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Abstract - Self-supervised learning (SSL) has become a
transformative paradigm in machine learning, which allows
models to learn rich representations from unlabeled data
without expensive human annotations. Recent Progress in SSL
The recent progress of SSL is systematically reviewed, paying
special attention to the two main methodologies: contrastive
learning and generative masked modeling. We conduct a
detailed study of popular strategies, such as SimCLR, MoCo,
BYOL, MAE and BEIiT in terms of underpinning mathematics,
architectural novelties and empirical goodness on varied
benchmarks. Our comparison results show the recent leading
state-of-the-art SSL. methods can now match/surpass the
supervised learning baselines with ImageNet top-1 accuracies
as 87.8% for MAE ViT-Huge and 77.1% for ReLICv2
ResNet50 which are both in line of them. We distill insights
from more than 50 recent papers on applications in computer
vision, natural language processing, medical imaging, and
multimodal learning. We review the key trends such as
removing negative pairs, analysis of mask effects on models
and significance of data augmentation techniques. We close
with a discussion of open issues and prospects for future work
in terms of theoretical understanding, computational
efficiency, application to domain areas, and model integration.

Keywords: Self-supervised learning, Contrastive learning,
Generative learning, Masked image modeling, Vision
transformers, Representation learning, deep Learning

1. INTRODUCTION

1.1 Motivation and Background

The success of deep learning has fundamentally depended
upon the availability of large labeled datasets, which have
typically been annotated by humans using expensive (in
terms of money and time), domain-specific knowledge
[1,2].

This dependence becomes particularly critical in some
specialized areas like medical imaging where expert manual
annotation is rare and expensive [3, 4]. Self-supervised
learning overcomes these issues by learning from intrinsic
structure of unlabeled data itself, designing an auxiliary
task from which supervisory signals can be automatically
derived instead of manually constructed.

The central idea behind SSL is that the model must learn to
predict a part of the data from some other part, hence it
forces models to learn features that capture meaningful
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characteristics of the input domain which correspond to
semantics [5, 6]. This paradigm has proven extremely
successful in many domains with SSL techniques able to
achieve, or even surpass, the performance of supervised
learning on several benchmarks [7, 8, and 9].

1.2 Scope and Contributions

This paper offers an overview of recent advances on SSL
between 2020 and 2024, focusing on:

Contrastive Learning Approaches: A closer look at
SimCLR [10], MoCo [11, 12], BYOL [13] and recent
variations up to DINO [14], SWAV [15] and VICReg [16].

Generative Approaches: Masked image modeling
(specifically MAE [17], BEiT [18], VideoMAE [19] and
hybridized strategies) has analyzed in detail

Comparison: Systematic comparison of methods on
standardized benchmarks including ImageNet [20], COCO
[21], domain-specific datasets

Theoretical Insight: Why SSL? How does SSL work?
Impact of noise and data augmentation on development of
representations.

Future Work: Open problems and promising research
directions

1.3 Paper Organization

The rest of this paper is structured as follows: Section 2
provides background on SSL fundamentals. Section 3
examines contrastive learning approaches. Section 4
explores generative and masked modeling methods. Section
5 presents comprehensive experimental results and
comparisons. Section 6 discusses applications across diverse
domains. Section 7 outlines future research directions.
Section 8 discussion Section 9 concludes the review.

2. BACKGROUND AND FUNDAMENTALS
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Figure 1 The main pipeline of self-supervised learning.
(Top): The self-supervised learning paradigm is adopted by
training an auxiliary task with synthetic labelling of large
amount of unlabeled data. (Bottom): The pre-trained
representations are transferred from the pretext task to
down-stream segmentation task to accomplish the training
on small amount of data with ground truth labels. [65]

2.1 Self-Supervised Learning Framework

Instead  of task-specific  annotations, self-supervised

learning devises training signals from input data in the form

of pretext tasks. The typical SSL workflow is the following:

1. Designing Pretext Tasks: Creating auxiliary tasks that
necessitate awareness of data structure (e.g., predicting
masked out parts, identifying augmented sets)
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Figure 2 An example of Jigsaw puzzle pretext task.
(Left): Puzzle generation steps: An image is processed
and divided into a number of patches that form the
primary blocks of the puzzle. The generated patches are
shuffled to a given set of permutations, each
permutation having an index (per mutation number).
(Right): a Siamese network, using shared weights
receives the shuffled patches as input based on a
permutation and pools them with respect to the
corresponding permutation index [65]

2. Representation Learning: Teaching neural networks
to solve pretext tasks: the networks should be learning
meaningful feature representations.

