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Abstract - Self-supervised learning (SSL) has become a 

transformative paradigm in machine learning, which allows 

models to learn rich representations from unlabeled data 

without expensive human annotations. Recent Progress in SSL 

The recent progress of SSL is systematically reviewed, paying 

special attention to the two main methodologies: contrastive 

learning and generative masked modeling. We conduct a 

detailed study of popular strategies, such as SimCLR, MoCo, 

BYOL, MAE and BEiT in terms of underpinning mathematics, 

architectural novelties and empirical goodness on varied 

benchmarks. Our comparison results show the recent leading 

state-of-the-art SSL methods can now match/surpass the 

supervised learning baselines with ImageNet top-1 accuracies 

as 87.8% for MAE ViT-Huge and 77.1% for ReLICv2 

ResNet50 which are both in line of them. We distill insights 

from more than 50 recent papers on applications in computer 

vision, natural language processing, medical imaging, and 

multimodal learning. We review the key trends such as 

removing negative pairs, analysis of mask effects on models 

and significance of data augmentation techniques. We close 

with a discussion of open issues and prospects for future work 

in terms of theoretical understanding, computational 

efficiency, application to domain areas, and model integration. 

 

Keywords: Self-supervised learning, Contrastive learning, 

Generative learning, Masked image modeling, Vision 

transformers, Representation learning, deep Learning 

 
1. INTRODUCTION 

1.1 Motivation and Background 

The success of deep learning has fundamentally depended 

upon the availability of large labeled datasets, which have 

typically been annotated by humans using expensive (in 

terms of money and time), domain-specific knowledge 

[1,2]. 

This dependence becomes particularly critical in some 

specialized areas like medical imaging where expert manual 

annotation is rare and expensive [3, 4]. Self-supervised 

learning overcomes these issues by learning from intrinsic 

structure of unlabeled data itself, designing an auxiliary 

task from which supervisory signals can be automatically 

derived instead of manually constructed. 

The central idea behind SSL is that the model must learn to 

predict a part of the data from some other part, hence it 

forces models to learn features that capture meaningful 

characteristics of the input domain which correspond to 

semantics [5, 6]. This paradigm has proven extremely 

successful in many domains with SSL techniques able to 

achieve, or even surpass, the performance of supervised 

learning on several benchmarks [7, 8, and 9]. 

 

1.2 Scope and Contributions 

This paper offers an overview of recent advances on SSL 

between 2020 and 2024, focusing on: 

Contrastive Learning Approaches: A closer look at 

SimCLR [10], MoCo [11, 12], BYOL [13] and recent 

variations up to DINO [14], SwAV [15] and VICReg [16]. 

Generative Approaches: Masked image modeling 

(specifically MAE [17], BEiT [18], VideoMAE [19] and 

hybridized strategies) has analyzed in detail 

Comparison: Systematic comparison of methods on 

standardized benchmarks including ImageNet [20], COCO 

[21], domain-specific datasets 

Theoretical Insight: Why SSL? How does SSL work? 

Impact of noise and data augmentation on development of 

representations. 

Future Work: Open problems and promising research 

directions 

1.3 Paper Organization 

The rest of this paper is structured as follows: Section 2 

provides background on SSL fundamentals. Section 3 

examines contrastive learning approaches. Section 4 

explores generative and masked modeling methods. Section 

5 presents comprehensive experimental results and 

comparisons. Section 6 discusses applications across diverse 

domains. Section 7 outlines future research directions. 

Section 8 discussion Section 9 concludes the review. 

2. BACKGROUND AND FUNDAMENTALS 
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Figure 1 The main pipeline of self-supervised learning. 

(Top): The self-supervised learning paradigm is adopted by 

training an auxiliary task with synthetic labelling of large 

amount of unlabeled data. (Bottom): The pre-trained 

representations are transferred from the pretext task to 

down-stream segmentation task to accomplish the training 

on small amount of data with ground truth labels. [65] 

2.1 Self-Supervised Learning Framework 

Instead of task-specific annotations, self-supervised 

learning devises training signals from input data in the form 

of pretext tasks. The typical SSL workflow is the following: 

1. Designing Pretext Tasks: Creating auxiliary tasks that 

necessitate awareness of data structure  (e.g., predicting 

masked out parts, identifying augmented sets) 

 
Figure 2 An example of Jigsaw puzzle pretext task. 

