
An Adaptable Speech to Sign Language

Translation System

Shekainah Paulson

II M.Tech. Embedded Systems, Dept. of Electronics and

Instrumentation

Karunya University

Coimbatore, India

Mrs. B. Thilagavathi
Assistant Professor, Dept. of Electronics and

Instrumentation

Karunya University

Coimbatore, India

Abstract— This project is a new version of a speech to sign

language translation system with new tools and characteristics

for increasing adaptability to a new task or a new semantic

domain. It consists of a speech recognizer that converts spoken

sentences into utterances and silences, and recognizes it as text- a

sequence of words, and a video displaying the sign language

interpretation of the spoken sentence. It is an adaptable system

capable of reducing significantly the effort and the parallel

corpus needed for adapting a speech to sign language translation

system to a new domain.

Keywords- Speech recognition, Sphinx 4.0, American Sign

Language, Java, Eclipse IDE.

I. INTRODUCTION

The deaf are a growing population of every nation.

Communication with this group of people is a problem with

just one solution, that of sign language. The deaf learn to

communicate with the hearing through this dialect, if it may be

called so, with a grammar and style of usage of its own.

However, the ratio of deaf people to those who can interpret

sign language is one of concern, with an average of 93:1 in the

US. The goal of this project is to benefit the deaf, who sign

language is a prerequisite to communicate with, in the absence

of interpreters who can translate to and from sign language

and spoken languages. Hence, it greatly benefits the deaf who

wish to lead a normal day-to-day life, performing activities

like face-to-face interaction with a government employee, etc.

II. SYSTEM OVERVIEW

The system consists of a speech recognizer, Sphinx 4.0,

written in Java and executed using the Eclipse IDE. The input

is a sentence spoken into the microphone of the system, and

the output is recognized speech in the form of text (sequence

of words) and a video displaying the spoken sentence in sign

language. This project is a prototype of the main system,

hence five basic sentences (Good Morning, Hello, Sit down

and I am Sorry) have been chosen, to be recognized by the

program. Stored videos are then displayed for each sentence.

Figure 1 is the block diagram of the whole system, depicting

the overall conversion process of speech to text and sign

language.

 Fig.1. Overall system block diagram

III. SPEECH RECOGNITION

Speech recognition (SR), in the field of computer

science, is the translation of speech (spoken words) into text.

This is also known as "automatic speech recognition", "ASR",

"STT", "speech to text", or just "computer speech

recognition". Speech processing and recognition has, since

early days, always been an active area of research in computer

science.

The speech recognition system used in this project is

Sphinx-4, a speech recognition algorithm written entirely in

the Java programming language. Sphinx-4 is a flexible,

modular and pluggable framework to help foster new

innovations in the core research of Hidden Markov model

(HMM) recognition systems. Sphinx-4 has been designed

based on patterns emerged from the design of past systems as

well as new requirements based on areas that researchers

currently want to explore. Sphinx-4 also includes several

implementations of both simple and state-of-the-art

techniques, to exercise this framework, and to provide

researchers with a ―research-ready‖ system. The framework

and the implementations are all freely available via open

source, that is, they are open for downloading and editing.

Sphinx-4’s framework has been designed with

flexibility and modularity, as much as possible, for the

convenience of users. Figure 2 shows the framework of the

speech recognition system. Each labeled element in the figure

represents a module that can be easily replaced, leaving room

for experimentation. There are three primary modules in the

Sphinx-4 framework: the FrontEnd, the Decoder, and the

Linguist. The FrontEnd takes one or a set of input signals and

1813

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031324

parameterizes them into a sequence of Features. The Linguist

converts any type of standard language model, along with

pronunciation information from the Dictionary and structural

information from the AcousticModels, into a SearchGraph.

The SearchManager in the Decoder uses Features from the

FrontEnd and the SearchGraph from the Linguist to perform

the actual decoding, generating Results. At any time prior to or

during the recognition process, the application can issue

Controls to each of the modules, effectively becoming a

partner in the recognition process.