3. Transfer Learning: using learned representations for
tasks downstream via fine-tuning or linear evaluation

2.2 Evaluation Protocols

Three protocols are normally used to compare SSL methods
[22,23]:

Linear Evaluation: train a linear classifier on the frozen
representations. This protocol evaluates the quality of
learned features without considering fine-tuning.
Fine-tuning: The complete pre-trained model is fine-tuned
on downstream tasks using the labeled training data. This
evaluates both the quality of representation and the
generalization ability of model.
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k-Nearest Neighbors (kNN): Classify based on the nearest
neighbor in the feature space without learning any
parameters. This gives a parameter-free characterization of
representation geometry.

3. CONTRASTIVE LEARNING APPROACHES

3.1 Core Principles

Contrastive learning is based on the idea of learning
representations by contrasting positive (augmented views of
the same instance) vs negative pairs (different instances)
[24, 25]. The InfoNCE loss used in contrastive works
(where common and rare classes are the same) maximizes
agreement of positive pairs, while minimizing for negative:
$$\mathcal {L} {\text{InfoNCE}} = -\log \frac {\exp
(text{sim}(z_i, z j) /\tau)} {\sum_{k=1}"{2N} \

mathbb{1} {[k eqi]} \exp(\text{sim}(z i,z k)/\tau)} $$
where $z i, z j$ are representations of the positive pairs and
$\text{sim}(\cdot, \cdot)$ is cosine similarity; $\tau$
denotes temperature and $N$ is batch size.

3.2 SimCLR: Simple Framework for Contrastive Leaning
As observed by SimCLR [10], powerful data augmentation
and simple architecture lead to the stateof-theart
performance. Key design choices include:

Architecture Components:

e ResNet- based encodertprojection head (2-layer
MLP with hidden dimension 2048)

e Heavy data augmentation: random crop (with
resize) and color distortion, Gaussian blur

e High batch sizes (batches of 4096-8192) with
large negative examples.

Results: SimCLR attains 69.3% top-1 accuracy on
ImageNet with ResNet-50 using linear evaluation; 76.5%
with ResNet-50 (4x) [10].

tw 2§

Figure 3 Self-supervised features learning by SimCLR. [65]

3.3 MoCo: Momentum Contrast
MoCo [11] mitigated SimCLR’s scalability issues
leveraging architectural changes that allow for effective
contrastive learning with smaller batch sizes.
Core Innovation:
¢ Queue dictionary of the previous coded samples in
the current batch to serve as negative samples.
e Momentum Encoder: Encoder is slowly updated
(momentum  coefficient 0.999) to maintain
consistent keys for the dictionary
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e Decoupling of dictionary size and batch size, to
use large effective negative sample pools with
reasonable GPU memory.

Algorithmic Design:
Initialize query encoder f q and key encoder f k.
Initialize queue Q of size K.
for each mini-batch:
encoded query =f g(augmented view 1)
encoded key =f k(augmented view 2)
contrastive loss = InfoNCE(encoded query,
encoded key, Q)
Update f q via backpropagation.
update f k via momentum: 6 k «— m-6 k+
(1-m)-6_q
Enqueue encoded key to Q.
dequeue oldest samples from Q

MoCo v2 and v3: MoCo v2 [26] adopted SimCLR’s MLP
projection head” scheme and stronger aug — mentations, for
which the ResNet-50 linear Pouring more heavy soles
(STL10) accuracy improved to 71.1%. MoCo v3 [27] also
made the framework work on Vision Transformers,
retaining 76.7% with ViT-S and 81.0% with ViT-B.
Results: MoCo attains competitive accuracy with batch
sizes 10x smaller than those used in SImCLR, enabling SSL
for more users [11, 26].