(Left): Puzzle generation steps: An image is processed 

and divided into a number of patches that form the 

primary blocks of the puzzle. The generated patches are 

shuffled to a given set of permutations, each 

permutation having an index (per mutation number). 

(Right): a Siamese network, using shared weights 

receives the shuffled patches as input based on a 

permutation and pools them with respect to the 

corresponding permutation index [65] 

2. Representation Learning: Teaching neural networks 

to solve pretext tasks: the networks should be learning 

meaningful feature representations. 

3. Transfer Learning: using learned representations for 

tasks downstream via fine-tuning or linear evaluation 

2.2 Evaluation Protocols 

Three protocols are normally used to compare SSL methods 

[22, 23]: 

Linear Evaluation: train a linear classifier on the frozen 

representations. This protocol evaluates the quality of 

learned features without considering fine-tuning. 

Fine-tuning: The complete pre-trained model is fine-tuned 

on downstream tasks using the labeled training data. This 

evaluates both the quality of representation and the 

generalization ability of model. 

k-Nearest Neighbors (kNN): Classify based on the nearest 

neighbor in the feature space without learning any 

parameters. This gives a parameter-free characterization of 

representation geometry. 

 
3. CONTRASTIVE LEARNING APPROACHES 

 

3.1 Core Principles 
Contrastive learning is based on the idea of learning 

representations by contrasting positive (augmented views of 

the same instance) vs negative pairs (different instances) 

[24, 25]. The InfoNCE loss used in contrastive works 

(where common and rare classes are the same) maximizes 

agreement of positive pairs, while minimizing for negative: 

$$\mathcal{L}{\text{InfoNCE}} = -\log \frac {\exp 

(\text{sim}(z_i, z_j) / \tau)}{\sum_{k=1}^{2N} \ 

mathbb{1}_{[k eq i]} \exp(\text{sim}(z_i, z_k) / \tau )} $$ 

where $z_i, z_j$ are representations of the positive pairs and 

$\text{sim}(\cdot, \cdot)$ is cosine similarity; $\tau$ 

denotes temperature and $N$ is batch size. 

3.2 SimCLR: Simple Framework for Contrastive Leaning 

As observed by SimCLR [10], powerful data augmentation 

and simple architecture lead to the stateof-theart 

performance. Key design choices include: 

Architecture Components: 

• ResNet- based encoder+projection head (2-layer 

MLP with hidden dimension 2048) 

• Heavy data augmentation: random crop (with 

resize) and color distortion, Gaussian blur 

• High batch sizes (batches of 4096–8192) with 

large negative examples. 

Results: SimCLR attains 69.3% top-1 accuracy on 

ImageNet with ResNet-50 using linear evaluation; 76.5% 

with ResNet-50 (4×) [10]. 

 
Figure 3 Self-supervised features learning by SimCLR. [65] 

3.3 MoCo: Momentum Contrast 

MoCo [11] mitigated SimCLR’s scalability issues 

leveraging architectural changes that allow for effective 

contrastive learning with smaller batch sizes. 

Core Innovation: 

• Queue dictionary of the previous coded samples in 

the current batch to serve as negative samples. 

• Momentum Encoder: Encoder is slowly updated 

(momentum coefficient 0.999) to maintain 

consistent keys for the dictionary 
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• Decoupling of dictionary size and batch size, to 

use large effective negative sample pools with 

reasonable GPU memory. 

Algorithmic Design: 

Initialize query encoder f_q and key encoder f_k. 

Initialize queue Q of size K. 

for each mini-batch: 

    encoded_query = f_q(augmented_view_1) 

    encoded_key = f_k(augmented_view_2) 

    contrastive_loss = InfoNCE(encoded_query,  

    encoded_key, Q) 

    Update f_q via backpropagation. 

    update f_k via momentum: θ_k ← m·θ_k + 

    (1-m)·θ_q 

    Enqueue encoded_key to Q. 

    dequeue oldest samples from Q 

 

MoCo v2 and v3: MoCo v2 [26] adopted SimCLR’s MLP 

projection head” scheme and stronger aug — mentations, for 

which the ResNet-50 linear Pouring more heavy soles 

(STL10) accuracy improved to 71.1%. MoCo v3 [27] also 

made the framework work on Vision Transformers, 

retaining 76.7% with ViT-S and 81.0% with ViT-B. 

