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Abstract—The traditional Image enhancement methods are one 

of the problems in the pre-processing since these methods do not 

address the varying degrees of blurriness in the image dataset. As 

the amount of blur is different in each of the images, fixed-

parameter sharpening methods may not solve the problem wisely. 

The wide spectrum of image processing and computer vision 

requires this kind of different pre-processing for different images 

based on the blurriness of the image.  This paper presents a novel 

adaptive image sharpening framework that leverages fuzzy logic 

and an Adaptive Neuro-Fuzzy Inference System (ANFIS) to 

intelligently determine optimal sharpening parameters based on a 

quantitative assessment of blur. Using the Laplacian variance 

method for blur detection, we categorise 1050 high-resolution 

images (6000 × 4000 pixels) into four fuzzy linguistic categories: 

very blurry, slightly blurry, acceptably sharp, and very sharp. A 

fuzzy rule-based system maps blur scores to adaptive sharpening 

strengths, which are then applied using a high-boost kernel 

derived from unsharp masking theory. The ANFIS model, trained 

on the blur-sharpening dataset using scikit-fuzzy, achieves a mean 

squared error of 1.27 in predicting optimal sharpening 

parameters. This result expresses the effectiveness of the method. 

The method could get rid of every blurry image, and at the same 

time, it shows that the increase in the number of sharp images is 

huge. This adaptive approach could prevent over-sharpening of 

already sharp images and under-enhancement of severely blurred 

images. Thus, the best outcome of this research is the robust 

solution it offers for automated image quality improvement in 

heterogeneous datasets. 

Keywords—Adaptive image sharpening, fuzzy logic, ANFIS, 

blur detection, Laplacian variance, unsharp masking, image 

enhancement  

I. INTRODUCTION

The most important property one desires is image quality. 

Irrespective of the application, the most challenging problem 

related to images is the blurriness of the image.  And that might 

be the reason image sharpening technique is one of the most 

studied topics. The conventional sharpening techniques are 

designed in such a way that they can apply uniform 

enhancement parameters across all images. But in reality, every 

image is different in its own way, so the enhancement 

requirement for each image may be different. Every dataset can 

be considered heterogeneous in that sense, since the level of 

blur in each of the images varies. A few images will require no 

enhancement at all, whereas there will be images which are 

really degraded because of the blur severity. It does this 

intelligently by adjusting the sharpening parameters according 

to the blurriness of the image.  

This paper showcases an adaptive approach for image 

enhancement based on soft computing. This will automatically 

prevent over-sharpening of the images, ensuring adequate 

enhancement of severely degraded images. 

But if one applies a fixed sharpening filter with constant 

parameters to such diverse datasets leads to two critical issues: 

1. Over-sharpening: This happens because of applying

sharpening techniques to even those images which are

already sharp or which are a little less blurry. But since

those images will be artificially enhanced, it will

introduce noise amplification, halo artefacts, and

unnatural edge emphasis.

2. Under-enhancement: Severely blurred images receive

insufficient correction, remaining below acceptable

quality thresholds.

Traditional binary classification (blur vs. sharp) inadequately 

captures the continuous spectrum of blur severity. Human 

perception of image sharpness is inherently gradual and 

context-dependent, making fuzzy logic an ideal framework for 

modelling this uncertainty. By representing blur levels as fuzzy 

linguistic variables (very blurry, slightly blurry, acceptably 

sharp, very sharp) and mapping them to corresponding 

sharpening strengths through fuzzy inference rules, we create 

an adaptive system that mimics expert human judgment. 

This paper makes the following contributions: 

1. A comprehensive fuzzy logic framework for

categorising image blur into four linguistic categories

based on Laplacian variance scores.

2. A fuzzy rule-based system that maps blur categories to

adaptive sharpening strengths, operationalised through

a normalised high-boost kernel.

3. An ANFIS model trained on 1050 images that learns the

optimal blur-to-sharpening mapping, achieving low

prediction error. And also verify or update the rules

generated by the fuzzy rule-based system.
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The remainder of this paper is organised as follows: Section 2 

reviews related work in blur detection and adaptive image 

enhancement. Section 3 establishes the theoretical foundations 

of Laplacian-based blur detection, fuzzy logic, ANFIS, and 

unsharp masking. Section 4 details the complete methodology 

from blur assessment to ANFIS training. Section 5 presents 

comprehensive results, and Section 6 discusses the advantages, 

limitations, and implications of the proposed approach. Section 

7 concludes with future research directions. 

