Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCRT S-2015 Conference Proceedings

Adaptive MapReduce Scheduling in Shared
Environments

Sougandhika Narayan Vinay M, Vinay A, Sagar R, Nithin S
Department of Computer Science and Engineering,
K S Institute of Technology, Bengaluru

Abstract— MapReduce task scheduler for shared
environments in which MapReduce is executed along with
other resource-consuming workloads, such as transactional
applications. All workloads may potentially share the same
data store, some of them consuming data for analytics
purposes while others acting as data generators. This kind of
scenario is becoming increasingly important in data centers
where improved resource utilization can be achieved through
workload consolidation and is specially challenging due to the
interaction between workloads of different nature that
compete for limited resources. The proposed scheduler aims
to improve resource utilization across machines while
observing completion time goals. Unlike other Map Reduce
schedulers, our approach also takes into account the resource
demands for non MapReduce workloads and assumes that the
amount of resources made available to the MapReduce
applications is variable over time. As shown in our
experiments, our proposal improves the management of
MapReduce jobs in the presence of variable resource
availability,increasing the accuracy of the estimations made
by the scheduler,thus improving completion time goals
without an impact on the fairness of the scheduler.

Keywords—MapReduce, Scheduling, Distributed, Analytics,
Transactional, Adaptive, Availability, Shared Environments.

I. INTRODUCTION

The traditional database RDBMS is capable of

processing small and medium data but not large data .The
proposed system introduces an efficient analytical engine
using hadoop big data which has HDFS environment and
MAPREDUCE as programming language. Robust and
customizable planner engine & pluggable and reusable
helper component is created to perform analysis for two
problems weather data analysis and server logs analysis.
RDBMS is incapable of processing large data sets, due to
relations among tables. If everything is in one column
problem is normalizations (no duplicate values, no null
values)
Instead of running these services in completely dedicated
environments, which may lead to underutilized resources, it
is becoming more common to multiplex different and
complementary workloads in the same machines. This is
turning clusters and data centers into shared environments
in which each one of the machines may be running
different applications simultaneously at any point in time:
from database servers to MapReduce jobs to other kinds of
applications [1]. This constant change is challenging since
it introduces higher variability and thus makes performance
of these systems less predictable.

To solve the scalability problem, a secret polynomial based
message authentication scheme was introduced in [3]. The
idea of this scheme is similar to a threshold secret sharing,
where the threshold is determined by the degree of the
polynomial. This approach offers information-theoretic
security of the shared secret key when the number of
messages transmitted is less than the threshold. The
intermediate nodes verify the authenticity of the message
through a polynomial evaluation. However, when the
number of messages transmitted is larger than the
threshold, the polynomial can be fully recovered and the
system is completely broken.

The Reverse- Adaptive Scheduler, that allows the
integrated management of data processing frameworks
such as MapReduce along with other kinds of workloads
that can be used for both, transactional and analytics
workloads. The scheduler expects that each job is
associated with a completion time goal that is provided by
users at job submission time. These goals are treated as soft
deadlines as opposed to the strict deadlines familiar in real-
time environments: they simply guide workload
management. We also assume that the changes in workload
intensity over time for transactional workloads can be well
characterised, as has been previously stated in the literature

[5].

Existing previous work on MapReduce scheduling
involved estimating the resources that needed to be
allocated to each job in order to meet its completion goals
[6], [7], [8]. This naive estimation worked fine under the
assumption that the total amount of resources remained
stable over time. However, in a scenario with consolidated
workloads we are targeting a more dynamic environment in
which resources are shared with other frameworks and
availability changes depending on external and a priori
unknown factors. The scheduler proposed in this paper
proactively deals with dynamic resource availability while
still being guided by completion time goals.

