Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

International Journal of Engineering Research & Technology (IJERT)

| SSN: 2278-0181
Vol. 15 Issue 01, January - 2026

Al-Assisted Visual Test and Bug Management
Platform for Manual Testers

Enhancing Manual Software Testing Efficiency

Mansi Rajgopal Kulkarni
Department of Software Engineering
Birla Institute of Technology and Science (BITS) Pilani
Pune, India

Abstract - Manual software testing remains a critical phase in
the software development lifecycle; however, it is often time-
consuming, error-prone, and heavily dependent on human effort
for bug identification, documentation, and test case management.
With the increasing complexity of modern applications,
traditional bug tracking tools lack intelligent assistance for visual
defect detection and structured test management. This paper
presents the design and development of an Al-assisted visual test
and bug management platform aimed at improving the efficiency
and accuracy of manual testers. The proposed system integrates
visual-based bug reporting, AI-driven bug description generation,
reusable test case management, and analytical dashboards within
a unified platform. The solution leverages artificial intelligence
models for image-based issue understanding and natural language
processing to generate structured bug reports automatically. A
modular architecture is implemented using modern web
technologies to ensure scalability, usability, and ease of
integration. Experimental evaluation demonstrates that the
platform significantly reduces bug reporting time, improves defect
documentation quality, and enhances tester productivity. The
system provides a practical and cost-effective solution for teams
transitioning from traditional manual testing processes to Al-
assisted quality assurance workflows.

Keywords - Manual Testing; Bug Management; Visual Testing;
Artificial Intelligence; Software Quality Assurance

L. INTRODUCTION

Software quality assurance plays a vital role in delivering
reliable and user-friendly applications. Despite advancements
in automated testing, manual testing continues to be widely
used due to its flexibility, exploratory capabilities, and ability
to evaluate user experience aspects. However, manual testers
face challenges such as repetitive test execution, inconsistent
bug documentation, lack of visual context, and inefficient
collaboration across teams. Traditional bug tracking systems
primarily rely on textual descriptions, which often lead to
ambiguity and misinterpretation.

Recent advancements in artificial intelligence have created
opportunities to enhance manual testing workflows through
intelligent assistance. Visual understanding, natural language
processing, and data-driven insights can significantly improve
bug identification and reporting accuracy. This research focuses
on addressing the gap between manual testing practices and
intelligent test management tools by proposing an Al-assisted
visual testing and bug management platform. The objective of
the proposed system is to simplify bug reporting, enhance test

[JERTV15IS010338

case reusability, and provide actionable insights through visual
dashboards, thereby improving overall testing efficiency.

II. RELATED WORK

Several studies have explored the application of artificial
intelligence in software testing, particularly in automated test
generation and defect prediction. Existing bug tracking tools
such as Jira and Bugzilla provide structured issue management
but lack Al-based visual understanding and automated bug
description capabilities. Research on visual testing frameworks
has primarily focused on UI comparison and automated
regression testing, leaving manual testers with limited
intelligent support. Recent advancements in large language
models have demonstrated potential in generating test cases and
defect descriptions; however, their integration into practical
manual testing workflows remains limited. This work builds
upon existing research by combining visual testing, Al-
generated insights, and test management into a unified platform
tailored for manual testers.

III. SYSTEM ARCHITECTURE

The proposed platform follows a modular and service-
oriented architecture to ensure scalability and maintainability.
The system consists of four primary layers: User Interface
Layer, Application Layer, Al Processing Layer, and Data
Management Layer.

s

e g

—

———

Fig. illustrates the high-level architecture and interaction
among system modules.

The User Interface Layer provides dashboards, visual bug
reporting screens, and test case management views. The

Page 1

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

Application Layer handles business logic, authentication, and
workflow orchestration. The Al Processing Layer integrates
image analysis and natural language generation models to
interpret visual inputs and generate structured bug descriptions.
The Data Management Layer stores bugs, test cases, user data,
and analytics information using relational and non-relational
databases along with file storage for screenshots and
attachments. The architecture supports seamless interaction
between manual testers and Al components, enabling efficient
defect tracking and test reuse.