3.4 BYOL : Bootstrap Your Own Latent

BYOL [13] represented a paradigm shift by not requiring
negative pairs at all, averting collapse through architectural
asymmetry.

Architecture:

Figure 4 Illustration of BYOL architecture [65]
e Online Network: a trainable encoder plus a
projection head and a prediction head.
e Target Network: average updating of online
network (updated via momentum)
e Asymmetry: The prediction head is limited to the
online subnet.
Loss Function: Mean Squared error between predicted and
target representations:
$$\mathcal {L} {\text{BYOL}} = ||q\theta(z \theta) -
\text{sg}(z' \xi)||_2"2$$
where $q \theta$ is the prediction, $z \theta$, z' \xi are
online and target projections respectively and $\text{sg}$
means stop-gradient.

3.5 Advanced Contrastive Methods

DINO (Self-Distillation with No Labels) [14]: Self-
distillation on Vision Transformer models utilizing cross-
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entropy loss between teacher and student prediction. Note
that the teacher network is updated by exponential moving
average. DINO learns high-quality representations which are
especially beneficial for dense prediction tasks, obtaining
80.1% kNN accuracy using ViT-S/16 on ImageNet.

SwAV (Swapping Assignments between Views) [15]:
Incorporates contrastive learning and online clustering.
Rather than comparing features directly, SWAV predicts the
clustering assignments of one view from another. This way
of learning avoids the construction of explicit negative pairs
which is particularly relevant where discriminative learning
is concerned. SWAV obtains 75.3% with ResNet-50 under
linear evaluation.

Prototypes:
Swapped
Prediction

Figure 5 Illustration of SWAV framework [65]

VICReg (Variance-Invariance-Covariance
Regularization) [16]: Avoiding collapse by explicitly
regularizing three properties of the learned representation:
e Variance: keep the standard deviation greater than
this constant value.
e Invariance: Same features for novel views
e Covariance: Decorrelates representation
dimensions
VICReg obtains 73.2% with ResNet-50, showing that
collapse can be mitigated without negative pairs or
momentum encoders.
Barlow Twins [29]: Independent of augmentations and
reduces redundancy between embedding dimensions. The
loss ensures the value of cross-correlation matrix between
these embedding will be identical as identity matrix.
Achieves 73.2% with ResNet-50.

4. GENERATIVE AND MASKED MODELING
APPROACHES

4.1 Modeling the Masked Image: Key Concepts
Following the success of BERT in NLP [32], masked image
modeling (MIM) has been developed as another
prledominant choice to contrastive learning. The main
principle is to mask part of an image and train models to
recover lost information, making them bind semantic
relations [33, 34].

4.2 MAE: Masked Autoencoders

The experiments have shown that the simple masked
modeling achieves very competitive results with (much)
lower per CPU, GPU processing time.

Architecture:
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1. Asymmetric Encoder-Decoder:

e Encoder: ViT no mask tokens) operating on
visible patches (())

e Decoder: 8-layer 512d transformer w. Final
reconstruction from latent representation +
mask tokens

e Symmetry: encoder = Computation by 75%
(masking 75% of patches).

2. High Masking Rate: MAE masks 75% of the
input patches (15% in BERT).

e Creates a non-trivial reconstruction task

e Prevent model from interpolating between
nearby visible patches.

e Dramatically reduces computational cost

3. Target for Reconstruction: Normalized pixel (to
zero mean and unity variance per patch)

Implementation Details:

Input: Image is stratified into patches of 16x16.

Masking: 75% of patches are randomly masked

Encoder: ViT-Base/Large/Huge on visible 25%

patches here is a typical layout of the model on

high-quality setting.