II. LITERATURE REVIEW 

Image sharpening has been a fundamental topic in digital image 

processing for decades, with techniques ranging from simple 

spatial filters to sophisticated adaptive algorithms. Traditional 

sharpening methods, such as unsharp masking [1] and high-pass 

filtering, apply fixed enhancement parameters uniformly across 

images. Though these methods are computationally efficient, 

they hardly offer any flexibility to handle varying blur 

conditions. 

 

In the past few years, blur detection and assessment to measure 

blurriness have evolved significantly. Amongst all these, the 

Laplacian variance method [2] outlines its performance as one 

of the popular no-reference metrics. This method tries to map 

the relationship between the strength of the edge and image 

sharpness. If one understands this correctly, one can see that 

sharp images contain well-defined edges with high gradient 

magnitudes. In contrast, the blurred images are seen with 

smoothed edges with reduced variance. The Laplacian operator, 

a second-order derivative, effectively captures these edge 

characteristics. It works by computing the variance between 

neighbouring pixels. If the variance is found towards a higher 

range, it indicates the presence of a stronger edge. Whereas 

lower variance suggests smoothed edges (blurred image). 

 

The adaptive image enhancement techniques [3] have gained 

more attention and popularity because researchers have 

gradually highlighted the limitations of the traditional methods 

with a fixed set of parameters [4]. Even the adaptive nature can 

exhibit its two different forms. The first one, where the method 

adjusts the enhancement parameters based on local or global 

image characteristics. And secondly, the adaptive methods that 

rely on hard thresholds or binary decisions, which inadequately 

represent the gradual nature of blur perception. 

 

Fuzzy logic is known for its ability to handle uncertainty. It can 

also deal with the gradual transitions in image quality 

assessment. Instead of dividing the entire dataset into blur or 

sharp images, fuzzy logic allows partial memberships. Several 

researchers have explored fuzzy logic in image processing, but 

there is little work that focuses on a framework that combines 

fuzzy categorisation with rule-based inference and then uses 

neuro-fuzzy learning for adaptive sharpening.  

 

The concept of adaptive sharpening [5] addresses the need for 

variable enhancement intensity [6]. Based on the properties of 

images, the sharpening strength has to be adjusted. This will not 

only prevent over-sharpening artefacts but also provide 

adequate enhancement to degraded areas of the image.  

 

High-boost filtering [7], derived from unsharp masking theory, 

offers a flexible sharpening framework. We want the high-

frequency components, that is, the edges in the images, to be 

preserved or enhanced. The high-boost kernel not only 

amplifies edges but also helps to protect low-frequency 

information (smooth regions). As the sharpening intensity can 

be controlled by means of modulating the kernel's central 

coefficient, this technique is more suitable for adaptive 

applications [8]. 

 

Fuzzy logic is known for its interpretability, and Neural 

networks are famous for their learning capability. Adaptive 

Neuro-Fuzzy Inference Systems (ANFIS) combine the 

interpretability of fuzzy logic with the power of neural 

networks. ANFIS models can learn complex input-output 

mappings from data while maintaining the transparency of 

fuzzy rules. The literature survey helps in identifying the 

application of ANFIS in image processing. Ranging from edge 

detection, segmentation, to quality assessment, ANFIS shows 

its contribution in performing different tasks. But its application 

to adaptive sharpening parameter prediction represents a novel 

contribution. 

 

Despite these advances, a comprehensive framework that 

integrates Laplacian-based blur detection, fuzzy linguistic 

categorisation, rule-based sharpening strength determination, 

and ANFIS-based learning for adaptive image enhancement has 

not been fully developed [9]. This paper addresses this gap by 

presenting an end-to-end system that leverages these 

complementary techniques. 

 

III. THEORETICAL FOUNDATIONS 

 

Blur Detection Using Laplacian Variance 

The Laplacian operator is a second-order derivative that 

measures the rate of change of pixel intensities in an image. For 

a two-dimensional image I (x, y), the Laplacian is defined as: 

𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛 I =  
∂²I

∂x²
+

∂²I

∂y²
 

 

In discrete form, the Laplacian can be approximated using 

convolution kernels. A common 3×3 Laplacian kernel is: 

 

[
0 1 0
1 −4 1
0 1 0

] 

 
The Laplacian variance method [1] computes the variance of 

the Laplacian-filtered image as a blur metric: 

 

𝐵𝑙𝑢𝑟 𝑆𝑐𝑜𝑟𝑒 = 𝑉𝑎𝑟 ((∇2I) 

 

where Var denotes variance. 

