
Adaptive MapReduce Scheduling in Shared

Environments

Sougandhika Narayan Vinay M, Vinay A, Sagar R, Nithin S

Department of Computer Science and Engineering,
K S Institute of Technology, Bengaluru

Abstract— MapReduce task scheduler for shared

environments in which MapReduce is executed along with

other resource-consuming workloads, such as transactional

applications. All workloads may potentially share the same

data store, some of them consuming data for analytics

purposes while others acting as data generators. This kind of

scenario is becoming increasingly important in data centers

where improved resource utilization can be achieved through

workload consolidation and is specially challenging due to the

interaction between workloads of different nature that

compete for limited resources. The proposed scheduler aims

to improve resource utilization across machines while

observing completion time goals. Unlike other Map Reduce

schedulers, our approach also takes into account the resource

demands for non MapReduce workloads and assumes that the

amount of resources made available to the MapReduce

applications is variable over time. As shown in our

experiments, our proposal improves the management of

MapReduce jobs in the presence of variable resource

availability,increasing the accuracy of the estimations made

by the scheduler,thus improving completion time goals

without an impact on the fairness of the scheduler.

Keywords—MapReduce, Scheduling, Distributed, Analytics,

Transactional, Adaptive, Availability, Shared Environments.

I. INTRODUCTION

The traditional database RDBMS is capable of

processing small and medium data but not large data .The

proposed system introduces an efficient analytical engine

using hadoop big data which has HDFS environment and

MAPREDUCE as programming language. Robust and

customizable planner engine & pluggable and reusable

helper component is created to perform analysis for two

problems weather data analysis and server logs analysis.

RDBMS is incapable of processing large data sets, due to

relations among tables. If everything is in one column

problem is normalizations (no duplicate values, no null

values)
Instead of running these services in completely dedicated

environments, which may lead to underutilized resources, it

is becoming more common to multiplex different and

complementary workloads in the same machines. This is

turning clusters and data centers into shared environments

in which each one of the machines may be running

different applications simultaneously at any point in time:

from database servers to MapReduce jobs to other kinds of

applications [1]. This constant change is challenging since

it introduces higher variability and thus makes performance

of these systems less predictable.

To solve the scalability problem, a secret polynomial based

message authentication scheme was introduced in [3]. The

idea of this scheme is similar to a threshold secret sharing,

where the threshold is determined by the degree of the

polynomial. This approach offers information-theoretic

security of the shared secret key when the number of

messages transmitted is less than the threshold. The

intermediate nodes verify the authenticity of the message

through a polynomial evaluation. However, when the

number of messages transmitted is larger than the

threshold, the polynomial can be fully recovered and the

system is completely broken.
The Reverse- Adaptive Scheduler, that allows the

integrated management of data processing frameworks

such as MapReduce along with other kinds of workloads

that can be used for both, transactional and analytics

workloads. The scheduler expects that each job is

associated with a completion time goal that is provided by

users at job submission time. These goals are treated as soft

deadlines as opposed to the strict deadlines familiar in real-

time environments: they simply guide workload

management. We also assume that the changes in workload

intensity over time for transactional workloads can be well

characterised, as has been previously stated in the literature

[5].

Existing previous work on MapReduce scheduling

involved estimating the resources that needed to be

allocated to each job in order to meet its completion goals

[6], [7], [8]. This naïve estimation worked fine under the

assumption that the total amount of resources remained

stable over time. However, in a scenario with consolidated

workloads we are targeting a more dynamic environment in

which resources are shared with other frameworks and

availability changes depending on external and a priori

unknown factors. The scheduler proposed in this paper

proactively deals with dynamic resource availability while

still being guided by completion time goals.

MOTIVATING EXAMPLE

Consider a system running two major distributed

frameworks: a MapReduce deployment used to run

background jobs, and a distributed data-store that handles

transactional operations and serves data to a front-end.

Both workloads share the same machines, but since the

usage of the frontend changes significantly over time

depending on the activity of external entities, so does the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

1

availability of resources left for the MapReduce jobs.

Notice that the demand of resources over time for the front-

end activities is supposed to be well characterized [5], and

therefore it can be predicted in the form of a given function

f(t) known in advance.

II PROBLEM STATEMENT

We are given a cluster of machines, formed by a set of

nodes N = {1,...,N} in which we need to run different

workloads. We use n to index the set of nodes. We are also

given a set of MapReduce jobs J = {1,...,J}, that has to be

run in N. We usej to index the set of MapReduce jobs.

Each node n hosts two main processes: a MapReduce slave

and a non-MapReduce process that represents another kind

of workload. While MapReduce usually consists of a

tasktracker and a datanode in Hadoop terminology, we

summarize both of them for simplicity and refer to them as

the tasktracker process hereafter. Similarly, The non-

MapReduce process could represent any kind of workload

but we identify it as data-store in this paper.

