resulting algorithm, MINER

addresses additional challenges, such as determining

the proper order in which to probe the in-memory

tuples of the relations, and a more complicated

bookkeeping process during the Reactive phase of

the join. Through this experimental evaluation, we

have demonstrated the advantages of both

algorithms on a variety of real and synthetic data

sets, their resilience in the presence of varied data

and network characteristics and their robustness to

parameter changes.

9. REFERENCES

[1]. J.Jayashree and C.Ranichandra “Join Algorithm for

Efficient Query Processing For Large Datasets” Asian

Journal of Computer Science and Information Technology

2: 3 (2012) 31 –35

[2]. Mihaela A.Bornea, Vasilis Vassalos, Yannis Kotidis,

Antonios Deligiannakis: Adaptive Join Operators for

Result Rate Optimization on Streaming Inputs. IEEE

Trans. Knowl. Data Eng. 22(8): 1110-1125 (2010)

[3]. J. D. Ullman, H. Garcia-Molina, and J. Widom.

Database Systems: The Complete Book. Prentice Hall,

2001

[4]. M. A. Bornea, V. Vassalos, Y. Kotidis, and A.

Deligiannakis. DoubleIndex Nested-loop Reactive Join for

Result Rate Optimization. In ICDEConf., 2009

[5]. David Taniar, Clement H.C. Leung, Wenny Rahayu,

Sushant Goel. (2008) “High-Performance Parallel

Database Processing and Grid Databases” A John Wiley

[6]. Z. G. Ives, D. Florescu, and et al. An Adaptive Query

Execution System for Data Integration.In SIGMOD, 1999.

[7]. W. Hong and M. Stonebraker. Optimization of

Parallel Query Execution Plans in XPRS. In PDIS, 1991

[8]. T.Urhan and M.J.Franklin.Xjoin: A Relatively

scheduled pipilined join operator.IEEE Data Eng.Bull,

23920,2000

[9]. S.D Viglas,J.F.Naughton and J.Burger.Maximizing

the output rate of multiway join queries over streaming

information sources.In VLDB 2003: proceeding of the

29th international

[10]. J. Dittrich, B. Seeger, and D. Taylor. Progressive

merge join: A generic and non-blocking sort-based join

algorithm. In Proceedings of VLDB, 2002.

[11]. M. F. Mokbel, M. Lu, and W. G. Aref. Hash-Merge

Join: A Non-blocking Join Algorithm for Producing Fast

and Early Join Results. In ICDE Conf., 2004.nal

conference on very large databases 2003.

[12]. Y. Tao, M. L. Yiu, D. Papadias, M. Hadjieleftheriou,

and N. Mamoulis. RPJ: Producing Fast Join Results on

Streams Through Rate-based Optimization. In

Proceedings of ACM SIGMOD Conference, 2005

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