Results: MoCo attains competitive accuracy with batch 

sizes 10× smaller than those used in SimCLR, enabling SSL 

for more users [11, 26]. 

3.4 BYOL : Bootstrap Your Own Latent 

BYOL [13] represented a paradigm shift by not requiring 

negative pairs at all, averting collapse through architectural 

asymmetry. 

Architecture: 

 
Figure 4 Illustration of BYOL architecture [65] 

• Online Network: a trainable encoder plus a 

projection head and a prediction head. 

• Target Network: average updating of online 

network (updated via momentum) 

• Asymmetry: The prediction head is limited to the 

online subnet. 

Loss Function: Mean Squared error between predicted and 

target representations:  

$$\mathcal{L}{\text{BYOL}} = ||q\theta(z_\theta) - 

\text{sg}(z'_\xi)||_2^2$$ 

where $q_\theta$ is the prediction, $z_\theta$, z'_\xi are 

online and target projections respectively and $\text{sg}$ 

means stop-gradient. 

3.5 Advanced Contrastive Methods 

DINO (Self-Distillation with No Labels) [14]: Self-

distillation on Vision Transformer models utilizing cross-

entropy loss between teacher and student prediction. Note 

that the teacher network is updated by exponential moving 

average. DINO learns high-quality representations which are 

especially beneficial for dense prediction tasks, obtaining 

80.1% kNN accuracy using ViT-S/16 on ImageNet. 

SwAV (Swapping Assignments between Views) [15]: 

Incorporates contrastive learning and online clustering. 

Rather than comparing features directly, SwAV predicts the 

clustering assignments of one view from another. This way 

of learning avoids the construction of explicit negative pairs 

which is particularly relevant where discriminative learning 

is concerned. SwAV obtains 75.3% with ResNet-50 under 

linear evaluation. 

 
Figure 5 Illustration of SwAV framework [65] 

VICReg (Variance-Invariance-Covariance 

Regularization) [16]: Avoiding collapse by explicitly 

regularizing three properties of the learned representation: 

• Variance: keep the standard deviation greater than 

this constant value. 

• Invariance: Same features for novel views 

• Covariance: Decorrelates representation 

dimensions 

VICReg obtains 73.2% with ResNet-50, showing that 

collapse can be mitigated without negative pairs or 

momentum encoders. 

Barlow Twins [29]: Independent of augmentations and 

reduces redundancy between embedding dimensions. The 

loss ensures the value of cross-correlation matrix between 

these embedding will be identical as identity matrix. 

Achieves 73.2% with ResNet-50. 

 
4. GENERATIVE AND MASKED MODELING 

APPROACHES 

 

4.1 Modeling the Masked Image: Key Concepts 

Following the success of BERT in NLP [32], masked image 

modeling (MIM) has been developed as another 

pr1edominant choice to contrastive learning. The main 

principle is to mask part of an image and train models to 

recover lost information, making them bind semantic 

relations [33, 34]. 

 

4.2 MAE: Masked Autoencoders 

The experiments have shown that the simple masked 

modeling achieves very competitive results with (much) 

lower per CPU, GPU processing time. 

Architecture: 
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1. Asymmetric Encoder-Decoder: 

• Encoder: ViT no mask tokens) operating on 

visible patches (()) 

• Decoder: 8-layer 512d transformer w. Final 

reconstruction from latent representation + 

mask tokens 

• Symmetry: encoder = Computation by 75% 

(masking 75% of patches). 

2. High Masking Rate: MAE masks 75% of the 

input patches (15% in BERT). 

• Creates a non-trivial reconstruction task 

• Prevent model from interpolating between 

nearby visible patches. 

• Dramatically reduces computational cost 

3. Target for Reconstruction: Normalized pixel (to 

zero mean and unity variance per patch) 

Implementation Details: 

Input: Image is stratified into patches of 16×16. 

Masking: 75% of patches are randomly masked 

Encoder: ViT-Base/Large/Huge on visible 25% 

patches here is a typical layout of the model on 

high-quality setting. 