Decoder: 8-block lightweight transformer

Loss: MSE with only patches faced Votes from

Patch Parlous

Training: 1600 epochs on ImageNet-1K

Results [17]:
e ViT-Base: 83.6% top-1 accuracy (fine-tuned)
e ViT-Large: 85.9% top-1 accuracy
e ViT-Huge: 87.8% top-1 accuracy (good for
methods that use only ImageNet-1K)

4.3 BEiT: The Method BERT Pretraining of Image
Transformers
BEiT [18] on the other hand, employed discrete visual
tokens as reconstruction targets.
Architecture:
1. Two-stage Training:
e Stage 1: Train dVAE to tokenize an image to
its discrete tokens
e Stage 2: Masked token prediction with
discrete tokens
2. Remodeling: Cross-entropy loss and predicting
discrete tokens classes (with 8192 vocabulary size)
3. Masking: Block-40% (Local)
Results: BEiT ViT-Base reaches 83.2% top-1 on ImageNet
when finetuned [18].
BEiT v2 [35]: Further improved with vector-quantized
knowledge distillation to 85.5% with ViT-Base. BEIiT v3
[36]: extended to multimodal setups, pre-training on images
and image-text pairs jointly.

4.4 Extensions and Variants

SimMIM [37]: Simplified masked modeling with direct
pixel prediction and mild maskting ratio (40-60%). And it is
also effective for diverse architectures of the models,
obtaining 83.8% using the Swin-Base transformer.

iBOT [38]: Employs masked image modeling and self-
distillation with online tokenization. Reaches 82.3% kNN
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accuracy with ViT-S/16, which demonstrates the merit of
incorporating MIM with distillation.

MaskFeat [39]: Predicts HOG (Histogram of Oriented
Gradients) features as reconstruction images instead of
pixels. In this way we encourage the models to learn fine
grained structural details, and results in 84.0% with ViT-
Base.

Context Autoencoders (CAE) [40]: Uses asymmetric
masking policies and aligning losses. Reaches 83.6% with
ViT-Base on ImageNet.

LoMaR (Local Masked Reconstruction) [41]: Uses only
the local context windows, instead of the full image, to
generate patches so as to be more efficient for high
resolution images. Particularly useful for dense prediction
tasks.

4.5 VideoMAE: Generalization to Time VideoMAE [19]
generalized MAE for video understanding with impressive
speedup.
Key Design Choices:
e Very High Masking: Up to 90-95% masking ratio
for videos
e Tube Masking: Temporal tubes are also masked
cross frames to enforce temporal consistency.
e Temporal Redundancy: The higher the masking
used to take advantage of temporal redundancy in

videos.
Results:
e 32x speedup compared to video contrastive
approaches

e 81.1% top-1 accuracy on Kinetics-400

4.6 Hybrid Approaches
GAN-MAE [42]: Integrate MAE and adversarial training:
e the Discriminator tells real and generated patches
apart
e Achieves similar performance with 8§x less pre-
training epochs
e Shows the promise of adversarial learning in
successful SSL.
ConvMAE [43]: Extends MAE to convolutional networks
and follows masked convolutions to avoid information
leakage. Demonstrates that mask-guided modeling is not
unique to transformers.
ViC-MAE (Visual Contrastive MAE) [44]: Fuses
contrastive learning with masked modeling:
e Itcanlearn from both image and videos.
e Obtains 74.0\% linear evaluation on ImageNet
with ViT-B
e [llustrates progression from  contrastive to
generative approach

5. EXPERIMENTAL RESULTS AND COMPARATIVE
ANALYSIS

5.1 ImageNet Benchmark Results

Table 1 summarizes state-of-the-art SSL results on
ImageNet-1K classification:
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Method Architecture Line(an/l;)E val Fin(?,;:;l "¢l Year
| MAE[17] || ViT-Huge || 750 | 878 | 2022]
| MAE[17] || ViT-Large || 750 | 859 | 2022]
[ReLICv2 [45]]| ResNet-50 || 771 || 822 | 2022 |
[MoCov3 [27]]| ViT-Large || 767 || 841 | 2021 |
| DINO[14] || ViT-Large || 815 | 845 | 2021 |
| BYOL[13] || ResNet-50 || 743 || 796 | 2020 |
SimCLR [10] R"S(I:f;'so 76.5 80.2 || 2020
| swAV[15] |[ ResNet-50 || 753 || 791 [ 2020 |
[MoCov2[26]] ResNet-50 || 711 || 783 [ 2020 |

