Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

International Journal of Engineering Research & Technology (IJERT)

| SSN: 2278-0181
Vol. 14 Issue 11, November - 2025

Advancing One-Shot Malware Categorization by
Enhancing Early-Stage Detection Techniques

Mentor details
Dr. B Santosh Kumar

Nikitha Muthyala
Cybersecurity
Institute of Aeronautical Engineering Hyderabad, India

Abstract - The need for sophisticated and intelligent detection
systems that can recognize new and changing threats has
increased due to the malware's explosive growth. When it
comes to identifying previously undiscovered malware
variants, especially in their early stages, traditional signature-
based and heuristic approaches frequently fall short. This
study introduces a new method for classifying malware
that makes use of one-shot learning techniques—more
precisely, a Siamese Neural Network architecture. Based
on learned similarity metrics, the suggested system
successfully generalizes to detect and classify unseen
malware after being trained on a small number of samples.
Flask was used to create a real-time prediction API that
enabled interactive file uploads and automated analysis driven
by artificial intelligence. It was backed by a secure frontend
interface and a PostgreSQL-based logging system.
Experiments on a carefully selected malware dataset show
that the model requires little training data and achieves
high accuracy in early-stage detection. The findings support
one-shot learning's potential for low-data, scalable
malware classification systems and imply that this design can
greatly speed up cybersecurity operations' response times.
An effective and deployable Al-based framework for
improving early malware detection capabilities in practical
settings is provided by this study.

Keywords: One-shot learning, Malware detection, Siamese neural
network, Cybersecurity, Early-stage classification, Deep learning,
Flask API, Threat analysis, AI-based malware categorization,
Minimal data training.

L INTRODUCTION

Malware threats are becoming more sophisticated and more
frequent in the quickly changing field of
cybersecurity. Conventional malware detection systems
find it difficult to instantly adjust to new or low-
prevalence threats because they frequently rely on
sizable, labeled datasets and signature-based
techniques. System integrity is seriously jeopardized by

this restriction, particularly in high-security settings where
prompt action is necessary. To overcome this difficulty, we
suggest a malware

classification framework based on one-shot learning that
uses

IJERTV 1415110163

Shunnewar Rakesh
Cybersecurity
Institute of Aeronautical Engineering Hyderabad, India

Ramavath Hemavathi
Cybersecurity
Institute of Aeronautical Engineering Hyderabad, India

little training data to identify and categorize malware
sam the model to learn distance-based relationships
and generalize to unseen samples by utilizing a
Siamese Neural Network (SNN) architecture that
has been trained on vectorized malware features. In
contrast to traditional deep learning techniques,
which call for thousands of labeled examples for each
class, our model is especially well-suited for zero-day
attack scenarios because it is tuned for early-stage detection.

We further improve this system's usefulness
by incorporating the trained model into a Flask-based
REST API, which allows for easy malware file uploading
and real-time threat analysis. Users can
view detection trends, download reports, and keep an
eye on scan history using a safe and user-friendly web
dashboard.

In addition to showcasing high accuracy and robustness
in early detection with minimal data, this paper covers
the entire project lifecycle, from dataset processing and
model training to deployment. The effectiveness of
one-shot learning models in next-generation
cybersecurity defense systems is demonstrated by our
findings.

IL. RELATED WORK

Signature-based methods, which compare incoming files
to databases of known malware signatures, have been
the mainstay of malware detection for a long time.
These systems perform poorly against zero-day assaults
despite being successful against threats that have
already been recognized. They also show notable
weaknesses when faced with new, polymorphic, or
obfuscated malware variants [1]. As a result, signature-
based approaches are frequently inadequate for
contemporary cybersecurity requirements that call for
quick and flexible responses.

Deep learning (DL) and machine learning (ML)
approaches have been thoroughly investigated for malware
detection in an effort to address these drawbacks. In
order to increase generalization capabilities, machine
learning (ML) techniques use characteristics taken
from static binary or

Page 1

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

dynamic behavioral analysis to train classifiers such
decision trees, support vector machines (SVMs), and
random forests [2][3]. DL approaches, particularly
convolutional neural networks (CNNs) and recurrent neural
networks (RNNs), have demonstrated superior performance
by learning hierarchical and temporal features directly from
raw data, reducing the need for manual feature engineering
[4]. Despite their efficacy, these models generally require
substantial labeled datasets, which are costly and time-
consuming to curate—especially for rare or

emerging malware families.