For implementation, images are first converted to grayscale to 

eliminate colour channel dependencies and focus on luminance 

information, which is most relevant for edge detection [10]. The 

Laplacian operator is then applied, and the variance of the 
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resulting edge map is computed. Higher variance indicates 

sharper images, while lower variance suggests blurriness. 

 

The Laplacian variance method offers several advantages: 

• No-reference metric: Does not require a reference sharp 

image 

• Computational efficiency: Simple convolution and variance 

calculation 

• Robustness: Effective across various image types and blur 

sources 

Fuzzy Logic and Linguistic Variables 

Fuzzy logic, introduced by Lotfi Zadeh [11], extends classical 

binary logic to handle partial truth values between 0 and 1. In 

fuzzy set theory, an element can have partial membership in 

multiple sets simultaneously, enabling representation of 

gradual transitions and uncertainty. 

 

A fuzzy linguistic variable represents a concept using natural 

language terms. For blur assessment, instead of binary 

classification (blur/sharp), we define linguistic terms such as 

"very blurry," "slightly blurry," "acceptably sharp," and "very 

sharp." Each term is associated with a membership function 

μ(x) that maps input values to membership degrees in [0, 1]. 

 

Common membership function shapes include: 

 

1. Triangular membership function: 

 

μ(x;  a, b, c) = max (𝑚𝑖𝑛 (
𝑥 − 𝑎

𝑏 − 𝑎
,
𝑐 − 𝑥

𝑐 − 𝑏
) , 0) 

 

2. Trapezoidal membership function: 

 

μ(x;  a, b, c) = max (𝑚𝑖𝑛 (
𝑥 − 𝑎

𝑏 − 𝑎
, 1,

𝑐 − 𝑥

𝑐 − 𝑏
) , 0) 

 

Triangular functions are suitable for intermediate categories 

with clear peaks, while trapezoidal functions are appropriate for 

extreme categories with plateaus. 

 

Fuzzy inference involves three steps: 

1. Fuzzification: Convert crisp input values to fuzzy 

membership degrees 

2. Rule evaluation: Apply fuzzy IF-THEN rules to 

determine output fuzzy sets 

3. Defuzzification: Convert fuzzy output to crisp values 

(e.g., centroid method) 

 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

ANFIS integrates fuzzy inference systems with neural network 

learning capabilities [12]. The architecture consists of five 

layers: 

 

1. Layer 1 (Fuzzification): Each node applies a 

membership function to inputs 

2. Layer 2 (Rule): Nodes compute firing strengths of fuzzy 

rules (typically using product or minimum operators) 

3. Layer 3 (Normalisation): Normalises firing strengths 

4. Layer 4 (Consequent): Computes rule outputs (often 

linear functions of inputs) 

5. Layer 5 (Aggregation): Sums weighted outputs to 

produce the final result 

 

ANFIS uses hybrid learning algorithms combining 

backpropagation (for premise parameters) and least-squares 

estimation (for consequent parameters). This enables the 

system to learn optimal membership functions and rule 

parameters from training data while maintaining the 

interpretability of fuzzy rules. 

 

Advantages of ANFIS for adaptive sharpening: 

- Data-driven learning: Automatically learns blur-to-

sharpening mappings from examples 

- Interpretability: Maintains transparent fuzzy rules 

- Generalisation: Can predict sharpening parameters for 

unseen blur scores 

- Flexibility: Adapts to dataset-specific characteristics 

Unsharp Masking and High-Boost Filtering 

 

Unsharp masking is a classical sharpening technique that 

enhances edges by adding a scaled high-frequency component 

to the original image. The process involves: 
1. Blur the original image: Iblur = I ⊗ Gσ  

, where I is the original image, ⊗ denotes convolution, 

and Gσ is a Gaussian kernel 

2. Compute the mask: M = I − Iblur 

3. Add the scaled mask: Isharp = I + k · M 

, where k is the sharpening strength parameter (k>0). 