5.2 Transfer Learning Performance

Object Detection (COCO):

| Method || Backbone “ AP box || AP mask |
| MAE[17] || ViT-Lage || 533 || 472 |
| MoCov3[27] || ViT-Large || 515 || 459 |
| Supervised || ViT-Large || 49.3 || 44.0 |

MAE demonstrates +4.0 AP improvements over supervised
baseline, highlighting superior transfer capabilities [17].
Semantic Segmentation (ADE20K):

| Method H Backbone ” mloU (%) |
| MAEQN7 ][ ViT-Lage || 53.6 |
| BET[8] | ViT-Large I 53.3 |
| Supervised || ViT-Large || 50.2 |

5.3 Efficiency Comparison
Training Time (ImageNet-1K, 800 epochs, same hardware):
e MAE ViT-Base: ~34.5 hours using 128 TPU-v3
cores
e SimCLR ResNet-50: ~65 hours on 128 TPU-v3
cores (large batch sizes needed)
e MoCo v2 ResNet-50: around 45 hours on 8§ V100

GPUs
Memory Efficiency:
e MAE: Processes 25% patches in encoder (75%
mask)
e SimCLR: Needs 2x views x large batch size in
memory

e  MoCo: negative queue cuts memory vs. SimCLR

5.4 Domain-Specific Results
Medical Imaging: A meta-analysis [46] of 79 studies
discovered the SSL pre-training resulted in:

e Relative AUROC improvements: 0.216-32.6%

e Accuracy improvements: 0.440-29.2%

e F1 score improvements: 0.137-14.3%
Performance decreases were reported only in 5 studies
(0.98-4.51%).

Plant Phenotyping:
demonstrated:

Recently benchmark [47]
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e MoCo v2 and DenseCL have Procrustes score >
0.8 for representation similarity.

e Supervised pre-training still has a small lead in
specialized agricultural datasets

e Overall, SSL methods had superior transfer to a
wide range of downstream tasks

Microscopy: Work on cellular biology [48] has shown that:
e MAE:s based on ViTs significantly outperform the
self-supervised classifiers by 11.5% relative gain.
e CA-MAE (channel agnostic) can generalize well
to various channel creations.
e Performance increases as we scale to larger
models and datasets.

5.5 Scalability and Model Size
Performance tends to improve with model size:
e MAE ViT-Huge (632M params): 87.8%
ImageNet accuracy
e MAE ViT-Large (307M params): 85.9%
accurracy
e MAE ViT-Base (86M params): 83.6% accuracy
Web-scale pre-training (SEER [49]) on 1 billion random
Instagram images obtains:
e RegNetY-32GF: 84.2% ImageNet accuracy
e  Outperforms ImageNet-supervised pre-training
e Shows SSL enables training over a wide range of
uncurated data at web-scale

6. APPLICATIONS ACROSS DOMAINS

6.1 Computer Vision

Image Classification: SSL has become a de-facto standard
for ImageNet pre-training and methods such as MAE, DINO
and MoCo v3 =*approach supervised performance [17, 14,
and 27].

Object Detection and Segmentation: SSL pre-training
consistently benefits dense prediction. MAE also
outperforms supervised baselines [17] by +4 AP on COCO
object detection.

Video Understanding: VideoMAE outperforms state-of-
the-art on action recognition with a 3.2x faster training
speedup than contrastive-based implementations [19].
Applications span action recognition, video segmentation,
and temporal grounding.

6.2 Remote sensing and geospatial analysis

Satellite Imagery: SSL pre-training on large-scale satellite
images benefits land type classification, change detection,
and object recognition [51].

Multi-temporal Analysis: Temporal SSL models can
leverage the time-series structure of satellite data for better
crop and environment monitoring [52].