MOTIVATING EXAMPLE

Consider a system running two major distributed
frameworks: a MapReduce deployment used to run
background jobs, and a distributed data-store that handles
transactional operations and serves data to a front-end.
Both workloads share the same machines, but since the
usage of the frontend changes significantly over time
depending on the activity of external entities, so does the

Volume 3, | ssue 27

Published by, www.ijert.org 1



Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCRT S-2015 Conference Proceedings

availability of resources left for the MapReduce jobs.
Notice that the demand of resources over time for the front-
end activities is supposed to be well characterized [5], and
therefore it can be predicted in the form of a given function
f(t) known in advance.

Il PROBLEM STATEMENT

We are given a cluster of machines, formed by a set of
nodes N = {1,..,N} in which we need to run different
workloads. We use n to index the set of nodes. We are also
given a set of MapReduce jobs J = {1,...,J}, that has to be
run in N. We usej to index the set of MapReduce jobs.

Each node n hosts two main processes: a MapReduce slave
and a non-MapReduce process that represents another kind
of workload. While MapReduce usually consists of a
tasktracker and a datanode in Hadoop terminology, we
summarize both of them for simplicity and refer to them as
the tasktracker process hereafter. Similarly, The non-
MapReduce process could represent any kind of workload
but we identify it as data-store in this paper.

111 PROGRAMMING MODEL

The computation takes a set of input key/value pairs,
and produces a set of output key/value pairs. The user
of

the MapReduce library expresses the computation as two
functions: Map and Reduce.Map, written by the user, takes
an input pair and produces a set of intermediate key/value
pairs. The MapReduce library groups together all
intermediate values associated with the same intermediate
key | and passes them to the Reduce function. The Reduce
function, also written by the user, accepts an intermediate
key | and a set of values for that key. It merges together
these values to form a possibly smaller set of values.
Typically just zero or one output value is produced per
Reduce invocation.

The intermediate values are supplied to the user’s reduce
function via an iterator. This allows us to handle lists of
values that are too large to fit in memory.

TYPES
Even though the previous pseudo-code is written in
terms of string inputs and outputs, conceptually the
map and reduce functions supplied by the user have
associated types:

map (k1,v1) ! list(k2,v2)
reduce (k2,list(v2)) !
list(v2)

l.e., the input keys and values are drawn from a different
domain than the output keys and values. Furthermore, the
intermediate keys and values are from the same domain as
the output keys and values. Our C++ implementation

passes strings to and from the user-defined functions and
leaves it to the user code to convert between strings and
appropriate types.

Reverse-Adaptive Scheduler

The driving principles of the scheduler are resource
availability awareness and continuous job performance
management. The former is used to decide task placement
on tasktrackers over time, while the latter is used to
estimate the number of tasks to be run in parallel for each
job in order to meet performance objectives, expressed in
the form of completion time goals. Job performance
management has been extensively evaluated and validated
in our previous work, presented as the Adaptive Scheduler
[6] [7]. In this paper we extend the resource availability
awareness of the scheduler when the MapReduce jobs are
collocated with other time varying workloads. One key
element of our proposal in this paper is the variable Sfit,
which is an estimator of the minimal number of tasks that
should be allocated in parallel to a MapReduce job to keep
its chances to reach its deadline, assuming that the
available resources

will change over time as predicted by f(t). Notice that the
novelty of this estimator is the fact that it also considers the
variable demand of resources introduced by other external
workloads. Thus, the main components of the Reverse-
Adaptive Scheduler, as described in the following sections,
are:

« Sfit estimator.

« Utility function that leverages Sfit used as a per-
job performance model.

* Placement algorithm that leverages the previous
two components.

A. Intuition

The intuition behind the reverse scheduling approach is
that it divides time into stationary periods, in which no job
completions are expected. One period ends and starts in
instants in which a job completion time goal is expected.
When a job is expected to complete at the end of a period,
the scheduler calculates the amount of resource to be
allocated during the period for the job to make its
completion goal. If the available resources are not enough,
the amount of pending work is pushed back to the
immediately preceding period. Notice that the amount of
the available resources for the period is determined by the
function f(t), that estimates the resources that will have to
be committed to the non-MapReduce workloads. When
more than one job co-exists in the same period, they
compete for the available resources, and they are allocated
following a fairness criteria that will try to make all jobs
obtain the same utility from the decided schedule.