 

Combining steps 2 and 3: 

Isharp = I + k (I − Iblur) = (1 + k) I − k·Iblur 

High-boost filtering [4] generalises unsharp masking by using 

a sharpening kernel directly. A common high-boost kernel is: 

[
−1 −1 −1
−1 9 −1
−1 −1 −1

] 

This kernel can be decomposed as: 

[
−1 −1 −1
−1 9 −1
−1 −1 −1

] = [
0 0 0
0 1 0
0 0 0

] + 8. ((
1

8
) [

−1 −1 −1
−1 9 −1
−1 −1 −1

]) 

 

The central coefficient (9 in this case) controls sharpening 

intensity. For adaptive sharpening, we modulate this coefficient 

using a normalised factor α: 

α = sharpness strength / max strength 

 

where sharpness strength is determined by the fuzzy inference 

system based on blur score, and maxstrength is the maximum 

allowable sharpening (e.g., 3.0). Higher blur scores yield larger 

α values, resulting in stronger sharpening. 
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IV. METHODOLOGY 

Dataset Description 

The experimental dataset consists of 1050 high-resolution 

images with dimensions of 6000×4000 pixels. These images 

exhibit varying degrees of blur, making them ideal for 

evaluating adaptive sharpening techniques. This diversity in 

blur levels is due to different image capture conditions, camera 

settings, or post-processing histories.  

The blur assessment pipeline follows these steps: 

1. Grayscale Conversion: Each RGB image is converted to 

grayscale using standard luminance weighting: 

Igray = 0.299·R + 0.587·G + 0.114·B 

Grayscale conversion eliminates colour channel 

dependencies and focuses analysis on luminance 

information, which is most relevant for edge 

detection [13] and blur assessment. 

2. Laplacian Filtering: The Laplacian operator is applied to 

the grayscale image using a 3×3 kernel to detect edges 

and compute second-order derivatives. 

3. Variance Calculation: The variance of the Laplacian-

filtered image is computed as the blur score: 

Blur Score = Var(∇²Igray) 

This single scalar value quantifies image sharpness, with 

higher values indicating sharper images and lower 

values indicating blurred images. 

Fuzzy Categorisation of Blur Levels 

Based on the computed blur scores, images are categorised into 

four fuzzy linguistic categories using membership functions. 

The categorisation scheme is defined in Table 1. 

 

Blur Score Fuzzy Category Membership Function 

Type  

< 50 Very blurry Trapezoidal               

50 – 100 Slightly blurry Triangular                

100 – 300 Acceptably sharp Triangular                

> 300 Very sharp Trapezoidal               
Table 1: Fuzzy categorisation of blur score 

Membership Function Design: 

- Very blurry: Trapezoidal function with plateau at low blur 

scores, capturing severely degraded images that 

unambiguously require strong enhancement. 

- Slightly blurry: Triangular function centred around blur score 

75, representing images with moderate degradation requiring 

moderate enhancement. 

- Acceptably sharp: Triangular function centred around blur 

score 200, representing images with acceptable quality 

requiring minimal or no enhancement. 

- Very sharp: Trapezoidal function with plateau at high blur 

scores, capturing already sharp images that should not be 

further enhanced to avoid over-sharpening artefacts. 

 

The choice of trapezoidal functions for extreme categories 

ensures that images far from decision boundaries receive 

consistent treatment, while triangular functions for intermediate 

categories provide smooth transitions between adjacent blur 

levels [14]. 

Fuzzy Rule-Based System for Sharpening Strength 

The sharpening strength is determined through a fuzzy rule-

based system that maps blur categories to enhancement 

intensities. Sharpening strength is defined as a fuzzy linguistic 

variable with three categories: 

- No sharpness: Applied to already sharp images 

(sharpening strength ≈ 0) 

- Moderate sharpness: Applied to slightly blurred images 

(sharpening strength ≈ 1.5) 

- High sharpness: Applied to severely blurred images 

(sharpening strength ≈ 3.0) 

The fuzzy rule base consists of four IF-THEN rules: 

- Rule 1: IF blur score is "very blurry" THEN sharpening 

strength is "high sharpness" 

- Rule 2: IF blur score is "slightly blurry" THEN 

sharpening strength is "moderate sharpness" 

- Rule 3: IF blur score is "acceptably sharp" THEN 

sharpening strength is "no sharpness" 

- Rule 4: IF blur score is "very sharp" THEN sharpening 

strength is "no sharpness" 

These rules encode expert knowledge: severely blurred images 

require aggressive enhancement, moderately blurred images 

need moderate correction, and already sharp images should be 

left unchanged to prevent over-sharpening artefacts. 