Multi-modal Integration: The fusion of optical, radar and
elevation imagery through SSL results in robust all-weather
analysis [53].
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6.3 Natural Language Processing

Although this review is centered on the vision domain, SSL
has been just as revolutionary for NLP:

BERT and GPT: Masked language modeling for pre-
training (BERT [32]) and autoregressive prediction (GPT
[54]) made SSL the predominant NLP paradigm.

Large Language Models: Recent LLMs (GPT-4, Llama,
Claude) are trained mostly with SSL on web scale text data
[55].

6.4 Multimodal Learning

Vision-Language: CLIP [56] showed that contrastive
learning on image-text pairs leads to strong general-purpose
representations which enable transfer without exposure.
Audio-Visual: SSL approaches can learn joint embedding
from video with audio which help both modalities [57].
Cross-modal Transfer: BEIiT v3 [36] demonstrates that
pre-training jointly on images and image-text pairs can
benefit both vision-only and multimodal tasks.

6.5 Robotics and Autonomous Systems

Sensor Fusion: SSL empowers knowledge extraction from
mixed sensor modalities (camera, | idar and radar) without
requiring manual correspondence labels [58].

Robotic Interactions: Self-supervised pre-training on robot
interaction data leads to improvements in manipulation and
navigation [59].

Sim-to-Real Transfer: SSL has been conceived to transfer
knowledge across simulation and the real-world, training
robust representations [60].

7. FUTURE RESEARCH DIRECTIONS

7.1 Theoretical Understanding
Theory of Foundations: Developing sound theoretical
understandings that describe when and why SSL works.
Key questions include:
e Learning to learnable (vs. non-learnable) 21
features formally
e Sample complexity for Various SSL Scenarios
e Connections between SSL  objectives and
downstream task performance
Design of pretext tasks: General considerations for
designing one.
e Task specific SSL techniques that align the pre-
training with downstream objectives
e automated discovery and optimization of pretext
tasks
e  Exploring trade-offs among pretext task families
Representation Analysis Better tools: for analyzing
learned representations:
e  Measuring semantic content and disentanglement
e  Underlying what is kept vs. lost

IJERTV 1515010104

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 15 Issue 01, January - 2026

e Connecting representation
downstream performance

properties to

7.2 Computational Efficiency and Accessibility

Efficiency Improvements:
e Less number of training epochs and computational
costs
e Better architectures for SSL (e.g., local masked
reconstruction [41])
e Knowledge-based distillation from large SSL
models to small ones
Hardware Accessibility:
e  Small-batch/single-GPU-efficient methods
e Optimized data loading and augmentation
pipelines
e Federated and distributed SSL training
Green Al: Reducing environmental impact:
e  Energy-efficient SSL training protocols
e Carbon footprint of the SSL techniques
e Sustainable scaling to web-scale data

7.3 Domain-Specific Advances

Medical Imaging:
e PPSSL — A Privacy- preserving SSL for sensitive
medical data.
e Few-shot learning for rare diseases
e Multi-modal medical SSL (imaging + text +
genomics)
e Dealing with domain shift between hospitals and
imaging-protocols
Scientific Discovery:
e Prediction and discovery in protein structure and
drug design
e  Molecular property prediction by materials science
e Climate modeling and environmental monitoring
e Astronomical data analysis
Industrial Applications:
e Few-shot Defect Detection on Manufacturing
Surface
e Predictive maintenance using sensor data
e  Quality control and automated inspection

7.4 Architecture and Model Design

Efficient Architectures:
e Hierarchical models that trade off efficiency and
performance
e Long length sequences are problematic for
attention mechanisms containing sparsity.
e Hybrid CNN and transformer architectures
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Figure 6 Illustration of surrogate class formation for self-
supervised features learning in the case of exemplar CNN.
(Left): The blue colored patch represents a sample patch
cropped from one image of the unlabeled data to act as seed
for surrogate class. The pool of the remaining patches is a
random augmentation operation from the seed patch to
create multiple images for one single surrogate class.
(Right): A convolutional model is used to learn the
representation by classifying the generated images into the
base classes. [65]
Modality-Specific Designs:

e 3D vision SSL on point clouds and volumetric data

e Graph SSL for network and molecular data 2 Data

We consider the following two-dimensional
datasets.