IV. METHODOLOGY

The development methodology follows an iterative and
incremental approach. Initially, requirements were gathered by
analyzing common pain points faced by manual testers.
Functional requirements included visual bug reporting, Al-
generated bug summaries, reusable test cases, and dashboard
analytics. Non-functional requirements focused on usability,
performance, and scalability.

The system workflow begins with the tester uploading a
screenshot or image representing a defect. The Al module
processes the visual input and generates a structured bug
description, including title, steps to reproduce, expected
behavior, and actual behavior. Testers can review and edit the
generated content before submission. Reusable test cases are
stored in a centralized repository, allowing testers to quickly
associate them with new defects. Dashboard analytics provide
insights into bug trends, severity distribution, and testing
progress.

V. IMPLEMENTATION AND TOOLS

The platform is implemented using modern full-stack
technologies. The frontend is developed using React to provide
a responsive and user-friendly interface. The backend services
are implemented using FastAPI to ensure high performance and
modular API design. PostgreSQL is used as the primary
database for structured data storage. Al capabilities are
implemented using locally hosted open-source language
models to generate bug descriptions and test case suggestions
without relying on paid APIs.

Additional tools such as Docker are used for containerization,
enabling consistent deployment across environments.
Authentication and role-based access control are implemented
to ensure data security. The modular design allows future
integration of additional AI models and automation features.

The implemented platform is composed of modular services
that collectively support Al-assisted manual testing workflows.
The key functional modules developed as part of the system are
summarized as follows:

* Visual bug reporting module for uploading screenshots and
capturing defect context.

¢ Al-assisted bug report generation module that automatically
creates structured bug descriptions.

[JERTV15IS010338

International Journal of Engineering Research & Technology (IJERT)

| SSN: 2278-0181
Vol. 15 Issue 01, January - 2026

* Reusable test case management module with a centralized test
case repository.

* Analytics and dashboard module for monitoring defect trends
and testing progress.

VL RESULTS AND DISCUSSION

The system was evaluated by simulating real-world manual
testing scenarios. Key performance metrics included bug
reporting time, documentation quality, and tester productivity.
Results indicate a noticeable reduction in the time required to
create detailed bug reports due to Al-assisted description
generation. The quality and consistency of bug documentation
improved, leading to better communication between testers and
developers. The reusable test case feature minimized
duplication of effort and promoted standardized testing
practices. Dashboard analytics provided valuable insights for
test managers, enabling data-driven decision-making. Overall,
the platform demonstrated significant improvements over
traditional manual testing tools.

VII. CONCLUSION AND FUTURE WORK

This paper presented the design and development of an Al-
assisted visual test and bug management platform aimed at
enhancing manual testing workflows. By integrating visual-
based bug reporting, Al-generated documentation, reusable test
cases, and analytical dashboards, the proposed system
addresses key limitations of traditional bug tracking tools.
Experimental results show improved efficiency, accuracy, and
usability for manual testers.

Future work includes integrating automated test execution,
expanding Al capabilities for defect classification, and
enhancing visual analysis accuracy. The platform can also be
extended to support cross-browser testing and continuous
integration pipelines, further bridging the gap between manual
and intelligent testing practices.

ACKNOWLEDGMENT

The author expresses sincere gratitude to the faculty and
project guide at Birla Institute of Technology and Science Pilani
for their guidance, support, and encouragement throughout the
course of this research work.

REFERENCES

[11 1. Sommerville, Software Engineering, Pearson Education, 2016.

[2] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing,
Wiley, 2011.

[31 A. Bertolino, “Software Testing Research: Achievements, Challenges,
Dreams,” Future of Software Engineering, 2007.

[4] IEEE, “Standard for Software Test Documentation,” IEEE Std 829-2008.

[5]1 S. Thummalapenta and T. Xie, “Automated Test Case Generation,” IEEE
Software, 2009.

J. Humble and D. Farley, Continuous Delivery, Addison-Wesley, 2011.

M. Fowler, Refactoring: Improving the Design of Existing Code,
Addison-Wesley, 2018

—_ =
~N O
—

Page 2

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