The research community has recently resorted to few-shot
and one-shot learning paradigms in order to overcome the
problem of minimal labeled data. The goal of these methods
is to teach generalized representations and similarity metrics
so that models can categorize new categories with few
samples. Model-agnostic meta-learning (MAML) and
archetypal networks are two examples of meta-learning
frameworks that have been successfully used to
cybersecurity challenges [5]. Siamese Neural Networks
(SNNs) in particular have become a potent tool for low-data
classification issues because they learn to compare input
pairs using shared weights and a distance measure [6].While
SNNs have achieved success in domains like biometric
authentication and image recognition, their application in
malware detection remains nascent and largely unexplored
in practical deployments.

By using a Siamese Neural Network architecture trained on
vectorized malware properties, our suggested framework
makes progress in this field by allowing for the quick and
precise categorization of malware samples that haven't been
seen before with a small number of training instances. In
contrast to traditional deep learning techniques, our
methodology significantly lessens reliance on sizable,
labeled datasets, which makes it especially appropriate for
early-stage and zero-day malware detection. Furthermore,
by implementing the system as a scalable Flask-based REST
API with a safe and engaging web dashboard, we close the
gap between theoretical models and practical cybersecurity.
This end-to-end solution improves deployment readiness
and practical applicability by enabling real-time malware
analysis, results tracking, and user-friendly monitoring.

III. PROPOSED METHODOLOGY

This section describes the detailed design and
implementation of the proposed one-shot malware
categorization system, including dataset preparation, model
architecture, training methodology, and deployment
framework.

3.1 Dataset and Preprocessing

n addition to the EMBER 2018 dataset, the Drebin dataset
was used to evaluate the system on Android malware.
Drebin is a benchmark static malware dataset consisting of
over 5,600 malicious APKs and 120,000 benign apps,
extracted from real-world Android applications. Feature
extraction was performed on AndroidManifest.xml and
classes.dex files to derive permissions, API calls, and
hardware features. These were vectorized and normalized to
form input tensors suitable for the Siamese Neural Network.

IJERTV 1415110163

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 14 Issue 11, November - 2025

32 Siamese Neural Network Architecture

The core detection model is a Siamese Neural Network
(SNN), consisting of twin subnetworks sharing weights that
encode input feature vectors into compact embeddings. This
structure learns a similarity metric by calculating the
distance between embeddings, enabling the model to
compare malware samples and classify unseen variants
based on their closeness to known examples.

To avoid overfitting, each subnetwork consists of fully
linked layers with dropout regularization and ReLU
activation functions. A contrastive loss function directs the
network during training to maximize the distance between
embeddings of dissimilar pairs and minimize it for
embeddings of comparable malware samples.

User System ML model Threat DB

Upload file

Process data

Extract features

Classify malware

Is malware Known?

Yes

Store result

Update ThreatDE

Done

Is behavior malicious?

Yes

Trigger Security alerts

Alert security team

Acknowledge alert

nofify user

3.3 Training Procedure

Training was performed on pairs of malware samples
labeled as similar (same family) or dissimilar (different
families). Mini-batches contained balanced positive and
negative pairs to ensure stable learning. The Adam
optimizer with an initial learning rate of 0.001 was used.
Early stopping based on validation loss was implemented to
avoid overfitting.

The one-shot learning setup enables the model to generalize
effectively to unseen malware families by learning a
meaningful feature similarity metric rather than memorizing
class-specific patterns.

3.4 Deployment Framework

For practical real-time analysis, the trained model was
integrated into a Flask-based REST API. The API allows
users to upload malware files, performs feature extraction,
and computes similarity scores to known malware
embeddings.

The backend is complemented by a secure and responsive
web dashboard built with HTML, CSS, and JavaScript,
allowing users to monitor scan history, visualize detection
trends, and download reports. The system is containerized
using Docker to facilitate easy deployment and scalability

Page 2

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

across platforms.

Malware Detection System

Upload File for Malware Scan
Choose a file (EXE, DLL, BAT, VBS) to scan for malware

Choose File no fle selected

Upload and Scan

©2025 Malware Detection System | Al Rights Reserved

Figure 1: Initial Upload Screen

Figure 1. The malware detection system's initial interface
where users can upload files (e.g., EXE, DLL, BAT) for
scanning.

ese ¢ 200 W

Malware Detection System

Upload File for Malware Scan

Choose a file (EXE, DLL, BAT, VBS) to scan for malware

Choose Fie 1mb.exe

Upload and Scan

© 2025 Matware Detection System | All Rights Reserved

Figure 2: File Selected & Ready to Scan

Figure 2. User interface with a selected file (Imb.exe) ready
for scanning.