Decoder: 8-block lightweight transformer 

Loss: MSE with only patches faced Votes from 

Patch Parlous 

Training: 1600 epochs on ImageNet-1K 

Results [17]: 

• ViT-Base: 83.6% top-1 accuracy (fine-tuned) 

• ViT-Large: 85.9% top-1 accuracy 

• ViT-Huge: 87.8% top-1 accuracy (good for 

methods that use only ImageNet-1K) 

 

4.3 BEiT: The Method BERT Pretraining of Image 

Transformers 

BEiT [18] on the other hand, employed discrete visual 

tokens as reconstruction targets. 

Architecture: 

1. Two-stage Training: 

• Stage 1: Train dVAE to tokenize an image to 

its discrete tokens 

• Stage 2: Masked token prediction with 

discrete tokens 

2. Remodeling: Cross-entropy loss and predicting 

discrete tokens classes (with 8192 vocabulary size) 

3. Masking: Block-40% (Local) 

Results: BEiT ViT-Base reaches 83.2% top-1 on ImageNet 

when finetuned [18]. 

BEiT v2 [35]: Further improved with vector-quantized 

knowledge distillation to 85.5% with ViT-Base. BEiT v3 

[36]: extended to multimodal setups, pre-training on images 

and image-text pairs jointly. 

 

4.4 Extensions and Variants 

SimMIM [37]: Simplified masked modeling with direct 

pixel prediction and mild maskting ratio (40-60%). And it is 

also effective for diverse architectures of the models, 

obtaining 83.8% using the Swin-Base transformer. 

iBOT [38]: Employs masked image modeling and self-

distillation with online tokenization. Reaches 82.3% kNN 

accuracy with ViT-S/16, which demonstrates the merit of 

incorporating MIM with distillation. 

MaskFeat [39]: Predicts HOG (Histogram of Oriented 

Gradients) features as reconstruction images instead of 

pixels. In this way we encourage the models to learn fine 

grained structural details, and results in 84.0% with ViT-

Base. 

Context Autoencoders (CAE) [40]: Uses asymmetric 

masking policies and aligning losses. Reaches 83.6% with 

ViT-Base on ImageNet. 

LoMaR (Local Masked Reconstruction) [41]: Uses only 

the local context windows, instead of the full image, to 

generate patches so as to be more efficient for high 

resolution images. Particularly useful for dense prediction 

tasks. 

 

4.5 VideoMAE: Generalization to Time VideoMAE [19] 

generalized MAE for video understanding with impressive 

speedup. 

Key Design Choices: 

• Very High Masking: Up to 90-95% masking ratio 

for videos 

• Tube Masking: Temporal tubes are also masked 

cross frames to enforce temporal consistency. 

• Temporal Redundancy: The higher the masking 

used to take advantage of temporal redundancy in 

videos. 

Results: 

• 3.2x speedup compared to video contrastive 

approaches 

• 81.1% top-1 accuracy on Kinetics-400 

 

 

4.6 Hybrid Approaches 

GAN-MAE [42]: Integrate MAE and adversarial training: 

• the Discriminator tells real and generated patches 

apart 

• Achieves similar performance with 8× less pre-

training epochs 

• Shows the promise of adversarial learning in 

successful SSL. 

ConvMAE [43]: Extends MAE to convolutional networks 

and follows masked convolutions to avoid information 

leakage. Demonstrates that mask-guided modeling is not 

unique to transformers. 

ViC-MAE (Visual Contrastive MAE) [44]: Fuses 

contrastive learning with masked modeling: 

• It can learn from both image and videos. 

• Obtains 74.0\% linear evaluation on ImageNet 

with ViT-B 

• Illustrates progression from contrastive to 

generative approach 

 
5. EXPERIMENTAL RESULTS AND COMPARATIVE 

ANALYSIS 

5.1 ImageNet Benchmark Results 

Table 1 summarizes state-of-the-art SSL results on 

ImageNet-1K classification: 
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Method Architecture 
Linear Eval 

(%) 

Fine-tune 

(%) 
Year 

MAE [17] ViT-Huge 75.0 87.8 2022 

MAE [17] ViT-Large 75.0 85.9 2022 

ReLICv2 [45] ResNet-50 77.1 82.2 2022 

MoCo v3 [27] ViT-Large 76.7 84.1 2021 

DINO [14] ViT-Large 81.5 84.5 2021 

BYOL [13] ResNet-50 74.3 79.6 2020 

SimCLR [10] 
ResNet-50 

(4×) 
76.5 80.2 2020 

SwAV [15] ResNet-50 75.3 79.1 2020 

MoCo v2 [26] ResNet-50 71.1 78.3 2020 

 