 

The fuzzy inference process involves [15]: 

1. Fuzzification: Compute membership degrees of the 

input blur score in each fuzzy category. 

2. Rule Evaluation: Determine the firing strength of each 

rule based on input membership degrees. 

3. Defuzzification: Aggregate rule outputs and convert to 

a crisp sharpening strength value using the centroid 

method: 

   sharpness strength = ∫ μ(s) · s ds / ∫ μ(s) ds 

      where μ(s) is the aggregated output membership function. 

 

The resulting sharpening strength is a continuous value in the 

range [0, 3], providing fine-grained control over enhancement 

intensity. 

Adaptive Sharpening Implementation 

The adaptive sharpening process applies the high-boost kernel 

with intensity modulated by the fuzzy-determined sharpening 

strength: 

 

1. Normalisation Factor Computation: 

α = sharpness strength / max strength 

where max strength = 3.0.  

This normalises the sharpening strength to [0, 1]. 
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2. Adaptive Kernel Construction: 

The high-boost kernel is scaled by α: 

 

K_adaptive = [
−α −α −α
−α 1 + 8α −α
−α −α −α

] 

 

         When α = 0 (no sharpening needed), the kernel becomes 

an identity operation. When α = 1 (maximum 

sharpening), the kernel becomes the full high-boost 

filter. 

 

3. Convolution: 

   Isharp = I ⊗ Kadaptive    

   The adaptive kernel is convolved with the original 

image to produce the sharpened result. 

 

This adaptive approach ensures that: 

- Very blurry images (low blur scores) receive strong 

enhancement (high α) 

- Slightly blurry images receive moderate enhancement 

(medium α) 

- Already sharp images receive minimal or no 

enhancement (low α) 

ANFIS Model Training and Validation 

To create a predictive model that can generalise to new images, 

an ANFIS model is trained on the blur score and sharpening 

strength data generated from the 1050 images. 

ANFIS Architecture: 

1. Input Variable: Blur score (antecedent) 

2. Output Variable: Sharpening strength (consequent) 

 

Membership Function Design: 

For the input blur score, five membership functions are defined 

to capture the full range of blur levels: 

- very low: Trapezoidal function covering the lowest blur 

scores 

 μ𝑣𝑒𝑟𝑦 𝑙𝑜𝑤(x) =  trapmf (𝑥, [𝑚𝑖𝑛, 𝑚𝑖𝑛, min +0.05 ∙

 𝑟𝑎𝑛𝑔𝑒 + 0.15 ∙ 𝑟𝑎𝑛𝑔𝑒]) 

- low: Triangular function for low blur scores 

   μ𝑙𝑜𝑤(x) =  trimf (𝑥, [𝑚𝑖𝑛 + 0.1 ∙ 𝑟𝑎𝑛𝑔𝑒, 𝑚𝑖𝑛 + 0.25 ∙
𝑟𝑎𝑛𝑔𝑒, 𝑚𝑖𝑛 + 0.4 ∙ 𝑟𝑎𝑛𝑔𝑒]) 

- medium: Triangular function for medium blur scores 

   μ𝑚𝑒𝑑𝑖𝑢𝑚(x) =  trimf (𝑥, [𝑚𝑖𝑛 + 0.3 ∙ 𝑟𝑎𝑛𝑔𝑒, 𝑚𝑖𝑛 +
0.5 ∙ 𝑟𝑎𝑛𝑔𝑒, 𝑚𝑖𝑛 + 0.7 ∙ 𝑟𝑎𝑛𝑔𝑒]) 

- high: Triangular function for high blur scores 

   μℎ𝑖𝑔ℎ(x) =  trimf (𝑥, [𝑚𝑖𝑛 + 0.6 ∙ 𝑟𝑎𝑛𝑔𝑒, 𝑚𝑖𝑛 + 0.75 ∙

𝑟𝑎𝑛𝑔𝑒, max − 0.1 ∙ 𝑟𝑎𝑛𝑔𝑒]) 

- very high: Trapezoidal function covering the highest blur 

scores 

  μ𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ(x) =  trapmf (𝑥, [𝑚𝑎𝑥 − 0.1 ∙

𝑟𝑎𝑛𝑔𝑒, max − 0.05 ∙ 𝑟𝑎𝑛𝑔𝑒, 𝑚𝑎𝑥, 𝑚𝑎𝑥]) 

 

where min and max are the minimum and maximum blur scores 

in the dataset, and range = max − min. 

