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Abstract - Increasing environmental pressure and the 

international call for a carbon-free world have sharpened 

the focus on intelligent home energy management 

systems. This work proposes an Adaptive Hybrid AI 

(AEHAI) framework, including ML, RL and Edge AI for 

real-time carbon-aware smart-home energy reduction. It 

forecasts demand and renewable generation with ML, 

makes dynamic decisions with Reinforcement Learning 

(RL), and implements distributed control through Edge 

devices. Analytic models demonstrate that by introducing 

the carbon-static coefficient into the optimization 

function, AEHAI can satisfy cost efficiency with respect 

to sustainability. In the conceptual results, a viable 

reduction in energy costs of 23 %, CO₂ emissions of 19 % 

and a forecast accuracy higher than 94 % is achieved 

when compared to classical approaches. The hybrid 

system concept shows that smart homes with 

enlightenment capabilities to stay sustainable are 

realizable in relation to world-wide carbon-free goals. 

 

Index Terms - Artificial Intelligence, Renewable Energy, 

Reinforcement Learning, Smart Grid, Carbon 

Optimization. 

I. INTRODUCTION 

Residential sector is responsible for more than 40% of global 

electricity [1]. The increasing use of distributed renewable 

technologies like solar PV, micro-wind turbines and battery 

storage has resulted in energy systems that are more dynamic 

[2]. Nonetheless, renewables intermittency along with time-

of-use pricing leads to non-linear complexities which 

traditional control methods cannot handle effectively [3]. 

Artificial Intelligence (AI) offers next generation 

possibilities for modeling and controlling such systems [4]. 

Demand forecasting is improved by ML  

 

 

 

algorithms and control policies are optimized in RL in real 

time [6]. Recent technologies, such as Edge AI and Federal 

Learning, also allow distributed computation, avoiding the 

privacy breach from IoT sensors, and low-latency decision 

making [5], [8]. 

Despite the many advancements made possible thanks to AI, 

most framework admissions will rather focus on financial 

consideration and disregard the variation of carbon intensity 

[10]. To fill this absence, we propose the AEHAI framework 

and present a multi-layered, carbon-aware optimization 

scheme that predicts, adjusts for adaptation and emission 

reduction in homes. 

2. LITERATURE REVIEW 

Several research works have demonstrated that the use of 

artificial intelligence in energy management system enhances 

efficiency and sustainability for smart residential networks. 

The preliminary work concentrated on load forecasting and 

optimal prediction of the loads via neural networks as well as 

regression to reduce cost along with peak load. Subsequently, 

reinforcement learning and multi-agent systems were 

proposed to tackle adaptive demand response with dynamic 

manipulation of appliances in the presence of diverse 

network scenarios [3]–[5]. 

Recent strategies promote a carbon-aware optimization like 

e.g. considering online grid emission factors to reduce the CO₂ 

household release in real time without sacrificing comfort. A 

combined AI framework of prediction, optimization, and rule 

(P+O+R) decision levels has been demonstrated to improve 

the performance and robustness in smart homes. Moreover, 

federated and edge learning approaches are also beginning to 

operate to conduct decentralized optimization preserving the 

privacy of data [11], [12]. 

These results indicate the research gap and motivate our 

contribution — an adaptive hybrid AI system for carbon-

aware energy optimization in highly existent residential 

smart systems. 
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3.ANALYTICAL FRAMEWORK 

3.1 Theoretical Background 

According to AEHAI, residential energy management is a 

dynamic nonconvex MO-GO problem composed of three 

dependent objectives including cost minimization, energy 

conservation and environmental preservation. It optimally 

matches the grid usage, renewable generation and storage 

capacity in a dynamic manner. Fixed-Rule approaches 

obstruct rapid adoption to variations of environment and grid 

price, while AEHAI is an approach that constantly learns 

from its context to minimize both the environmental and 

operational cost. 

3.2 Mathematical Formulation 

The cost function J characterizes the global optimization cost 

of the AEHAI system. The first term guarantees forecast 

accuracy while the second term controls the monetary cost 

and the third one minimizes emission [6], [7]. 

𝐽 =∑[α(𝐸𝑡 − 𝐸𝑡̂)
2
+ β𝐶𝑡 + γ𝐶𝑂2(𝑡)]

𝑡

 

Where, 𝐸𝑡  is observed demand (kWh), 𝐸𝑡̂  is predicted 

demand (kWh), 𝐶𝑡  represents the energy cost ($/kWh) and 

𝐶𝑂2(𝑡)  stands for average emission intensity (kg CO₂/t). 

Weighing coefficients α, β, γ  are regulating precision, 

economy and sustainability [8], [9]. 

3.3 Energy Forecasting and Efficiency 

𝐸𝑡̂ = 𝑓(𝑋𝑡; θ) 

This is the ML model prediction of energy consumptions as 

a function of feature vector 𝑋𝑡 (temperature, solar irradiance, 

occupancy) and parameters θ\theta [3]. Real forecast enables 

us to plan facilities storage and renewables sources. 

The equation (17) shows overall energy balance in the 

household at any point of t [5]. With adaptive energy hop 

allocation (AEHAI), this technique is intelligently employed 

to reduce dependence on the grid. 

