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Abstract— MapReduce task scheduler for shared 

environments in which MapReduce is executed along with 

other resource-consuming workloads, such as transactional 

applications. All workloads may potentially share the same 

data store, some of them consuming data for analytics 

purposes while others acting as data generators. This kind of 

scenario is becoming increasingly important in data centers 

where improved resource utilization can be achieved through 

workload consolidation and is specially challenging due to the 

interaction between workloads of different nature that 

compete for limited resources. The proposed scheduler aims 

to improve resource utilization across machines while 

observing completion time goals. Unlike other Map Reduce 

schedulers, our approach also takes into account the resource 

demands for non MapReduce workloads and assumes that the 

amount of resources made available to the MapReduce 

applications is variable over time. As shown in our 

experiments, our proposal improves the management of 

MapReduce jobs in the presence of variable resource 

availability,increasing the accuracy of the estimations made 

by the scheduler,thus improving completion time goals 

without an impact on the fairness of the scheduler. 
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I. INTRODUCTION 

 

The traditional database RDBMS is capable of 

processing small and medium data but not large data .The 

proposed system introduces an efficient analytical engine 

using hadoop big data which has HDFS environment and 

MAPREDUCE as programming language. Robust and 

customizable planner engine & pluggable and reusable 

helper component is created to perform analysis for two 

problems weather data analysis and server logs analysis. 

RDBMS is incapable of processing large data sets, due to 

relations among tables. If everything is in one column 

problem is normalizations (no duplicate values, no null 

values) 
Instead of running these services in completely dedicated 

environments, which may lead to underutilized resources, it 

is becoming more common to multiplex different and 

complementary workloads in the same machines. This is 

turning clusters and data centers into shared environments 

in which each one of the machines may be running 

different applications simultaneously at any point in time: 

from database servers to MapReduce jobs to other kinds of 

applications [1]. This constant change is challenging since 

it introduces higher variability and thus makes performance 

of these systems less predictable. 

To solve the scalability problem, a secret polynomial based 

message authentication scheme was introduced in [3]. The 

idea of this scheme is similar to a threshold secret sharing, 

where the threshold is determined by the degree of the 

polynomial. This approach offers information-theoretic 

security of the shared secret key when the number of 

messages transmitted is less than the threshold. The 

intermediate nodes verify the authenticity of the message 

through a polynomial evaluation. However, when the 

number of messages transmitted is larger than the 

threshold, the polynomial can be fully recovered and the 

system is completely broken. 
The Reverse- Adaptive Scheduler, that allows the 

integrated management of data processing frameworks 

such as MapReduce along with other kinds of workloads 

that can be used for both, transactional and analytics 

workloads. The scheduler expects that each job is 

associated with a completion time goal that is provided by 

users at job submission time. These goals are treated as soft 

deadlines as opposed to the strict deadlines familiar in real-

time environments: they simply guide workload 

management. We also assume that the changes in workload 

intensity over time for transactional workloads can be well 

characterised, as has been previously stated in the literature 

[5]. 
 
Existing previous work on MapReduce scheduling 

involved estimating the resources that needed to be 

allocated to each job in order to meet its completion goals 

[6], [7], [8]. This naïve estimation worked fine under the 

assumption that the total amount of resources remained 

stable over time. However, in a scenario with consolidated 

workloads we are targeting a more dynamic environment in 

which resources are shared with other frameworks and 

availability changes depending on external and a priori 

unknown factors. The scheduler proposed in this paper 

proactively deals with dynamic resource availability while 

still being guided by completion time goals. 
 

MOTIVATING EXAMPLE 

 
Consider a system running two major distributed 

frameworks: a MapReduce deployment used to run 

background jobs, and a distributed data-store that handles 

transactional operations and serves data to a front-end. 

Both workloads share the same machines, but since the 

usage of the frontend changes significantly over time 

depending on the activity of external entities, so does the 
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availability of resources left for the MapReduce jobs. 

Notice that the demand of resources over time for the front-

end activities is supposed to be well characterized [5], and 

therefore it can be predicted in the form of a given function 

f(t) known in advance. 
 

II PROBLEM STATEMENT 

 
We are given a cluster of machines, formed by a set of 

nodes N = {1,...,N} in which we need to run different 

workloads. We use n to index the set of nodes. We are also 

given a set of MapReduce jobs J = {1,...,J}, that has to be 

run in N. We usej to index the set of MapReduce jobs. 
 
Each node n hosts two main processes: a MapReduce slave 

and a non-MapReduce process that represents another kind 

of workload. While MapReduce usually consists of a 

tasktracker and a datanode in Hadoop terminology, we 

summarize both of them for simplicity and refer to them as 

the tasktracker process hereafter. Similarly, The non-

MapReduce process could represent any kind of workload 

but we identify it as data-store in this paper.  