 

Similarly, membership functions are defined for the output 

sharpening strength variable to represent no sharpness, low 

sharpness, moderate sharpness, high sharpness, and very high 

sharpness. 

 

Fuzzy Rule Formulation: 

The initial fuzzy rule base encodes the inverse relationship 

between blur score and sharpening strength: 

 

- IF blur_score is very_low THEN sharpening_strength is 

very_high 

- IF blur_score is low THEN sharpening_strength is high 

- IF blur_score is medium THEN sharpening_strength is 

moderate 

- IF blur_score is high THEN sharpening_strength is low 

- IF blur_score is very_high THEN sharpening_strength is 

very_low 

 

Training Process: 

1. Data Preparation: The dataset of 1050 image records, 

each containing a blur score and corresponding optimal 

sharpening strength, is split into training and validation 

sets. 

2. Control System Creation: A fuzzy control system is 

constructed using the scikit-fuzzy library, incorporating 

the defined membership functions and fuzzy rules. 

3. Parameter Optimisation: The ANFIS learning algorithm 

adjusts membership function parameters and rule 

consequents to minimise prediction error on the training 

data. 

4. Validation: The trained model is evaluated on the 

validation set to assess generalisation performance. 

Performance Metric: Mean Squared Error (MSE) is used to 

quantify prediction accuracy. The trained ANFIS model 

achieves an MSE of 1.27, indicating high accuracy in predicting 

optimal sharpening parameters from blur scores. This means 

that the model has successfully learned the blur-to-sharpening 

mapping and can generalise to new images. 

 

The methodology workflow is shown in Figure 1, from image 

input to prediction of the sharpening level for an unseen image. 

 

V. RESULTS 

Initial Blur Distribution Analysis 

When it started, the initial analysis explained the diversity of 

blurriness in the dataset of 1050 images. Table 2 presents the 

distribution of images across the four fuzzy blur categories 

before any sharpening was applied. 

 
Category Total number of images 

Very blurry 638 

Slightly blurry 263 

Acceptably sharp 92 

Very sharp 57 
Table 2: Number of images in each category in the original image 
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Figure 1: Workflow for the proposed methodology 

The table above shows that almost 60.76% of the images are 

categorised as very blurry images (638 images). It also 

underlines the requirement of pre-processing of the data. At the 

same time, it underlines the real-world scenario showing that 

the datasets are mostly heterogeneous. If one observes, an 

additional 25.05% were slightly blurry, indicating moderate 

degradation. Only 14.19% of images (92 + 57) were acceptably 

sharp or very sharp, suggesting that the dataset predominantly 

consisted of degraded images. 

This distribution underscores the necessity of adaptive 

sharpening: applying uniform enhancement would either under-

correct the 638 very blurry images or over-sharpen the 149 

already acceptable images, introducing artefacts. 

Post-Sharpening Image Quality Assessment 

After applying the adaptive fuzzy logic-based sharpening 

system, blur scores were recomputed for all images and 

recategorised. Table 3 presents the post-sharpening 

distribution. 

Category Total number of 

images 

Percentage 

Very Blurry 0 0.00%  

Blurry 15 1.43%  

Sharp 52 4.95%  

Very Sharp 982 93.52%  
Table 3: The number of blurred images in each category after sharpening 

The results demonstrate dramatic improvement in image quality 

for example, there is complete elimination of very blurry 

images: The 638 very blurry images were reduced to 0, 

representing a 100% reduction. 

Category Before 

Sharpening 

After 

Sharpening 

Change Percentage 

Change 

Very 

Blurry 

638 0 -638 -100.000000

Blurry 263 15 -248 -94.296578

Sharp 92 52 -40 -43.478261

Very 

Sharp 

57 982 925 1622.807018 

Table 4: Comparative Analysis of Image Quality Before and After Sharpening 

Table 4 provides a detailed comparison of before and after 

distributions, highlighting the magnitude of improvement. 