5.2 Transfer Learning Performance 

 

Object Detection (COCO): 

 

Method Backbone AP box AP mask 

MAE [17] ViT-Large 53.3 47.2 

MoCo v3 [27] ViT-Large 51.5 45.9 

Supervised ViT-Large 49.3 44.0 

 

MAE demonstrates +4.0 AP improvements over supervised 

baseline, highlighting superior transfer capabilities [17]. 

Semantic Segmentation (ADE20K): 

 

Method Backbone mIoU (%) 

MAE [17] ViT-Large 53.6 

BEiT [18] ViT-Large 53.3 

Supervised ViT-Large 50.2 

5.3 Efficiency Comparison 

Training Time (ImageNet-1K, 800 epochs, same hardware): 

• MAE ViT-Base: ∼34.5 hours using 128 TPU-v3 

cores 

• SimCLR ResNet-50: ~65 hours on 128 TPU-v3 

cores (large batch sizes needed) 

• MoCo v2 ResNet-50: around 45 hours on 8 V100 

GPUs 

Memory Efficiency: 

• MAE: Processes 25% patches in encoder (75% 

mask) 

• SimCLR: Needs 2× views × large batch size in 

memory 

• MoCo: negative queue cuts memory vs. SimCLR 

5.4 Domain-Specific Results 

Medical Imaging: A meta-analysis  [46] of 79 studies 

discovered the SSL pre-training resulted in: 

• Relative AUROC improvements: 0.216-32.6% 

• Accuracy improvements: 0.440-29.2% 

• F1 score improvements: 0.137-14.3% 

Performance decreases were reported only in 5 studies 

(0.98-4.51%). 

Plant Phenotyping: Recently benchmark [47] 

demonstrated: 

• MoCo v2 and DenseCL have Procrustes score > 

0.8 for representation similarity. 

• Supervised pre-training still has a small lead in 

specialized agricultural datasets 

• Overall, SSL methods had superior transfer to a 

wide range of downstream tasks 

Microscopy: Work on cellular biology [48] has shown that: 

• MAEs based on ViTs significantly outperform the 

self-supervised classifiers by 11.5% relative gain. 

• CA-MAE (channel agnostic) can generalize well 

to various channel creations. 

• Performance increases as we scale to larger 

models and datasets. 

5.5 Scalability and Model Size 

Performance tends to improve with model size: 

• MAE ViT-Huge (632M params): 87.8% 

ImageNet accuracy 

• MAE ViT-Large (307M params): 85.9% 

accurracy 

• MAE ViT-Base (86M params): 83.6% accuracy 

Web-scale pre-training (SEER [49]) on 1 billion random 

Instagram images obtains: 

• RegNetY-32GF: 84.2% ImageNet accuracy 

• Outperforms ImageNet-supervised pre-training 

• Shows SSL enables training over a wide range of 

uncurated data at web-scale 

 

6. APPLICATIONS ACROSS DOMAINS 

6.1 Computer Vision 

Image Classification: SSL has become a de-facto standard 

for ImageNet pre-training and methods such as MAE, DINO 

and MoCo v3 ∗approach supervised performance [17, 14, 

and 27]. 

Object Detection and Segmentation: SSL pre-training 

consistently benefits dense prediction. MAE also 

outperforms supervised baselines [17] by +4 AP on COCO 

object detection. 

Video Understanding: VideoMAE outperforms state-of-

the-art on action recognition with a 3.2× faster training 

speedup than contrastive-based implementations [19]. 

Applications span action recognition, video segmentation, 

and temporal grounding. 

6.2 Remote sensing and geospatial analysis 

Satellite Imagery: SSL pre-training on large-scale satellite 

images benefits land type classification, change detection, 

and object recognition [51]. 

Multi-temporal Analysis: Temporal SSL models can 

leverage the time-series structure of satellite data for better 

crop and environment monitoring [52]. 