< i S h o+ E

Malware Detection Result

Cloan File X

File Scanned: upicads/1mb.axe
led File Entropy: 4 54623536 136057

ntropy: 5.0

Similarity Score: 0 5115295

Threshold: 0.5

status: {f Ciean File

Scan Results

4 Ciean File

Similarity Score: 05115295
No threats detected in the uploaded file

Scan Another Fila

Figure 3: Scan Result Output

[JERTV 1415110163

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 14 Issue 11, November - 2025

Figure 3. Real-time scan result output showing entropy
values, similarity score, and classification status (Clean
File), based on one- shot similarity thresholding.

Iv. EXPERIMENTAL SETUP

This section outlines the dataset used, preprocessing
methods, model configuration, and system environment
under which the proposed one-shot malware categorization
framework was developed and evaluated.

A. Dataset and Preprocessing

For mobile malware analysis, we employed the Drebin
dataset, which provides static features of Android
applications. To adapt Drebin to the one-shot learning
paradigm, representative malware families were selected to
construct positive and negative pairs. Features were
embedded into fixed-length vectors using bag-of-words
encoding and TF-IDF weighting before input to the model.

B. Model Configuration

The proposed model is based on a Siamese Neural Network
architecture implemented using PyTorch. Each sub-network
comprises fully connected layers with ReLU activation
functions. Cosine similarity is employed to compute the
distance between encoded feature vectors, and contrastive
loss is used to train the model to distinguish between similar
and dissimilar pairs.

The model was trained with the following configuration:

. Optimizer: Adam

. Learning rate: 0.001

. Batch size: 64

. Epochs: 50

. Loss Function: Contrastive Loss

. Distance Metric: Cosine Similarity

Early stopping was employed to avoid overfitting, and
model performance was validated on a held-out validation
set during training.

C. System Environment
All experiments were performed on a standard consumer-

grade system running Microsoft Windows. The system
specifications are as follows:

. Operating System: Windows 10 (64-bit)

. Processor: Intel Core 15

. Memory: § GB RAM

. GPU: Integrated (with CPU fallback enabled)

. Development Environment: Python 3.11, PyTorch,
Flask, scikit-learn, and Visual Studio Code

. Virtual Environment: Configured using venv

Despite limited hardware capabilities, the model was
successfully trained and deployed by optimizing batch sizes
and leveraging CPU- based execution for inference.

Page 3

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

D. API Deployment

To facilitate real-time malware similarity analysis, the
trained model was incorporated into a RESTful API built
with Flask. Vectorized malware features are input to the
API, which then returns a similarity score based on
proximity to known samples that indicates the likelihood of
maliciousness. For user interaction, a responsive web
dashboard was also created, allowing for the submission of
scans, the visualization of results, and the creation of
downloadable reports.

The average CPU inference time for each sample was found
to be around 0.6 seconds, indicating that real-time
deployment is feasible even on systems with limited
resources.

V. RESULTS AND ANALYSIS

This section presents the performance evaluation of the
proposed one-shot malware categorization model, along
with a detailed analysis of its effectiveness in detecting
previously unseen malware variants.

A. Evaluation Metrics

To assess the performance of the Siamese Neural Network
(SNN) model, the following standard classification metrics
were employed:

. Accuracy: The proportion of correctly classified
sample pairs.
. Precision: The ratio of true positives to the total

predicted positives, reflecting the system’s ability to
minimize false alarms.

. Recall (Sensitivity): The ratio of true positives to
the total actual positives, indicating the model’s ability to
detect malicious samples.

. F1-Score: The harmonic mean of precision and
recall, providing a balanced evaluation metric.
. ROC-AUC (Receiver Operating Characteristic —

Area Under Curve): Evaluates the model's ability to
distinguish between similar and dissimilar sample pairs,
especially useful under class imbalance.

B. Quantitative Results

The SNN achieved strong results when evaluated on the
unseen malware families from the EMBER dataset. The
following performance metrics were recorded on the test set:

. Accuracy: 92.3%
. Precision: 90.8%
. Recall: 91.5%

. F1-Score: 91.1%
. ROC-AUC: 0.95

These results indicate the model’s robust generalization
ability, even with limited training data, and highlight its
effectiveness in identifying zero-day threats using
similarity-based classification.

IJERTV141S110163

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 14 Issue 11, November - 2025

Confusion Matrix

1750

1500

1250

1000

Actual

- 750

- 500

- 250

Predicted

C. Inference Time and Practical Deployment

On a typical CPU-based configuration (Intel Core i5, 8 GB
RAM, no discrete GPU), the average inference time per test
sample was 0.6 seconds. This illustrates how the model can
be used in real-time in operational settings, even on
machines with limited resources.

D. Comparative Analysis

The suggested one-shot learning model maintains
competitive performance while drastically reducing data
dependency when compared to conventional supervised
learning techniques that depend on large, labeled datasets.
Additionally, it is well-suited for dynamic and changing
threat landscapes due to its capacity to identify new threats
without the need for retraining.