 

III PROGRAMMING MODEL 

 
The computation takes a set of input key/value pairs, 

and produces a set of output key/value pairs. The user 

of 
 
the MapReduce library expresses the computation as two 

functions: Map and Reduce.Map, written by the user, takes 

an input pair and produces a set of intermediate key/value 

pairs. The MapReduce library groups together all 

intermediate values associated with the same intermediate 

key I and passes them to the Reduce function. The Reduce 

function, also written by the user, accepts an intermediate 

key I and a set of values for that key. It merges together 

these values to form a possibly smaller set of values. 

Typically just zero or one output value is produced per 

Reduce invocation. 
 
The intermediate values are supplied to the user’s reduce 

function via an iterator. This allows us to handle lists of 

values that are too large to fit in memory. 
 

TYPES 

Even though the previous pseudo-code is written in 

terms of string inputs and outputs, conceptually the 

map and reduce functions supplied by the user have 

associated types: 
 
map (k1,v1) ! list(k2,v2) 

reduce (k2,list(v2)) ! 

list(v2) 
 
I.e., the input keys and values are drawn from a different 

domain than the output keys and values. Furthermore, the 

intermediate keys and values are from the same domain as 

the output keys and values. Our C++ implementation 

passes strings to and from the user-defined functions and 

leaves it to the user code to convert between strings and 

appropriate types. 
 

Reverse-Adaptive Scheduler 

 
The driving principles of the scheduler are resource 

availability awareness and continuous job performance 

management. The former is used to decide task placement 

on tasktrackers over time, while the latter is used to 

estimate the number of tasks to be run in parallel for each 

job in order to meet performance objectives, expressed in 

the form of completion time goals. Job performance 

management has been extensively evaluated and validated 

in our previous work, presented as the Adaptive Scheduler 

[6] [7]. In this paper we extend the resource availability 

awareness of the scheduler when the MapReduce jobs are 

collocated with other time varying workloads. One key 

element of our proposal in this paper is the variable Sfit, 

which is an estimator of the minimal number of tasks that 

should be allocated in parallel to a MapReduce job to keep 

its chances to reach its deadline, assuming that the 

available resources 
 
will change over time as predicted by f(t). Notice that the 

novelty of this estimator is the fact that it also considers the 

variable demand of resources introduced by other external 

workloads. Thus, the main components of the Reverse-

Adaptive Scheduler, as described in the following sections, 

are: 
 
• Sfit estimator.  

 

• Utility function that leverages Sfit used as a per-

job performance model.  

 

• Placement algorithm that leverages the previous 

two components.  

 
A. Intuition 
 
The intuition behind the reverse scheduling approach is 

that it divides time into stationary periods, in which no job 

completions are expected. One period ends and starts in 

instants in which a job completion time goal is expected. 

When a job is expected to complete at the end of a period, 

the scheduler calculates the amount of resource to be 

allocated during the period for the job to make its 

completion goal. If the available resources are not enough, 

the amount of pending work is pushed back to the 

immediately preceding period. Notice that the amount of 

the available resources for the period is determined by the 

function f(t), that estimates the resources that will have to 

be committed to the non-MapReduce workloads. When 

more than one job co-exists in the same period, they 

compete for the available resources, and they are allocated 

following a fairness criteria that will try to make all jobs 

obtain the same utility from the decided schedule. 
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For the sake of clarity, Figure 3 retakes the example 

presented in and shows how the placement decision is 

made step by step. Starting at the desired completion time, 

which is represented by the deadline of the last job, we 

assign as many tasks as possible from the jobs that are 

supposed to be running within that timeframe, compressed 

between that deadline and the previous one. In this case 

only J3 is running and we are able to assign most of its 

tasks, as shown in Figure 3(a). Next we estimate the 

timeframe between time 7 and 15 as shown in Figure 3(b), 

in which we would like to run all the tasks from J2 and the 

remaining ones from J3. The scheduler is able to run the 

remaining tasks from J3, but since there aren’t enough 

resources to run all the tasks from J2, the remaining ones 

are carried to the last timeframe. Similarly, in the final step 

of the estimation as shown in Figure 3(c), the scheduler 

evaluates the timeframe between 0 and 7, in which it is 

supposed to execute J1 and the remaining tasks from J2. 