e Time-series SSL with temporal structure
Dynamic Architectures:

e Neural architecture search for SSL

e Adaptive masking strategies

e Task-conditioned SSL models

7.5 Multimodal and Cross-Modal Learning
e Vision-Language Integration:
e Improving zero-shot transfer capabilities
e More meaningful match of vision and language
semantics
e Compositional understanding and reasoning
Audio-Visual Learning:
e Videos are supervisor for learning to read videos
with sound.
e Cross - modal generation and translation
e  Synchronized multi-modal representations
Multi-Sensor Fusion:
e Learning from heterogeneous sensor modalities
e Handling missing modalities during inference
e Cross-modal knowledge transfer

7.6 Foundation Models and Scaling

Web-Scale Pre-training:

e Training on a billion unfiltered images and videos

e Dealing with noisy and biased web data

e  Web-scale data creation and filtering made easy!
Universal Representations:

e Single models that generalize across tasks and

domains
e Compositional and modular representations
e Continual learning and adaptation
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Emergent Capabilities:
e Understanding the emergence of capabilities with
increment in scale
e  Predicting performance at different scales
e Identifying critical scale thresholds

7.7 Robustness and Generalization

Out-of-Distribution Generalization:

e  Shift robust SSL models

e Domain adaptation and transfer learning

e Handling corruptions and adversarial examples
Fairness and Bias:

e  Understanding bias amplification in SSL

e Fairness-aware SSL objectives

e Demographic parity and equalized odds in learned

representations

7.8 Relation to Other Learning Modes

Hybrid Learning:
e Supervised and Semi-Supervised Learning using
SSL
e Active learning methods using SSL
representations

e Specifically, we focus on the meta-learning and
few-shot learning setting combining with SSL.

Reinforcement Learning:

e  Self-supervised pre-training for RL agents

e Representation learning from interaction data

e Auxiliary SSL tasks for exploration in RL
Neurosymbolic Al:

e Integrating SSL with symbolic reasoning

e Learning structured representations

e Combining learned and hand-crafted features

7.9 Practical Deployment

Real-World Applications:
e  Production deployment pipelines for SSL models
e  Online learning and model updates
e Dealing with drift and shift in the data
Interpretability:
e  Understanding what SSL models learn
e Visualizing and explaining learned features
e Debugging and improving SSL training
Ethical Considerations:
e Privacy concerns at internet scale
e Consent and owning the data in SSL
e Responsible Al Practice for the Deployment of
SSL

8. DISCUSSION

8.1 Key Insights
Overall, from this extensive survey of self-supervised
learning, we obtained several important insights:
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Paradigms Converge: Despite the fact that contrastive
learning and masked image modeling were proposed with
different motivations, recent works indicate that they learn
very similar representations [30, 31]. The difference
between paradigms often pales in comparison to the
importance of fine-grained consideration of augmentation
strategies, architecture design, and training regimen.
Augmentation Matters: The choice of augmentation
strategy is probably the most influential on SSL success.
Growing augmentation diversity from 6 to 16 achieves
+23% in performance [30], and even small changes such as
including solarization brings additional +2.3% in accuracy
(BYOL) [13].

Vision Transformers Transform SSL: ViTs are
substantially better at leveraging self-supervised pre-
training than CNNs, obtaining competitive ImageNet
accuracy of 87.8% when trained on only ImageNet-1K data
which is on par with training directly supervised on orders-
of magnitude more labelled images [17].

Simplicity Can Be Powerful: The very simple MAE (mask
75%, reconstruct pixels) approach achieves state-of-art
result with a 3x training speedup [17], implying complex
mechanism isn’t not necessary.

Scale Matters: Performance gets better and better with a
bigger model and more data. Web-scale pre-training on
random images even surpasses ImageNet-supervised
learning [49] and demonstrates the potential of SSL to tap
into enormous unlabeled data.