Multi-modal Integration: The fusion of optical, radar and 

elevation imagery through SSL results in robust all-weather 

analysis [53]. 
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6.3 Natural Language Processing 

Although this review is centered on the vision domain, SSL 

has been just as revolutionary for NLP: 

BERT and GPT: Masked language modeling for pre-

training (BERT [32]) and autoregressive prediction (GPT 

[54]) made SSL the predominant NLP paradigm. 

Large Language Models: Recent LLMs (GPT-4, Llama, 

Claude) are trained mostly with SSL on web scale text data 

[55]. 

6.4 Multimodal Learning 

Vision-Language: CLIP [56] showed that contrastive 

learning on image-text pairs leads to strong general-purpose 

representations which enable transfer without exposure. 

Audio-Visual: SSL approaches can learn joint embedding 

from video with audio which help both modalities [57]. 

Cross-modal Transfer: BEiT v3 [36] demonstrates that 

pre-training jointly on images and image-text pairs can 

benefit both vision-only and multimodal tasks. 

6.5 Robotics and Autonomous Systems 

Sensor Fusion: SSL empowers knowledge extraction from 

mixed sensor modalities (camera, l idar and radar) without 

requiring manual correspondence labels [58]. 

Robotic Interactions: Self-supervised pre-training on robot 

interaction data leads to improvements in manipulation and 

navigation [59]. 

Sim-to-Real Transfer: SSL has been conceived to transfer 

knowledge across simulation and the real-world, training 

robust representations [60]. 

 
7. FUTURE RESEARCH DIRECTIONS 

7.1 Theoretical Understanding 

Theory of Foundations: Developing sound theoretical 

understandings that describe when and why SSL works. 

Key questions include: 

• Learning to learnable (vs. non-learnable) 21 

features formally 

• Sample complexity for Various SSL Scenarios 

• Connections between SSL objectives and 

downstream task performance 

Design of pretext tasks: General considerations for 

designing one. 

• Task specific SSL techniques that align the pre-

training with downstream objectives 

• automated discovery and optimization of pretext 

tasks 

• Exploring trade-offs among pretext task families 

Representation Analysis Better tools: for analyzing 

learned representations: 

• Measuring semantic content and disentanglement 

• Underlying what is kept vs. lost 

• Connecting representation properties to 

downstream performance 

7.2 Computational Efficiency and Accessibility 

Efficiency Improvements: 

• Less number of training epochs and computational 

costs 

• Better architectures for SSL (e.g., local masked 

reconstruction [41]) 

• Knowledge-based distillation from large SSL 

models to small ones 

Hardware Accessibility: 

• Small-batch/single-GPU-efficient methods 

• Optimized data loading and augmentation 

pipelines 

• Federated and distributed SSL training 

Green AI: Reducing environmental impact: 

• Energy-efficient SSL training protocols 

• Carbon footprint of the SSL techniques 

• Sustainable scaling to web-scale data 

7.3 Domain-Specific Advances 

Medical Imaging: 

• PPSSL – A Privacy- preserving SSL for sensitive 

medical data. 

• Few-shot learning for rare diseases 

• Multi-modal medical SSL (imaging + text + 

genomics) 

• Dealing with domain shift between hospitals and 

imaging-protocols 

Scientific Discovery: 

• Prediction and discovery in protein structure and 

drug design 

• Molecular property prediction by materials science 

• Climate modeling and environmental monitoring 

• Astronomical data analysis 

Industrial Applications: 

• Few-shot Defect Detection on Manufacturing 

Surface 

• Predictive maintenance using sensor data 

• Quality control and automated inspection 

7.4 Architecture and Model Design 

Efficient Architectures: 

• Hierarchical models that trade off efficiency and 

performance 

• Long length sequences are problematic for 

attention mechanisms containing sparsity. 

• Hybrid CNN and transformer architectures 
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Figure 6 Illustration of surrogate class formation for self-

supervised features learning in the case of exemplar CNN. 

(Left): The blue colored patch represents a sample patch 

cropped from one image of the unlabeled data to act as seed 

for surrogate class. The pool of the remaining patches is a 

random augmentation operation from the seed patch to 

create multiple images for one single surrogate class. 

(Right): A convolutional model is used to learn the 

representation by classifying the generated images into the 

base classes. [65] 

Modality-Specific Designs: 

• 3D vision SSL on point clouds and volumetric data 

• Graph SSL for network and molecular data 2 Data 

We consider the following two-dimensional 

datasets. 