Once the estimation of expected availability is completed, 

the scheduler is aware of all the steps needed to reach its 

desired state from the current state, and therefore proceeds 

to create the next placement of jobs that will satisfy its final 

goal. 
B. Estimation of the resources to allocate to each job 
 
We consider a scenario in which jobs are dynamically 

submitted by users. Each submission includes both the 

job’s completion time goal (if one is provided) and its 

resource consumption profile. This information is provided 

via the job configuration file. The scheduler maintains a list 

of active minimum number of map tasks that should be 

allocated concurrently during the next placement cycle, sj 
fit, by reversing the expected execution assuming all jobs 

meet their completion time goal Tj goal, and relying on the 

observed task length (μj ) and the availability of resources 

over time (Ωtt). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1 Scheduler Architecture 

 
Figure 5 illustrates the architecture and operation the 

scheduler. The system consists of five components: 
 

 

Placement Algorithm, Job Utility Calculator, Task 

Scheduler, Job Status Updater and Workload Estimator. 

Each submission includes both the job’s completion time 

goal (if one is provided) and its resource consumption 

profile. 
 
Most of the logic behind the scheduler resides the 

utilitydriven Placement Control Loop and the Task 

Scheduler. The former is responsible for producing 

placement decisions, while the latter is responsible for 

enforcing the decisions made by the former. The Placement 

Control Loop operates in control cycles of period T. Its 

output is a new placement matrix P that will be active until 

the next control cycle is reached (current time + T). The 

Task Scheduler is responsible for enforcing the placement 

decisions. The Job Utility Calculator calculates a utility 

value for an input placement matrix which is then used by 

the Placement Algorithm to choose the best placement 

choice available. Upon completion of a task, the 

TaskTracker notifies the Job Status Updater, which for any 

job j in the system, triggers an update of sjpend and rjpend 

in the job descriptor. The Job Status Updater also keeps 

track of the average task length observed for every job in 

the system, which is later used to estimate the completion 

time for each job. The Workload Estimator estimates the 

number of map tasks that should be allocated concurrently 

(sjreq) to meet the completion time goal of each job, as 

well as the parameter Sjfit. In this work we concentrate on 

the estimation of the parameter Sjfit that feeds the 

Placement Algorithm, as well as the performance model 

used by the Job Utility Calculator. The major change in this 

architecture compared to the scheduler presented. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.2 Use case diagram 
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Fig.3 Data Flow Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.4 Evaluation 

 
This section includes the description of the experimental 

environment, including the simulation platform we have 

built, and the results from the experiments that explore the 

improvements of our scheduler compared to previous 

existing schedulers: the default FIFO scheduler, the 

Adaptive Scheduler described in [7], and the Reverse-

Adaptive scheduler proposed in this paper. 
 
In Experiment 1 (Section V-B) we consider the standard 

scenario in which MapReduce is the only workload 

running in the system and thus the performance of the 

scheduler should be similar to previous approaches. In 

Experiment 2 (Section V-C) we introduce an additional 

workload in order to gain insight on how does the proposed 

scheduler perform in this kind of shared environment. And 

finally, Experiment 3 (Section V-D) shows the impact that 

the burstiness of transactional workloads may have on the 

scheduler. 
 

 

 

IV CONCLUSION 

 In this paper we have presented the Reverse-Adaptive 

Scheduler, which introduces a novel resource management 

and job scheduling scheme for MapReduce when executed 

in shared environments along with other kinds of 

workloads. Our scheduler is capable of improving resource 

utilization and job performance. The model we introduce 

allows for the formulation of a placement problem which is 

solved by means of a utility-driven algorithm. This 

algorithm in turn provides our scheduler with the 

adaptability needed to respond to changing conditions in 

resource demand and availability of resources.
 

 
The scheduler works by estimating the need of resources 

that should be allocated to each job, but in a more proactive 

way than previously existing work, since the estimation 

takes into account the expected availability of resources. In 

particular, the proposed algorithm consists of two major 

steps: reversing the execution of the workload and 

generating the current placement of tasks. Reversing the 

execution of the workload involves creating an estimated 

placement of the full workload over time, assigning tasks 

in the opposite direction: starting at the desired end state 

and finishing at the current state. The reversed placement is 

used as an estimation to know how many tasks are left at 

the current state, which allows the scheduler to determine 

what’s the need of tasks for each job and how should they 

share the available resources. The presented scheduler 

relies on existing profiling information based on previous 

executions of jobs to make scheduling and placement 

decisions.

The goal of the scheduler is to determine the best possible 

placement of tasks across the tasktrackers so as to 

maximize resource utilization in the cluster while 

observing the completion time goal for each job. To 

achieve this objective, the system dynamically manages the 

number of slots each tasktracker will provision for each 
job, and controls the execution of their tasks. Our 

experiments in a simulated environment driven by 

representative MapReduce workloads demonstrate the 

effectiveness of our proposal. To the best of our knowledge 

this is the first scheduling framework to take into account 

other non-MapReduce workloads, such as transactional 

workloads, in addition to leveraging resource information 

to improve the utilization of resources in the system and 

meet completion time goals on behalf of users.
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