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Abstract—As important as agriculture is in the maintenance
of food regimes around the globe, crop diseases remain a major
challenge to agricultural productivity, especially for farmers who
do not have access to expert diagnosis in time. Sometimes,
manual detection techniques are slow, unreliable, and require the
presence of specialists, which may slow down the implementation
of corrective measures and cause the loss of considerable yields. In
order to overcome the mentioned obstacle, this paper introduces an
Al-based Cotton Leaf Disease Detection and Management System
that implements the VGGI16 model to deliver fast, accurate, and
accessible diagnostic services. The system applies the VGG16 con-
volutional neural network to cotton leaf images with great accuracy,
supported by preprocessing and data augmentation strategies that
promote the performance of the system under changing lighting and
environmental conditions. Furthermore, a conversational chatbot
interface allows users to upload leaf images, obtain immediate
predictions, and receive clear and actionable disease management
recommendations. The platform is developed with React and can
be accessed on any device with simplicity and ease. The results
of the experiment indicate a high level of prediction accuracy and
positive user interaction, which means that the system can support
the process of early detection, promote smart farming, and become
a part of sustainable crop management.

Index Terms—Crop Disease Detection, Artificial Intelligence,
VGG16, Deep Learning, Chatbot System, React Interface, Smart
Farming, Sustainable Agriculture.

I. INTRODUCTION

The agricultural sector has continued to be a key source
of food and economic stability in areas where agriculture
serves most households. Nevertheless, agricultural production
is becoming increasingly threatened by unpredictable weather
patterns, soil erosion, and the proliferation of plant diseases.
The most dangerous of these factors are leaf-borne diseases,
which may lower yield, impair crop quality, and inflict grave
financial damage on farming communities. These illnesses are
commonly caused by fungi, bacteria, or viruses and spread
rapidly in favorable environments; therefore, quick and accu-
rate diagnosis is necessary to respond promptly and efficiently
to them [1], [2].

Conventional disease identification methods are strongly
dependent on the visual examination performed by farmers or
on recommendations from farm experts. Although this method
has been used since ancient times, it has several limitations: the
results can be slow, subjective, or inaccurate, especially when
different diseases exhibit similar visual symptoms [3], [4]. The
lack of access to trained specialists in many rural locations
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further contributes to delayed treatment, which results in
disease progression and the expansion of crop damage. These
long-standing issues demonstrate the necessity for scalable
automated tools that can deliver rapid and reliable disease
detection in real-world environments.

More recent developments in Artificial Intelligence (AI) and
computer vision have presented promising solutions to these
challenges. Convolutional Neural Networks (CNNs), a type of
deep learning model, have proven to be highly effective in
extracting visual features from plant data and can be used to
classify different crop diseases with high accuracy when visual
images are provided as input [5]-[7]. CNN-based systems
are capable of identifying subtle texture, color, and shape
variations that may be missed by the human eye, making them
particularly suitable for automated disease recognition [8], [9].

II. LITERATURE SURVEY

Many developing economies have agriculture as a foun-
dation, and crop productivity is often influenced by plant
diseases, which may lead to massive harvest losses. The
early and accurate detection of these diseases is important
for achieving sustainable agriculture. With improvements in
artificial intelligence (AI) and computer vision, automated
plant disease detection systems have emerged, based on ma-
chine learning and deep learning algorithms that interpret leaf
images and detect infection-related signs.

A. Traditional Machine Learning Approaches

Early research focused on classical machine learning al-
gorithms such as Support Vector Machines (SVM), Decision
Trees, and Random Forest classifiers for plant disease classi-
fication [1]. These techniques relied on manually extracted
features such as texture, color, and shape. Although they
performed reasonably well in controlled environments, their
accuracy degraded in real field conditions due to variations in
lighting, background noise, and leaf orientation [3].

Handcrafted feature extraction methods, including the Gray-
Level Co-occurrence Matrix (GLCM) and Local Binary Pat-
terns (LBP), were widely applied for leaf image analysis [4].
However, these methods were computationally expensive and
lacked robustness when applied to diverse crop species or large
datasets [2]. These limitations motivated the shift toward deep
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learning techniques that automatically learn discriminative
features.

B. Emergence of Deep Learning

The introduction of Convolutional Neural Networks (CNN5s)
resulted in significant improvements in disease identification
accuracy. CNNs automatically extract spatial and hierarchical
patterns from raw images, outperforming traditional machine
learning approaches [5]. Models such as AlexNet, VGG16, and
ResNet have been widely used in plant disease classification
tasks on datasets such as PlantVillage [6].

Transfer learning further enhanced performance by enabling
pre-trained ImageNet networks to be fine-tuned on agricultural
datasets, thereby reducing training time and computational
cost [8], [10]. Among these architectures, VGG16 gained
popularity due to its simple structure and ability to extract
deep and meaningful features. Its 16 weighted layers, uniform
3 x 3 filters, and ReLLU activation functions make it effective
for capturing complex disease patterns [9].