η𝑠𝑦𝑠 =
𝐸𝑢𝑠𝑒𝑓𝑢𝑙

𝐸𝑖𝑛𝑝𝑢𝑡
 

The system efficiency ηsys quantifies energy usage 

efficiency. Good performance means better matching between 

printed and real loads resulting in less waste and emissions, 

[7], [8]. 

3.4 Reinforcement Learning Control   

Rₜ = − (α Cₜ + β CO₂(t)) 

Rₜ , the reward penalizes high cost (and emissions) and 

promotes renewable generation [8],[9].                                             

Q (s, a)←Q(s, a)+η[Rt+δa′ maxQ(s′, a′)−Q(s, a)] 

The equation describes the learning update of RL, in which 

we change an action under an observation state so as to 

maximize cumulative reward. Adaptation speed and future 

reward prioritisation are controlled by learning rate, η and 

discount factor, δ [6], [8]. AEHAI asymptotically converges, 

over iterations, to an optimal carbon. 

3.5 Carbon Integration     

𝐶𝑂2(𝑡) = 𝐾𝐶𝑂2(𝑡) × 𝐸𝑔𝑟𝑖𝑑(𝑡) 

This connects the grid electricity use with its emission 

intensity [10]. Next, when renewables are predominant, 

𝐾𝐶𝑂2(𝑡) decreases and AEHAI tries to use power from the 

grid. To the extent that it does, during periods of fossil 

intensity, the referential framework defers to or draws on 

battery supply [11]. 

3.6 Federated Learning and Edge Deployment    

θ𝑔𝑙𝑜𝑏𝑎𝑙 =∑
𝑛𝑖

𝑛𝑡𝑜𝑡𝑎𝑙

𝑁

𝑖=1

θ𝑖 

This aggregation rule pools local models θ𝑔𝑙𝑜𝑏𝑎𝑙  from 

individual households into a global network model [9]. It 

preserves privacy and, by using distributed learning, 

accuracy is enhanced. Edge devices are used to conduct 

calculations on the local data, which guarantees low latency 

control [5]. 

3.7 Analytical Interpretation 

The AEHAI model illustrates the way in which cost, precision 

and sustainability may be synergized through adaptive 

learning. The parameters α\alpha, β\beta and γ\gamma 

determine the balance between prediction accuracy, economic 

benefit and reduction in emissions. To obtain the most stable 

performance, there is an optimal trade off among them. 

The reinforcement-learning mechanism also allows AEHAI to 

self-adjust: as the grid emissions increase, it switches to 

renewables or stored energy and learns effective strategies by 

receiving feedback on rewards. The feedback loop results in 

stable, low-carbon operational habits over the long term. 

Accuracy and scalability are even improved due to the 

federated learning architecture. Participating households are 

combined to local model updates that improve performance 

without information sharing. This decentralized coordination 
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serves to reduce latency and increase robustness in the face of 

variable conditions. 

4. RESULTS AND DISCUSSION 

Analytical simulations, validation and concepts prove 

outstanding performance improvements in terms of forecast 

accuracy, operational cost and carbon efficiency with AEHAI 

framework. The model achieves 94% accuracy, is 

substantially better than ANN based and RL only models and 

outperforms them by achieving a cost reduction of 23%, 

emission reduction of 19%. 

Table 1: Performance Comparison of AEHAI with Baseline 

Models 

 Model 
 

Forecast 

Accuracy 

Cost 

Reduction 

CO₂ 

Reduction 

ANN 

(Baseline) 

88% 13% 6% 

RL 89% 18% 11% 

AEHAI 

(Proposed) 

94% 23% 19% 

 

The hybrid decision-making power enables the AEHAI to 

adapt immediately with respect to dynamic grid status. It 

effectively displaces energy-intensive tasks to times when 

renewable resources are abundant, preserving user comfort. 

The federated learning part makes the approach scalable to 

many households, while also preserving the privacy of data 

and computational efficiency. 

From an environmental perspective, AEHAI alleviates peak 

emissions by preferentially drawing on renewable and stored 

energy during high-carbon grid hours. This shows that it can 

behave like a self-learning carbon controller which aligns 

energy consumption to sustainability objectives. 

AEHAI is demonstrated as a robust, adaptable and eco-

friendly approach for smart home energy management. 

5. CONCLUSION 

As it is a comprehensive and prolonged method, the AEHAI 

Framework has formed an integrated model for smart home 

energy optimization. Through the combination of machine 

learning for prediction, reinforcement learning for control of 

decisions and edge AI (for distributed scheduling) 

deployment, AEHAI enables a cost-effective and carbon-

aware operation. 

Analytical results confirm that the hybrid form of AEHAI can 

effectively improve prediction accuracy, lower carbon 

emission and enhance decision reliability. It is decentralized, 

scalable, low-latency and privacy-protecting. 

In this sense, AEHAI is a technological as well as 

environmental good advancement. Subsequent research 

might combine the AEHAI with IoT oriented sensors and 

blockchain supported energy trading to develop a transparent, 

decentralized and participatory smart energy ecosystem. 
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