8.2 Limitations and Challenges

Despite the significant advances of SSL, there are several
shortcomings:

Computational Cost: A lot of SSL methods are
computationally intensive (i.e., big batch sizes, time-
consuming training process), which make them not
accessible for the typical researchers working with normal
hardware.

Domain-Specificity: Techniques successful for natural
images can show poor transferability to specialized domains
(e.g., medical imaging, remote sensing) unless adjusted [47].
Theoretical Gaps: Even though SSL is empirically
successful, our understanding of why it works is not yet
complete. Questions about sample complexity, best pretext
tasks and the core limits of learning remain.

Evaluation Protocol: Un-uniformed evaluation may easily
result in unfair comparison. The linear evaluation, fine-
tuning and kNN evaluation will often give different
rankings of methods.

Open Issue: Benchmark Limitations Recent research [64]
finds that performance on standard benchmarks are not a
consistent predictor of performance in similar but also
different settings (generalization).

8.3 Impact and Significance

Self-supervised learning is flipping machine learning on its
head:

Al for Everyone: SSL reduces the reliance on costly
labelled data, enabling a broader set of applications
spanning all domains to take advantage of Al.
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Facilitating Foundation Models: Large language models
and vision-language models are mostly pre-trained on self-
supervised learning, illustrating SSL’s pivotal role in
contemporary Al.
Scientific Discovery: SSL allows the exploration of large
scientific datasets (genomics, astronomy and climate
science) without depending on costly expert annotation.
Economic Impact: The Economic Impact Decreasing
annotation costs and increasing model effectiveness
represent a substantial economic value proposition in any
industry.

9. CONCLUSION

Self-supervised learning is a promising paradigm that
alleviates some of the shortcomings of supervised learning.
In this comprehensive review, we reviewed the
development of SSL from 2020 to 2024, focusing on
contrastive learning methods (SimCLR, MoCo, BYOL,
DINO) and generative masked modeling approaches (MAE,
BEIT, VideoMAE).

Our findings show that current SSL methods reach or
surpass supervised learning performance on a variety of
benchmarks, with the MAE ViT-Huge now reaching 87.8%
top-1 accuracy on ImageNet using only 1K data. The field
arrived at a number of key insights: (1) the data
augmentation strategy is more important than any SSL
paradigm, (2) vision transformers gain from SSL pre-
training, and (3) masked image modeling provides
simplicity and efficiency benefits, and (4) scaling to larger
models and datasets improves performance.

1, 2, SSL has shown its in many areas and tasks such as
computer vision 3, : medical imaging [46], remote sensing
(RS) [47] pattern recognition [41], multimodal learning.
Applications include ImageNet classification, rare disease
identification, satellite image recognition, and vision
language comprehension. The transition to SSL-trained
foundation models is a fundamental change in the way Al
systems are engineered and deployed.

Challenges Despite much advancement, there are still some
big challenges. Theoretical understanding of SSL is lacking,
with several questions about the sample complexity,
optimal design for pretext tasks, and learning bounds still
unanswered. Even when they are more widely used,
streaming models are still expensive to compute and access
for the vast majority of smaller labs, arguing that on DOM
content alone, about a quarter of 100 million webpages were
unreachable from common analysis pipelines. Investigating
domain adaptation and OOD generalization is necessary,
given the recent finding that benchmark performance does
not necessarily correlate with real world generalization.

In the future, some of the promising directions to advance
this line of research include: (i) pursuing theoretical
development; (ii) increasing computational efficiency; (iii)
developing problem-specific methods; (iv) extending to
multimodal learning; and (v) scaling up to web-scale
datasets. Equally promising is the combination of SSL with
other learning paradigms (reinforcement learning, meta-
learning and neuron-symbolic AI). Ethical questions,
including matters of privacy, fairness and responsible
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deployment will inevitably need to be addressed as SSL
systems are deployed at scale.

But today,

self-supervised learning is not simply a

substitute; it’s an integral part of modern Al. The methods,
insights and techniques that emerge from SSL research are
destined to shape the future of machine learning, pushing us
toward ever more capable, efficient and accessible Al
systems that can learn from the enormous quantities of
unlabeled data in the world.
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