Volume 3, | ssue 27

Published by, www.ijert.org 2



Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCRT S-2015 Conference Proceedings

For the sake of clarity, Figure 3 retakes the example
presented in and shows how the placement decision is
made step by step. Starting at the desired completion time,
which is represented by the deadline of the last job, we
assign as many tasks as possible from the jobs that are
supposed to be running within that timeframe, compressed
between that deadline and the previous one. In this case
only J3 is running and we are able to assign most of its
tasks, as shown in Figure 3(a). Next we estimate the
timeframe between time 7 and 15 as shown in Figure 3(b),
in which we would like to run all the tasks from J2 and the
remaining ones from J3. The scheduler is able to run the
remaining tasks from J3, but since there aren’t enough
resources to run all the tasks from J2, the remaining ones
are carried to the last timeframe. Similarly, in the final step
of the estimation as shown in Figure 3(c), the scheduler
evaluates the timeframe between 0 and 7, in which it is
supposed to execute J1 and the remaining tasks from J2.
Once the estimation of expected availability is completed,
the scheduler is aware of all the steps needed to reach its
desired state from the current state, and therefore proceeds
to create the next placement of jobs that will satisfy its final
goal.

B. Estimation of the resources to allocate to each job

We consider a scenario in which jobs are dynamically
submitted by users. Each submission includes both the
job’s completion time goal (if one is provided) and its
resource consumption profile. This information is provided
via the job configuration file. The scheduler maintains a list
of active minimum number of map tasks that should be
allocated concurrently during the next placement cycle, sj
fit, by reversing the expected execution assuming all jobs
meet their completion time goal Tj goal, and relying on the
observed task length (yj ) and the availability of resources
over time (Qtt).

User
Program
(1) forx
X 1)

(1) fork

=3

p i
ss2ign raguce

& Tl
split0 g€ =
n O] output
split1 worker filed
split2 2 I
E output
splitd file 1
split4
|
Input Map Intermediate files Reduce Output
files phase (onlocaldisks) phase files

Fig.1 Scheduler Architecture

Figure 5 illustrates the architecture and operation the
scheduler. The system consists of five components:

Placement Algorithm, Job Utility Calculator, Task
Scheduler, Job Status Updater and Workload Estimator.
Each submission includes both the job’s completion time
goal (if one is provided) and its resource consumption
profile.

Most of the logic behind the scheduler resides the
utilitydriven Placement Control Loop and the Task
Scheduler. The former is responsible for producing
placement decisions, while the latter is responsible for
enforcing the decisions made by the former. The Placement
Control Loop operates in control cycles of period T. Its
output is a new placement matrix P that will be active until
the next control cycle is reached (current time + T). The
Task Scheduler is responsible for enforcing the placement
decisions. The Job Utility Calculator calculates a utility
value for an input placement matrix which is then used by
the Placement Algorithm to choose the best placement
choice available. Upon completion of a task, the
TaskTracker notifies the Job Status Updater, which for any
job j in the system, triggers an update of sjpend and rjpend
in the job descriptor. The Job Status Updater also keeps
track of the average task length observed for every job in
the system, which is later used to estimate the completion
time for each job. The Workload Estimator estimates the
number of map tasks that should be allocated concurrently
(sjreq) to meet the completion time goal of each job, as
well as the parameter Sjfit. In this work we concentrate on
the estimation of the parameter Sjfit that feeds the
Placement Algorithm, as well as the performance model
used by the Job Utility Calculator. The major change in this
architecture compared to the scheduler presented.