• Time-series SSL with temporal structure 

Dynamic Architectures: 

• Neural architecture search for SSL 

• Adaptive masking strategies 

• Task-conditioned SSL models 

7.5 Multimodal and Cross-Modal Learning 

• Vision-Language Integration: 

• Improving zero-shot transfer capabilities 

• More meaningful match of vision and language 

semantics 

• Compositional understanding and reasoning 

Audio-Visual Learning: 

• Videos are supervisor for learning to read videos 

with sound. 

• Cross - modal generation and translation 

• Synchronized multi-modal representations 

Multi-Sensor Fusion: 

• Learning from heterogeneous sensor modalities 

• Handling missing modalities during inference 

• Cross-modal knowledge transfer 

 

7.6 Foundation Models and Scaling 

Web-Scale Pre-training: 

• Training on a billion unfiltered images and videos 

• Dealing with noisy and biased web data 

• Web-scale data creation and filtering made easy! 

Universal Representations: 

• Single models that generalize across tasks and 

domains 

• Compositional and modular representations 

• Continual learning and adaptation 

Emergent Capabilities: 

• Understanding the emergence of capabilities with 

increment in scale 

• Predicting performance at different scales 

• Identifying critical scale thresholds 

7.7 Robustness and Generalization 

Out-of-Distribution Generalization: 

• Shift robust SSL models 

• Domain adaptation and transfer learning 

• Handling corruptions and adversarial examples 

Fairness and Bias: 

• Understanding bias amplification in SSL 

• Fairness-aware SSL objectives 

• Demographic parity and equalized odds in learned 

representations 

7.8 Relation to Other Learning Modes 

Hybrid Learning: 

• Supervised and Semi-Supervised Learning using 

SSL 

• Active learning methods using SSL 

representations 

• Specifically, we focus on the meta-learning and 

few-shot learning setting combining with SSL. 

Reinforcement Learning: 

• Self-supervised pre-training for RL agents 

• Representation learning from interaction data 

• Auxiliary SSL tasks for exploration in RL 

Neurosymbolic AI: 

• Integrating SSL with symbolic reasoning 

• Learning structured representations 

• Combining learned and hand-crafted features 

7.9 Practical Deployment 

Real-World Applications: 

• Production deployment pipelines for SSL models 

• Online learning and model updates 

• Dealing with drift and shift in the data 

Interpretability: 

• Understanding what SSL models learn 

• Visualizing and explaining learned features 

• Debugging and improving SSL training 

Ethical Considerations: 

• Privacy concerns at internet scale 

• Consent and owning the data in SSL 

• Responsible AI Practice for the Deployment of 

SSL 

8. DISCUSSION 

8.1 Key Insights 

Overall, from this extensive survey of self-supervised 

learning, we obtained several important insights: 
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Paradigms Converge: Despite the fact that contrastive 

learning and masked image modeling were proposed with 

different motivations, recent works indicate that they learn 

very similar representations [30, 31]. The difference 

between paradigms often pales in comparison to the 

importance of fine-grained consideration of augmentation 

strategies, architecture design, and training regimen. 

Augmentation Matters: The choice of augmentation 

strategy is probably the most influential on SSL success. 

Growing augmentation diversity from 6 to 16 achieves 

+23% in performance [30], and even small changes such as 

including solarization brings additional +2.3% in accuracy 

(BYOL) [13]. 

Vision Transformers Transform SSL: ViTs are 

substantially better at leveraging self-supervised pre-

training than CNNs, obtaining competitive ImageNet 

accuracy of 87.8% when trained on only ImageNet-1K data 

which is on par with training directly supervised on orders-

of magnitude more labelled images [17]. 

Simplicity Can Be Powerful: The very simple MAE (mask 

75%, reconstruct pixels) approach achieves state-of-art 

result with a 3× training speedup [17], implying complex 

mechanism isn’t not necessary. 

Scale Matters: Performance gets better and better with a 

bigger model and more data. Web-scale pre-training on 

random images even surpasses ImageNet-supervised 

learning [49] and demonstrates the potential of SSL to tap 

into enormous unlabeled data. 