Fig. 2. Sphinx-4 decoder framework

Like most speech recognition systems, the Sphinx-4 system
has a large number of configurable parameters, like search
beam size, for tuning the system performance. The
ConfigurationManager is used to configure such parameters.
However, what makes Sphinx-4 so unique is that the
ConfigurationManager also enables it to dynamically load and
configure modules at run time, yielding a flexible and
pluggable system. For example, Sphinx-4 is typically
configured with a FrontEnd that produces MFCCs or Mel-
Frequency Cepstral Coefficients. Using the
ConfigurationManager, however, it is possible to reconfigure
Sphinx-4 to construct a different FrontEnd that produces
Perceptual Linear Prediction coefficients (PLP) without
needing to modify any source code or recompile the system. To
give applications and developers the ability to track decoder
statistics such as word error rate, runtime speed, and memory
usage, Sphinx-4 also provides a number of Tools. As with the
rest of the system, the Tools are highly configurable, allowing
users to perform a wide range of system analysis. Furthermore,
the Tools also provide an interactive runtime environment that
allows users to modify the parameters of the system while the
system is running, allowing for rapid experimentation with
various parameters settings.

Sphinx-4 also provides support for Utilities that support
application-level processing of recognition results. For
example, these utilities include support for obtaining result
lattices, confidence scores, and natural language
understanding.

IV. ECLIPSE IDE

Eclipse is a vast extendable set of tools for software

development. This project involved the use of Eclipse’s

Integrated Development Environment (IDE) component for

writing Java software. Eclipse is an open source project of

Eclipse Foundation. Eclipse is available free of charge under

the Eclipse Public License.

 Eclipse runs on multiple platforms including

Windows, Linux, and Mac OS. There may be minor

differences between Eclipse versions for different platforms

and operating systems, but the core features work the same

way. This project made use of the 2013 version of Eclipse,

known as Kepler Release for Java Developers. There are many

ways to learn how to learn to language in Java, as are

advantages to learning Java using the Eclipse integrated

development environment (IDE). Some of these are that

Eclipse provides a number of aids that make writing Java code

much quicker and easier than using a text editor. This means

that more time can be spent learning Java, and less time typing

and looking up documentation. The Eclipse debugger and

scrapbook allows one to look inside the execution of the Java

code. This allows the programmer to ―see‖ objects and to

understand how Java is working behind the scenes. Eclipse

provides full support for agile software development practices

such as test-driven development and refactoring.

V. PROGRAM

The flowchart of the program used is shown in Figure 3.

Fig. 3 Program flowchart

The input variable was spoken speech, through a

microphone. Output variables were written text (the sequence

of words spoken) in the Console window of Eclipse, and a

video played from a file location, displaying the sentence

spoken in sign language. The program’s performance is

measured by the effectiveness and accuracy of translation.

VI. SIMULATION OUTPUT

The output obtained by running the Java program using

Sphinx-4 in Eclipse, gives the output shown in Figure 4. The

figure shows the sentence ―I am sorry‖ in the console window,

as an outcome of translation from speech to text. Figure 5

shows the output video as well, which is of a person saying the

same sentence in sign language.

1814

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031324

VII. CONCLUSIONS AND FUTURE SCOPE

This system is a prototype of the main system, which can

translate any spoken language into sign language. For this, an

animation module will have to be developed, and language

models must be trained, which would be projects on their own.

This system can be used in schools, hospitals and public

meetings, in the place of an interpreter, to convey message to

the deaf. It can also be developed for different regional

languages, in India, to solve the problem of communication

with the deaf even for small regional language groups.

REFERENCES

[1] Conroy, P. (2006). Signing in and Signing out: ―The education and

employment experiences of Deaf adults in Ireland. Dublin: Irish Deaf
Society. Research Report.‖

[2] Wheatley, M., & Pabsch, A. (2010). Sign Language in Europe: ―Corpora
and sign language technologies.‖ . In 4th workshop on the representation
and processing of sign languages.

[3] San-Segundo, R., Pardo, J. M., Ferreiros, F., Sama, V., Barra-Chicote,
R., Lucas, J. M., et al. (2010). ―Spoken Spanish generation from sign
language‖. Interacting with Computers, 22(2), 123–139.

[4] S. J. Young, N. H. Russell, and J. H. S. Russell (1989), ―Token passing:
A simple conceptual model for connected speech recognition systems,‖
Cambridge University Engineering Dept, UK, Tech. Rep. CUED/F-
INFENG/TR38.

[5] X. X. Li, Y. Zhao, X. Pi, L. H. Liang, and A. V. Nefian (Sept. 2002),
―Audio-visual continuous speech recognition using a coupled hidden
Markov model,‖ in Proceedings of the 7th International Conference on
Spoken Language Processing, Denver, CO, pp. 213–216.

Fig 4. Simulated output, showing speech translated to text.

 Fig 5. Simulated output, showing speech translated to text and sign language

1815

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031324