C. VGGI6 in Crop Disease Prediction

VGG16 has been widely used in crop disease classification
tasks due to its proven stability and high accuracy. Researchers
have demonstrated that VGG16 performs exceptionally well
across multiple crop disease datasets, including tomato, maize,
and cotton [5]. Transfer learning is commonly applied by
retaining the ImageNet-trained convolutional base and adding
new fully connected layers for crop-specific classification [11].

Several studies, such as [6] and [12], show that VGG16
consistently achieves accuracy levels above 95% for multi-
class disease datasets. Although computationally heavier than
lightweight models such as MobileNet and EfficientNet,
VGG16 remains a strong baseline due to its interpretability
and feature extraction capability [7].

Data augmentation techniques such as rotation, flipping,
scaling, and brightness adjustment are often applied during
training to enhance generalization [13]. Public datasets such
as PlantVillage and the Kaggle Cotton Disease Dataset further
support the training and evaluation of deep models for diseases
such as Bacterial Blight, Fusarium Wilt, and Leaf Curl Virus
[14].

D. Comparative Studies with Other CNN Models

Comparative studies have evaluated VGG16 against more
recent architectures. Arsenovic et al. found that VGG16 per-
formed comparably to ResNet and Inception architectures on
several agricultural datasets [15]. Hybrid models combining
VGG16 with encoder networks have also been proposed to
improve classification performance [11].

Nagasubramanian et al. demonstrated the potential of 3D
CNN models based on the VGG architecture for hyperspectral
image analysis, enabling early disease detection [16]. While
newer architectures offer better efficiency, VGG16 remains
widely used in agricultural systems due to its simplicity,
interpretability, and ease of deployment [7].

E. Integration with Management Systems

Recent studies emphasize the integration of deep learning-
based disease detection with agricultural management systems.
Systems combining CNN predictions with [oT sensors mea-
suring temperature, humidity, and soil parameters can forecast
disease occurrence under specific environmental conditions
[11], [14].

Some frameworks also integrate CNN outputs with fuzzy
logic or expert systems to generate recommendations for
irrigation, pesticide application, and nutrient management [12].
Although the present study focuses on disease classification,
future advancements may combine VGG16 predictions with
real-time sensor data to support decision-making in precision
agriculture [17], [18].

III. METHODOLOGY
A. Dataset Preparation

The sample data used in this research consists of cotton
leaf photographs obtained from two major sources. Some
images were captured manually in nearby cotton fields using
a mobile camera, while the remaining images were obtained
from publicly available agricultural datasets. After collection,
all images were carefully examined, and those that were
blurred, duplicated, or of low quality were removed. The
cleaned dataset was divided into four categories, namely
Healthy, Bacterial Blight, Fusarium Wilt, and Curl Virus,
which represent the major diseases affecting cotton crops.

Fig. 1. Some sample images from the cotton leaf dataset representing four
classes: Healthy, Bacterial Blight, Fusarium Wilt, and Curl Virus.

A stratified sampling method was used to split the dataset
into three subsets: training, validation, and testing.

B. Image Preprocessing

The collected images varied in terms of environment, res-
olution, and lighting conditions. To standardize the inputs,
all images were resized to 224 x 224, which is the required
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input size for the VGGI16 architecture. Pixel normalization
was applied to scale pixel values between 0 and 1, improving
numerical stability during training.

To improve generalization and reduce overfitting, several
data augmentation techniques were applied, including rotation,
flipping, zooming, and adjustments to brightness and contrast.

Fig. 2. Examples of cotton leaf images after preprocessing and data augmen-
tation.

C. Model Setup (VGGI6)

The VGG16 deep convolutional neural network was selected
due to its strong feature extraction capabilities. The pre-
trained convolutional base, trained on the ImageNet dataset,
was retained, while the fully connected layers were modified
and replaced with custom dense layers suitable for four-class
cotton disease classification. A final softmax layer was used
to produce class probability outputs.
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Fig. 3. Modified VGG16 architecture for cotton leaf disease classification.

Transfer learning significantly reduced training time while
improving classification accuracy, even with a moderately
sized dataset.

D. Training and Testing

The model was trained using the training subset, while the
validation dataset was used to monitor model performance
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during training. Early stopping was applied to prevent overfit-
ting by monitoring the validation accuracy plateau. Training
and validation accuracy and loss values were recorded across
epochs.
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Fig. 4. Dataset class distribution showing the number of images in each
category: Bacterial Blight, Curl Virus, Fusarium Wilt, and Healthy.
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Fig. 5. Training and validation loss curves over multiple epochs.

