
AI-Assisted Visual Test and Bug Management 

Platform for Manual Testers 
Enhancing Manual Software Testing Efficiency 

 

 

Mansi Rajgopal Kulkarni 
Department of Software Engineering 

Birla Institute of Technology and Science (BITS) Pilani 

Pune, India 

 

Abstract - Manual software testing remains a critical phase in 

the software development lifecycle; however, it is often time-

consuming, error-prone, and heavily dependent on human effort 

for bug identification, documentation, and test case management. 

With the increasing complexity of modern applications, 

traditional bug tracking tools lack intelligent assistance for visual 

defect detection and structured test management. This paper 

presents the design and development of an AI-assisted visual test 

and bug management platform aimed at improving the efficiency 

and accuracy of manual testers. The proposed system integrates 

visual-based bug reporting, AI-driven bug description generation, 

reusable test case management, and analytical dashboards within 

a unified platform. The solution leverages artificial intelligence 

models for image-based issue understanding and natural language 

processing to generate structured bug reports automatically. A 

modular architecture is implemented using modern web 

technologies to ensure scalability, usability, and ease of 

integration. Experimental evaluation demonstrates that the 

platform significantly reduces bug reporting time, improves defect 

documentation quality, and enhances tester productivity. The 

system provides a practical and cost-effective solution for teams 

transitioning from traditional manual testing processes to AI-

assisted quality assurance workflows. 

Keywords - Manual Testing; Bug Management; Visual Testing; 

Artificial Intelligence; Software Quality Assurance 

I. INTRODUCTION 

Software quality assurance plays a vital role in delivering 
reliable and user-friendly applications. Despite advancements 
in automated testing, manual testing continues to be widely 
used due to its flexibility, exploratory capabilities, and ability 
to evaluate user experience aspects. However, manual testers 
face challenges such as repetitive test execution, inconsistent 
bug documentation, lack of visual context, and inefficient 
collaboration across teams. Traditional bug tracking systems 
primarily rely on textual descriptions, which often lead to 
ambiguity and misinterpretation. 

Recent advancements in artificial intelligence have created 
opportunities to enhance manual testing workflows through 
intelligent assistance. Visual understanding, natural language 
processing, and data-driven insights can significantly improve 
bug identification and reporting accuracy. This research focuses 
on addressing the gap between manual testing practices and 
intelligent test management tools by proposing an AI-assisted 
visual testing and bug management platform. The objective of 
the proposed system is to simplify bug reporting, enhance test 

case reusability, and provide actionable insights through visual 
dashboards, thereby improving overall testing efficiency. 

II. RELATED WORK 

 Several studies have explored the application of artificial 
intelligence in software testing, particularly in automated test 
generation and defect prediction. Existing bug tracking tools 
such as Jira and Bugzilla provide structured issue management 
but lack AI-based visual understanding and automated bug 
description capabilities. Research on visual testing frameworks 
has primarily focused on UI comparison and automated 
regression testing, leaving manual testers with limited 
intelligent support. Recent advancements in large language 
models have demonstrated potential in generating test cases and 
defect descriptions; however, their integration into practical 
manual testing workflows remains limited. This work builds 
upon existing research by combining visual testing, AI-
generated insights, and test management into a unified platform 
tailored for manual testers. 

III. SYSTEM ARCHITECTURE 

 The proposed platform follows a modular and service-
oriented architecture to ensure scalability and maintainability. 
The system consists of four primary layers: User Interface 
Layer, Application Layer, AI Processing Layer, and Data 
Management Layer. 

 

Fig. illustrates the high-level architecture and interaction 
among system modules. 

The User Interface Layer provides dashboards, visual bug 
reporting screens, and test case management views. The 

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 01 , January - 2026

IJERTV15IS010338 Page 1

(This work is licensed under a Creative Commons Attribution 4.0 International License.)



Application Layer handles business logic, authentication, and 
workflow orchestration. The AI Processing Layer integrates 
image analysis and natural language generation models to 
interpret visual inputs and generate structured bug descriptions. 
The Data Management Layer stores bugs, test cases, user data, 
and analytics information using relational and non-relational 
databases along with file storage for screenshots and 
attachments. The architecture supports seamless interaction 
between manual testers and AI components, enabling efficient 
defect tracking and test reuse. 