Submission time (static information) System Description

Completion Time Goal List of TaskTrackers 77

«— (Toat)

Job Submission

Operation in control cycles of period T

Placement Control loop
P . W Bl
T valuste Placement
:
in this round

Placement .- Job Utility
Algorithm ueey Calculator

T § New (P, P¥) to enforce unti
Update ongs Hhena I P next control cycle (1)
o

Stitoc Tatoe) 10 meet P¥, P¥, (1,

Fig.2 Use case diagram

Volume 3, | ssue 27

Published by, www.ijert.org 3



Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCRT S-2015 Conference Proceedings

Fig.3 Data Flow Diagram

Name

node Hadoop
Job tracker Cluster
nv %
<
— Meta data
Data node Datanode l Datanode

Task tracker

Task tracker Task tracker

Disk Disk Disk

Fig.4 Evaluation

This section includes the description of the experimental
environment, including the simulation platform we have
built, and the results from the experiments that explore the
improvements of our scheduler compared to previous
existing schedulers: the default FIFO scheduler, the
Adaptive Scheduler described in [7], and the Reverse-
Adaptive scheduler proposed in this paper.

In Experiment 1 (Section V-B) we consider the standard
scenario in which MapReduce is the only workload
running in the system and thus the performance of the
scheduler should be similar to previous approaches. In
Experiment 2 (Section V-C) we introduce an additional
workload in order to gain insight on how does the proposed
scheduler perform in this kind of shared environment. And
finally, Experiment 3 (Section V-D) shows the impact that
the burstiness of transactional workloads may have on the
scheduler.

IV CONCLUSION

In this paper we have presented the Reverse-Adaptive
Scheduler, which introduces a novel resource management
and job scheduling scheme for MapReduce when executed
in shared environments along with other kinds of
workloads. Our scheduler is capable of improving resource
utilization and job performance. The model we introduce
allows for the formulation of a placement problem which is
solved by means of a utility-driven algorithm. This
algorithm in turn provides our scheduler with the
adaptability needed to respond to changing conditions in
resource demand and availability of resources.

The scheduler works by estimating the need of resources
that should be allocated to each job, but in a more proactive
way than previously existing work, since the estimation
takes into account the expected availability of resources. In
particular, the proposed algorithm consists of two major
steps: reversing the execution of the workload and
generating the current placement of tasks. Reversing the
execution of the workload involves creating an estimated
placement of the full workload over time, assigning tasks
in the opposite direction: starting at the desired end state
and finishing at the current state. The reversed placement is
used as an estimation to know how many tasks are left at
the current state, which allows the scheduler to determine
what’s the need of tasks for each job and how should they
share the available resources. The presented scheduler
relies on existing profiling information based on previous
executions of jobs to make scheduling and placement
decisions.

The goal of the scheduler is to determine the best possible
placement of tasks across the tasktrackers so as to
maximize resource utilization in the cluster while
observing the completion time goal for each job. To
achieve this objective, the system dynamically manages the
number of slots each tasktracker will provision for each
job, and controls the execution of their tasks. Our
experiments in a simulated environment driven by
representative MapReduce workloads demonstrate the
effectiveness of our proposal. To the best of our knowledge
this is the first scheduling framework to take into account
other non-MapReduce workloads, such as transactional
workloads, in addition to leveraging resource information
to improve the utilization of resources in the system and
meet completion time goals on behalf of users.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” in OSDI’04: Proceedings of the 6th Symposium
on Operating Systems Design and Implementation. San Francisco,
CA: USENIX Association, December 2004, pp. 137-150.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Trans.
Comput. Syst., vol. 26, no. 2, pp. 4:1-4:26, Jun. 2008.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.
Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W.
Vogels, “Dynamo: amazon’s highly available key-value store,” in
Proceedings of twentyfirst ACM SIGOPS symposium on Operating
systems principles, ser. SOSP *07. NY, USA: ACM, 2007, pp. 205—
220.

Volume 3, | ssue 27

Published by, www.ijert.org 4