After training, the model was evaluated using the test
dataset. A confusion matrix was generated to analyze class-
wise prediction accuracy and identify misclassification pat-
terns.

Finally, the trained model was exported and integrated into
a user interface that allows users to upload cotton leaf images
and receive real-time disease predictions.

IV. EXPERIMENTAL SETUP

Experiment Analysis aim of the analysis was to determine
the level of effectiveness, stability and practicality of the
suggested VGG16-based cotton leaf disease detection system.
This paragraph describes how we prepared the data set,
how we divided the data set into training and testing sets,
the evaluation metrics, the parameter of the model, and the
hardware and software environment in which the model was
implemented.

A. Dataset Description

The dataset that is used to conduct this study is the set of
four types of cotton leaf images: Bacterial Blight, Curl Virus,
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Fusarium Wilt, and Healthy. The photos were gathered not
only in publicly available agricultural repositories but also by
means of manual field sampling. Poor photos and repetitive
and blurred photos were eliminated to facilitate reliability of
the dataset. The last dataset was balanced in all the four
classes. In order to depict the real world conditions, the picture
set comprised images taken in dissimilar lighting conditions,
backgrounds, and angles of viewing.

B. Data Splitting

The data set was split into three subsets to provide the fair
assessment of the model:
item concept 70% Training set - trigger learning feature
representations. item 20 percent validating set - this set
is applied to control overfitting and model tuning. item
10
This branching allowed the efficient training and, also,
provided that the model transferred well to the unobservable
samples.

C. Preprocessing Pipeline

Any image was found to be scaled into a size of 224 x
224 pixels which fitted the input specifications of the VGG16
network. The pixel values were scaled to the scale between
[0,1]. The methods of data augmentation were used in the
process of training the data to enhance the diversity of the
data and minimize overfitting such as:

o random rotation,

« horizontal flipping,

e zoom transformation, item adjustment of brightness and

contrast.

These preprocessing steps contributed to adapting the model
to variations which are apparent in real field-captured leaf
images.

The model used in this study is presented below.

The ImageNet pre-trained weights of VGG16 were used.
The initial completely connected layers were substituted with
custom dense layers that were used in four-class classification.
An output layer was provided with a softmax activation
function. The parameters of the key training were:

o Optimizer: Adam,

o Learning rate: 0.0001,

o Batch size: 32, item Epochs: 25 (early stopping).

To stop training, there was an early stopping mechanism in
which the training stops after no further validation accuracy
improvement was realized in successive epochs.

D. Evaluation Metrics

There were several measures used to determine model
performance:
item Accuracy It is the overall correctness of predictions.
item Precision Precision action of sameness to exactness
within each data-set: proportion of accurately anticipated
positive cases in a disease class. item Remembering
(recession) -the model can identify diseased samples
correctly. item Fl-score— harmonic mean of recall and
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precision. item Confusion Matrix - visualization of the
performance of the class-wise prediction.

These measures were used to give a complete evaluation of
the model regarding various types of diseases.

Hardware and Software Environment The knowledge base
is made up of computer hardware and software com-
ponents.j—human—;Hardware and Software Environment
Computer hardware and software are components of the
knowledge base.

All experimentation took place on a workstation that is
actually furnished with:

o Intel Core i5 processor,
o 16 GB RAM,
o NVIDIA GTX 1650 GPU.

The software stack included:

o Python 3.10, TensorFlow and Keras, deep learning, item
Image processing, NumPy and OpenCYV, item visualiza-
tion Matplotlib, item react to the user interface, item
MongoDB to store the data in the back-end.

Such an arrangement facilitated effective training, assess-
ment, and implementation of the disease detecting system.

E. Implementation Details

The trained model was exported during the deployment
stage and used as a prediction APIL. The images of the cotton
leaf are uploaded by users on the web interface and the
backend uses the image, runs the model and returns the results
in the form of disease predictions, and confidence scores. The
results of prediction are saved in the backend database so as
to be tracked and analyzed.

V. RESULTS AND DISCUSSION

This section summarises the performance of the VGG16-
based cotton leaf disease classification system. The model
was evaluated using unseen test samples, and its ability to
recognise four target classes—Bacterial Blight, Curl Virus,
Fusarium Wilt, and Healthy leaves—was examined. Standard
evaluation measures such as accuracy, precision, recall, and
F1-score were used to understand the behaviour and reliability
of the model in practical settings.

A. Comparative Model Performance

After dataset preparation, the data were divided into
training, validation, and testing sets following preprocessing
and augmentation procedures. The fine-tuned VGG16 model
demonstrated strong classification capability, achieving an
overall accuracy of approximately 92%. The precision and
recall values were closely aligned at 91% and 90%, respec-
tively, indicating effective identification of diseased leaves
while maintaining low false detection rates. An Fl-score of
0.90 further confirms the consistency of predictions across all
disease categories.