E. Observations and Insights

High precision was demonstrated by the suggested system,
guaranteeing a low false-positive rate, which is essential for
practical cybersecurity applications. Although the results
demonstrate the efficacy of one-shot learning for static
feature-based detection, there are still issues with robustness
against adversarial examples and malware that has been
obfuscated.

Future extensions will focus on hybrid approaches
incorporating dynamic behavioral features, adversarial
training, and multi- modal embeddings to further enhance
detection capabilities.

VL CONCLUSION AND FUTURE WORK

This paper introduces an innovative framework for early-
stage malware detection leveraging a one-shot learning
approach based on Siamese Neural Networks (SNNs).
Unlike traditional classification

methods that require extensive labeled datasets, the
proposed model learns a similarity metric, enabling effective
identification of novel threats with minimal training data.
This addresses the limitations of data-intensive conventional
malware detection systems.

Empirical evaluations conducted on the EMBER 2018
dataset—and optionally, the Drebin dataset—demonstrate

Page 4

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

the model's high generalization capability, achieving 92.3%
accuracy and a ROC- AUC of 0.95 on previously unseen
malware families. The practical applicability of the system
is further validated through its deployment as a RESTful
API with an integrated web dashboard, enabling real- time,
low-latency malware analysis suitable for operational
cybersecurity environments.

While the current implementation focuses on static feature
analysis, its robustness against advanced obfuscation
techniques remains a challenge. Future enhancements will
involve the integration of dynamic behavioral features,
adversarial training mechanisms to mitigate evasion attacks,
and support for multiclass classification across diverse
malware families. Scaling the system for deployment in
large-scale enterprise environments also represents a critical
avenue for future work.

REFERENCES

[1] M. Christodorescu and S. Jha, "Static analysis of executables to detect
malicious patterns," in Proceedings of the 12th USENIX Security
Symposium, 2003.

[2] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,
"Scalable, behavior-based malware clustering," in Network and
Distributed System Security Symposium (NDSS), 2009.

[31 A. Saxe and K. Berlin, "Deep neural network-based malware
detection using two-dimensional binary program features," in 10th
International Conference on Malicious and Unwanted Software
(MALWARE), 2015, pp. 11-20.

[4] W. Hardy, L. Chen, S. Hou, Y. Ye, and X. Li, "DL4MD: A deep
learning framework for intelligent malware detection," in Proceedings
of the International Conference on Data Mining Workshops
(ICDMW), 2016, pp. 61-68.

[51 1. Snell, K. Swersky, and R. Zemel, "Prototypical networks for few-
shot learning," in Advances in Neural Information Processing
Systems (NeurIPS), vol. 30, 2017.

[6] G. Koch, R. Zemel, and R. Salakhutdinov, "Siamese neural networks
for one-shot image recognition," in Proceedings of the 32nd
International Conference on Machine Learning (ICML) Deep
Learning Workshop, 2015.

[77 H. Zhang, A. Li, and Y. Ye, "Few-shot learning for malware
classification," in IEEE International Conference on Big Data (Big
Data), 2019, pp. 3028-3035.

[8] S. R. White, "Open source dataset for machine learning malware
detection," Endgame EMBER Dataset, 2018. [Online]. Available:
https://github.com/endgameinc/ember

[9] I Goodfellow, J. Shlens, and C. Szegedy, "Explaining and harnessing
adversarial examples," arXiv preprint arXiv:1412.6572, 2014.

[10] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol.
521, no. 7553, pp. 436444, 2015.

[11] R. Kemker and C. Kanan, "FearNet: Brain-Inspired Model for
Incremental Learning," in International Conference on Learning
Representations (ICLR), 2018.

[12] A. Ravi and H. Larochelle, "Optimization as a model for few- shot
learning," in Proceedings of the Sth International Conference on
Learning Representations (ICLR), 2017.

[13] [13] F. Chollet, "Xception: Deep learning with depthwise separable
convolutions," in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 1251-1258.

[14] [14] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman,
"Towards the Science of Security and Privacy in Machine Learning,"
arXiv preprint arXiv:1611.03814, 2016.

[15] [15] R. M. Harang, J. Kwon, and C. Miller, "Deep learning for cyber
security: A review of recent advancements," IEEE Access, vol. 7, pp.
129091-129107, 2019.

IJERTV 1415110163

International Journal of Engineering Research & Technology (IJERT)
I SSN: 2278-0181
Vol. 14 Issue 11, November - 2025

Page 5

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

	I. INTRODUCTION
	II. RELATED WORK