III PROGRAMMING MODEL

The computation takes a set of input key/value pairs,

and produces a set of output key/value pairs. The user

of

the MapReduce library expresses the computation as two

functions: Map and Reduce.Map, written by the user, takes

an input pair and produces a set of intermediate key/value

pairs. The MapReduce library groups together all

intermediate values associated with the same intermediate

key I and passes them to the Reduce function. The Reduce

function, also written by the user, accepts an intermediate

key I and a set of values for that key. It merges together

these values to form a possibly smaller set of values.

Typically just zero or one output value is produced per

Reduce invocation.

The intermediate values are supplied to the user’s reduce

function via an iterator. This allows us to handle lists of

values that are too large to fit in memory.

TYPES

Even though the previous pseudo-code is written in

terms of string inputs and outputs, conceptually the

map and reduce functions supplied by the user have

associated types:

map (k1,v1) ! list(k2,v2)

reduce (k2,list(v2)) !

list(v2)

I.e., the input keys and values are drawn from a different

domain than the output keys and values. Furthermore, the

intermediate keys and values are from the same domain as

the output keys and values. Our C++ implementation

passes strings to and from the user-defined functions and

leaves it to the user code to convert between strings and

appropriate types.

Reverse-Adaptive Scheduler

The driving principles of the scheduler are resource

availability awareness and continuous job performance

management. The former is used to decide task placement

on tasktrackers over time, while the latter is used to

estimate the number of tasks to be run in parallel for each

job in order to meet performance objectives, expressed in

the form of completion time goals. Job performance

management has been extensively evaluated and validated

in our previous work, presented as the Adaptive Scheduler

[6] [7]. In this paper we extend the resource availability

awareness of the scheduler when the MapReduce jobs are

collocated with other time varying workloads. One key

element of our proposal in this paper is the variable Sfit,

which is an estimator of the minimal number of tasks that

should be allocated in parallel to a MapReduce job to keep

its chances to reach its deadline, assuming that the

available resources

will change over time as predicted by f(t). Notice that the

novelty of this estimator is the fact that it also considers the

variable demand of resources introduced by other external

workloads. Thus, the main components of the Reverse-

Adaptive Scheduler, as described in the following sections,

are:

• Sfit estimator.

• Utility function that leverages Sfit used as a per-

job performance model.

• Placement algorithm that leverages the previous

two components.

A. Intuition

The intuition behind the reverse scheduling approach is

that it divides time into stationary periods, in which no job

completions are expected. One period ends and starts in

instants in which a job completion time goal is expected.

When a job is expected to complete at the end of a period,

the scheduler calculates the amount of resource to be

allocated during the period for the job to make its

completion goal. If the available resources are not enough,

the amount of pending work is pushed back to the

immediately preceding period. Notice that the amount of

the available resources for the period is determined by the

function f(t), that estimates the resources that will have to

be committed to the non-MapReduce workloads. When

more than one job co-exists in the same period, they

compete for the available resources, and they are allocated

following a fairness criteria that will try to make all jobs

obtain the same utility from the decided schedule.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

2

For the sake of clarity, Figure 3 retakes the example

presented in and shows how the placement decision is

made step by step. Starting at the desired completion time,

which is represented by the deadline of the last job, we

assign as many tasks as possible from the jobs that are

supposed to be running within that timeframe, compressed

between that deadline and the previous one. In this case

only J3 is running and we are able to assign most of its

tasks, as shown in Figure 3(a). Next we estimate the

timeframe between time 7 and 15 as shown in Figure 3(b),

in which we would like to run all the tasks from J2 and the

remaining ones from J3. The scheduler is able to run the

remaining tasks from J3, but since there aren’t enough

resources to run all the tasks from J2, the remaining ones

are carried to the last timeframe. Similarly, in the final step

of the estimation as shown in Figure 3(c), the scheduler

evaluates the timeframe between 0 and 7, in which it is

supposed to execute J1 and the remaining tasks from J2.

Once the estimation of expected availability is completed,

the scheduler is aware of all the steps needed to reach its

desired state from the current state, and therefore proceeds

to create the next placement of jobs that will satisfy its final

goal.
B. Estimation of the resources to allocate to each job

We consider a scenario in which jobs are dynamically

submitted by users. Each submission includes both the

job’s completion time goal (if one is provided) and its

resource consumption profile. This information is provided

via the job configuration file. The scheduler maintains a list

of active minimum number of map tasks that should be

allocated concurrently during the next placement cycle, sj
fit, by reversing the expected execution assuming all jobs

meet their completion time goal Tj goal, and relying on the

observed task length (μj) and the availability of resources

over time (Ωtt).