When compared with lighter architectures such as Mo-
bileNet and shallow convolutional neural networks used in
related studies, the deeper feature extraction layers of VGG16

Page 4

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)



Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

International Journal of Engineering Research & Technology (IJERT)
I SSN: 2278-0181
Vol. 14 Issue 12 , December - 2025

Confusion Matrix

70

bacterial_blight

Actual
curl_virus

fussarium_wilt

-10

healthy

healthy

!
fussarium_wilt
Predicted

i i
bacterial_blight aurl_virus

Fig. 6. Confusion matrix showing class-wise performance of the trained
VGG16 model.

contributed to improved representation of disease-specific pat-
terns. This makes the model suitable for applications where
classification accuracy is prioritised over computational effi-
ciency.

B. Interpretation of Model Behaviour

The evaluation results indicate that the model effectively
captures significant visual features such as texture variations,
colour changes, leaf curling patterns, and fungal marks. These
visual cues enable the classifier to differentiate between dis-
ease categories that often appear similar during early stages,
particularly Bacterial Blight and Fusarium Wilt.

1) Prediction Confidence: During testing, most predictions
were associated with confidence scores ranging from 85%
to 99%. Higher confidence values were generally observed
in images displaying clear disease symptoms, while reduced
confidence occurred in samples affected by poor lighting,
partial visibility, or mild infections.

2) Impact of Image Quality: The performance of the system
was influenced by the quality of input images. Conditions
such as shadows, motion blur, excessive sunlight, and cluttered
backgrounds occasionally reduced prediction confidence. This
observation highlights the importance of capturing clear and
focused leaf images to obtain reliable diagnostic results.

C. Deployment and Practical Evaluation

Following evaluation, the trained model was deployed on
a web-based platform that allows users to upload cotton leaf
images and receive instant diagnostic feedback. The deployed
application operated smoothly, providing rapid predictions
along with the predicted disease class and associated confi-
dence score.

The backend system maintains a record of all predictions,
including the uploaded image, detected disease category, confi-
dence percentage, and timestamp. This record-keeping feature
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Fig. 7. Example of model prediction on a cotton leaf image (Predicted class:
Healthy).

supports long-term monitoring of disease trends and aids in
identifying recurring infection patterns. User testing indicated
that the interface was easy to use and understandable even for
individuals without technical expertise. The fast response time
further supports effective decision-making in field conditions.

D. Strengths and Limitations

1) Strengths:

o The model achieved high accuracy and reliable perfor-
mance across all four cotton leaf disease classes.

o Balanced precision and recall values indicate good gen-
eralisation capability.

o The system effectively handled diverse disease patterns
and symptom variations.

« Real-time prediction capability makes the model suitable
for practical field deployment.

o Backend data storage enables long-term disease monitor-
ing and analysis.

2) Limitations:

e VGGI6 requires higher computational resources com-
pared to lightweight models, limiting deployment on low-
end devices.

o Prediction confidence decreases for images captured un-
der poor lighting or unclear conditions.

o The system currently supports only four cotton leaf
conditions, which restricts its applicability.

o Visual explanation techniques such as heatmaps are not
included to highlight influential regions in predictions.

E. Summary of Findings

Overall, the proposed system demonstrated reliable perfor-
mance across varying input conditions and showed strong
capability in identifying cotton leaf diseases. The combination
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of accurate classification, real-time usability, and data logging
features makes the system a practical tool for early disease
detection in cotton farming. Although certain limitations re-
main, primarily related to image quality and computational
requirements, the results suggest that the approach can support
timely decision-making and help reduce crop losses through
early diagnosis and intervention.

VI. CONCLUSION

This study demonstrates that deep learning methods,
particularly the VGG16 architecture, can effectively iden-
tify major cotton leaf diseases with high accuracy. The
model achieved strong performance across all four targeted
classes—Bacterial Blight, Curl Virus, Fusarium Wilt, and
Healthy leaves—showing that it was able to learn relevant
visual features and distinguish between similar symptom pat-
terns. The close alignment of precision and recall values
indicates that the classifier maintained stable behaviour and
produced reliable results with minimal misclassification. Be-
yond the model’s accuracy, its integration into a web-based
application highlights its practical utility, enabling users to ob-
tain rapid and clear disease predictions directly from uploaded
images. Such real-time accessibility is valuable in agricultural
settings where early diagnosis plays a key role in preventing
crop damage. Overall, the findings of this work show that
integrating deep learning into crop monitoring workflows can
support farmers in making informed decisions, improving
crop management, and reducing yield losses. With further
dataset expansion and inclusion of more disease categories, the
proposed system has the potential to evolve into a comprehen-
sive solution for supporting sustainable and technology-driven
cotton farming.
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