8.2 Limitations and Challenges 

Despite the significant advances of SSL, there are several 

shortcomings: 

Computational Cost: A lot of SSL methods are 

computationally intensive (i.e., big batch sizes, time-

consuming training process), which make them not 

accessible for the typical researchers working with normal 

hardware. 

Domain-Specificity: Techniques successful for natural 

images can show poor transferability to specialized domains 

(e.g., medical imaging, remote sensing) unless adjusted [47]. 

Theoretical Gaps: Even though SSL is empirically 

successful, our understanding of why it works is not yet 

complete. Questions about sample complexity, best pretext 

tasks and the core limits of learning remain. 

Evaluation Protocol: Un-uniformed evaluation may easily 

result in unfair comparison. The linear evaluation, fine-

tuning and kNN evaluation will often give different 

rankings of methods. 

Open Issue: Benchmark Limitations Recent research [64] 

finds that performance on standard benchmarks are not a 

consistent predictor of performance in similar but also 

different settings (generalization). 

8.3 Impact and Significance 

Self-supervised learning is flipping machine learning on its 

head: 

AI for Everyone: SSL reduces the reliance on costly 

labelled data, enabling a broader set of applications 

spanning all domains to take advantage of AI. 

Facilitating Foundation Models: Large language models 

and vision-language models are mostly pre-trained on self-

supervised learning, illustrating SSL’s pivotal role in 

contemporary AI. 

Scientific Discovery: SSL allows the exploration of large 

scientific datasets (genomics, astronomy and climate 

science) without depending on costly expert annotation. 

Economic Impact: The Economic Impact Decreasing 

annotation costs and increasing model effectiveness 

represent a substantial economic value proposition in any 

industry. 

9. CONCLUSION 

 
Self-supervised learning is a promising paradigm that 

alleviates some of the shortcomings of supervised learning. 

In this comprehensive review, we reviewed the 

development of SSL from 2020 to 2024, focusing on 

contrastive learning methods (SimCLR, MoCo, BYOL, 

DINO) and generative masked modeling approaches (MAE, 

BEiT, VideoMAE). 

Our findings show that current SSL methods reach or 

surpass supervised learning performance on a variety of 

benchmarks, with the MAE ViT-Huge now reaching 87.8% 

top-1 accuracy on ImageNet using only 1K data. The field 

arrived at a number of key insights: (1) the data 

augmentation strategy is more important than any SSL 

paradigm, (2) vision transformers gain from SSL pre-

training, and (3) masked image modeling provides 

simplicity and efficiency benefits, and (4) scaling to larger 

models and datasets improves performance. 

1, 2, SSL has shown its in many areas and tasks such as 

computer vision 3, : medical imaging [46], remote sensing 

(RS) [47] pattern recognition [41], multimodal learning. 

Applications include ImageNet classification, rare disease 

identification, satellite image recognition, and vision 

language comprehension. The transition to SSL-trained 

foundation models is a fundamental change in the way AI 

systems are engineered and deployed. 

Challenges Despite much advancement, there are still some 

big challenges. Theoretical understanding of SSL is lacking, 

with several questions about the sample complexity, 

optimal design for pretext tasks, and learning bounds still 

unanswered. Even when they are more widely used, 

streaming models are still expensive to compute and access 

for the vast majority of smaller labs, arguing that on DOM 

content alone, about a quarter of 100 million webpages were 

unreachable from common analysis pipelines. Investigating 

domain adaptation and OOD generalization is necessary, 

given the recent finding that benchmark performance does 

not necessarily correlate with real world generalization. 

In the future, some of the promising directions to advance 

this line of research include: (i) pursuing theoretical 

development; (ii) increasing computational efficiency; (iii) 

developing problem-specific methods; (iv) extending to 

multimodal learning; and (v) scaling up to web-scale 

datasets. Equally promising is the combination of SSL with 

other learning paradigms (reinforcement learning, meta-

learning and neuron-symbolic AI). Ethical questions, 

including matters of privacy, fairness and responsible 
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deployment will inevitably need to be addressed as SSL 

systems are deployed at scale. 

But today, self-supervised learning is not simply a 

substitute; it’s an integral part of modern AI. The methods, 

insights and techniques that emerge from SSL research are 

destined to shape the future of machine learning, pushing us 

toward ever more capable, efficient and accessible AI 

systems that can learn from the enormous quantities of 

unlabeled data in the world. 
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