Fig.1 Scheduler Architecture

Figure 5 illustrates the architecture and operation the

scheduler. The system consists of five components:

Placement Algorithm, Job Utility Calculator, Task

Scheduler, Job Status Updater and Workload Estimator.

Each submission includes both the job’s completion time

goal (if one is provided) and its resource consumption

profile.

Most of the logic behind the scheduler resides the

utilitydriven Placement Control Loop and the Task

Scheduler. The former is responsible for producing

placement decisions, while the latter is responsible for

enforcing the decisions made by the former. The Placement

Control Loop operates in control cycles of period T. Its

output is a new placement matrix P that will be active until

the next control cycle is reached (current time + T). The

Task Scheduler is responsible for enforcing the placement

decisions. The Job Utility Calculator calculates a utility

value for an input placement matrix which is then used by

the Placement Algorithm to choose the best placement

choice available. Upon completion of a task, the

TaskTracker notifies the Job Status Updater, which for any

job j in the system, triggers an update of sjpend and rjpend

in the job descriptor. The Job Status Updater also keeps

track of the average task length observed for every job in

the system, which is later used to estimate the completion

time for each job. The Workload Estimator estimates the

number of map tasks that should be allocated concurrently

(sjreq) to meet the completion time goal of each job, as

well as the parameter Sjfit. In this work we concentrate on

the estimation of the parameter Sjfit that feeds the

Placement Algorithm, as well as the performance model

used by the Job Utility Calculator. The major change in this

architecture compared to the scheduler presented.

Fig.2 Use case diagram

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

3

Fig.3 Data Flow Diagram

Fig.4 Evaluation

This section includes the description of the experimental

environment, including the simulation platform we have

built, and the results from the experiments that explore the

improvements of our scheduler compared to previous

existing schedulers: the default FIFO scheduler, the

Adaptive Scheduler described in [7], and the Reverse-

Adaptive scheduler proposed in this paper.

In Experiment 1 (Section V-B) we consider the standard

scenario in which MapReduce is the only workload

running in the system and thus the performance of the

scheduler should be similar to previous approaches. In

Experiment 2 (Section V-C) we introduce an additional

workload in order to gain insight on how does the proposed

scheduler perform in this kind of shared environment. And

finally, Experiment 3 (Section V-D) shows the impact that

the burstiness of transactional workloads may have on the

scheduler.

IV CONCLUSION

 In this paper we have presented the Reverse-Adaptive

Scheduler, which introduces a novel resource management

and job scheduling scheme for MapReduce when executed

in shared environments along with other kinds of

workloads. Our scheduler is capable of improving resource

utilization and job performance. The model we introduce

allows for the formulation of a placement problem which is

solved by means of a utility-driven algorithm. This

algorithm in turn provides our scheduler with the

adaptability needed to respond to changing conditions in

resource demand and availability of resources.

The scheduler works by estimating the need of resources

that should be allocated to each job, but in a more proactive

way than previously existing work, since the estimation

takes into account the expected availability of resources. In

particular, the proposed algorithm consists of two major

steps: reversing the execution of the workload and

generating the current placement of tasks. Reversing the

execution of the workload involves creating an estimated

placement of the full workload over time, assigning tasks

in the opposite direction: starting at the desired end state

and finishing at the current state. The reversed placement is

used as an estimation to know how many tasks are left at

the current state, which allows the scheduler to determine

what’s the need of tasks for each job and how should they

share the available resources. The presented scheduler

relies on existing profiling information based on previous

executions of jobs to make scheduling and placement

decisions.

The goal of the scheduler is to determine the best possible

placement of tasks across the tasktrackers so as to

maximize resource utilization in the cluster while

observing the completion time goal for each job. To

achieve this objective, the system dynamically manages the

number of slots each tasktracker will provision for each
job, and controls the execution of their tasks. Our

experiments in a simulated environment driven by

representative MapReduce workloads demonstrate the

effectiveness of our proposal. To the best of our knowledge

this is the first scheduling framework to take into account

other non-MapReduce workloads, such as transactional

workloads, in addition to leveraging resource information

to improve the utilization of resources in the system and

meet completion time goals on behalf of users.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing

on large clusters,” in OSDI’04: Proceedings of the 6th Symposium

on Operating Systems Design and Implementation. San Francisco,
CA: USENIX Association, December 2004, pp. 137–150.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.

Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Trans.

Comput. Syst., vol. 26, no. 2, pp. 4:1–4:26, Jun. 2008.
[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.

Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W.

Vogels, “Dynamo: amazon’s highly available key-value store,” in
Proceedings of twentyfirst ACM SIGOPS symposium on Operating

systems principles, ser. SOSP ’07. NY, USA: ACM, 2007, pp. 205–

220.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

4