IV. METHODOLOGY 

 The development methodology follows an iterative and 
incremental approach. Initially, requirements were gathered by 
analyzing common pain points faced by manual testers. 
Functional requirements included visual bug reporting, AI-
generated bug summaries, reusable test cases, and dashboard 
analytics. Non-functional requirements focused on usability, 
performance, and scalability. 

The system workflow begins with the tester uploading a 
screenshot or image representing a defect. The AI module 
processes the visual input and generates a structured bug 
description, including title, steps to reproduce, expected 
behavior, and actual behavior. Testers can review and edit the 
generated content before submission. Reusable test cases are 
stored in a centralized repository, allowing testers to quickly 
associate them with new defects. Dashboard analytics provide 
insights into bug trends, severity distribution, and testing 
progress. 

V. IMPLEMENTATION AND TOOLS 

 The platform is implemented using modern full-stack 

technologies. The frontend is developed using React to provide 

a responsive and user-friendly interface. The backend services 

are implemented using FastAPI to ensure high performance and 

modular API design. PostgreSQL is used as the primary 

database for structured data storage. AI capabilities are 

implemented using locally hosted open-source language 

models to generate bug descriptions and test case suggestions 

without relying on paid APIs. 

Additional tools such as Docker are used for containerization, 

enabling consistent deployment across environments. 

Authentication and role-based access control are implemented 

to ensure data security. The modular design allows future 

integration of additional AI models and automation features. 

The implemented platform is composed of modular services 

that collectively support AI-assisted manual testing workflows. 

The key functional modules developed as part of the system are 

summarized as follows: 

• Visual bug reporting module for uploading screenshots and 

capturing defect context. 

• AI-assisted bug report generation module that automatically 

creates structured bug descriptions.  

• Reusable test case management module with a centralized test 

case repository. 

• Analytics and dashboard module for monitoring defect trends 

and testing progress. 

VI. RESULTS AND DISCUSSION 

 The system was evaluated by simulating real-world manual 

testing scenarios. Key performance metrics included bug 

reporting time, documentation quality, and tester productivity. 

Results indicate a noticeable reduction in the time required to 

create detailed bug reports due to AI-assisted description 

generation. The quality and consistency of bug documentation 

improved, leading to better communication between testers and 

developers. The reusable test case feature minimized 

duplication of effort and promoted standardized testing 

practices. Dashboard analytics provided valuable insights for 

test managers, enabling data-driven decision-making. Overall, 

the platform demonstrated significant improvements over 

traditional manual testing tools. 

VII. CONCLUSION AND FUTURE WORK 

 This paper presented the design and development of an AI-

assisted visual test and bug management platform aimed at 

enhancing manual testing workflows. By integrating visual-

based bug reporting, AI-generated documentation, reusable test 

cases, and analytical dashboards, the proposed system 

addresses key limitations of traditional bug tracking tools. 

Experimental results show improved efficiency, accuracy, and 

usability for manual testers. 

Future work includes integrating automated test execution, 

expanding AI capabilities for defect classification, and 

enhancing visual analysis accuracy. The platform can also be 

extended to support cross-browser testing and continuous 

integration pipelines, further bridging the gap between manual 

and intelligent testing practices. 

ACKNOWLEDGMENT 

The author expresses sincere gratitude to the faculty and 
project guide at Birla Institute of Technology and Science Pilani 
for their guidance, support, and encouragement throughout the 
course of this research work. 

REFERENCES 

[1] I. Sommerville, Software Engineering, Pearson Education, 2016. 

[2] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing, 

Wiley, 2011. 

[3] A. Bertolino, “Software Testing Research: Achievements, Challenges, 

Dreams,” Future of Software Engineering, 2007. 

[4] IEEE, “Standard for Software Test Documentation,” IEEE Std 829-2008. 

[5] S. Thummalapenta and T. Xie, “Automated Test Case Generation,” IEEE 

Software, 2009. 

[6] J. Humble and D. Farley, Continuous Delivery, Addison-Wesley, 2011. 

[7] M. Fowler, Refactoring: Improving the Design of Existing Code, 

Addison-Wesley, 2018 

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 01 , January - 2026

IJERTV15IS010338 Page 2

(This work is licensed under a Creative Commons Attribution 4.0 International License.)