Analysis of Category Transitions: There are several important 

patterns that can be discovered from the given data: 

1. Effective enhancement of severely degraded images:

The highest transition happens in this category. There

were 638 images that were categories as very blurry

images, were successfully enhanced to higher quality

categories. Most of the images were converted to the

category of very sharp images (approximately 93% of

the dataset). This shows that the effectiveness of

applying high sharpening strength to very blurry

images.

2. Appropriate treatment of moderately blurred images:

The transition of moderately blurred images 263 to very

sharp images can be seen from the table. These images

received moderate sharpening, after that only 15 images

remained in the slightly blurry category, and other

images converted into very sharp. This indicates that a

small subset may have had characteristics (e.g., inherent

low contrast or texture) that limited enhancement

effectiveness.

3. Preservation of already sharp images: It is observed that

the transition was little less in this category. There was

a small subset of images which were not converted to

other categories (stable images). There was reduction

seen in acceptably sharp images (from 92 to 52) and a

small increase in very sharp images. This indicate that

sharp images received requires minimal enhancement.

Importantly, no images were degraded by over-

sharpening, as evidenced by the absence of transitions

from higher to lower quality categories.

4. Minimal residual blur: This shows that only 15 images

(1.43%) remained slightly blurry after processing, and

no images remained very blurry. This demonstrates the

robustness of the adaptive approach in handling diverse

blur conditions.
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ANFIS Model Performance 

For the training of ANFIS model, the input is the blur score and 

target is sharpening strength. When the model is trained, it 

achieved a Mean Squared Error (MSE) of 1.27. This low error 

indicates that the model accurately learned the mapping 

between blur scores and optimal sharpening parameters. 

 

The membership functions for the blur score input variable is 

displayed in Figure 2. This shows that the five fuzzy categories 

(very_low, low, medium, high, very_high) have some amount 

of overlap, but it is good to capture gradual transitions between 

blur levels. 

 
Figure 2: Membership function for blur score 

Figure 3 presents the membership functions for the sharpening 

strength output variable, illustrating how different sharpening 

intensities are represented as fuzzy sets. 

 

 

Figure 3: membership function for sharpness strength 

 
What interpretation one can draw from the ANFIS model's low 

MSE score? It demonstrates several key capabilities: 

 

1. Accurate prediction: It shows that without any manual 

parameter tuning, the model can predict well. The 

optimal sharpening strength for new images are 

predicted only based on their blur scores. 

2. Generalization: The low validation score is the proof for 

the fact that the model generalizes well to unseen data. 

3. Consistency with fuzzy rules: The learned parameters 

align with the expert-defined fuzzy rules, maintaining 

interpretability while benefiting from data-driven 

optimization. 

4. Robustness: Since the data consist of heterogenous 

images with varying amount of blurriness, we can say 

that the model can handles the different range of blur 

scores still achieves a consistent accuracy. 

 

This framework can be ideal for adaptive image sharpening, 

enabling both transparent decision-making and optimal 

parameter selection. 
 

VI. DISCUSSION 

Advantages of Adaptive Sharpening 

The results clearly demonstrate the superiority of adaptive 

sharpening over fixed-parameter approaches. The key 

advantages include: 

 

1. Prevention of Over-Sharpening: As we discussed the 

problem of traditional fixed parameter sharpening methods 

is that it applies the same enhancement intensity to all 

images, without considering their initial quality. For the 149 

images (92 acceptably sharp + 57 very sharp) that were 

already of good quality, applying strong sharpening would 

have introduced several artefacts: 

- Noise amplification: when we are enhancing the edges it 

may also enhance the High-frequency noise. 

- Halo artefacts: Excessive edge enhancement creates 

visible halos around objects 

- Unnatural appearance: when enhancing the images if 

edges are over-emphasized there is a chance that the 

image looks like an artificial images.  

The adaptive system assigned low or zero sharpening 

strength to these images, preserving their natural appearance 

while avoiding artefacts. 

 

2. Adequate Enhancement of Degraded Images: Since the 

dataset has a greater number of degraded images, it requires 

an aggressive level of sharpening enhancement to reach 

acceptable quality. But if one uses a fixed moderate level of 

sharpening then there is chance that these images will 

remain under-corrected. The adaptive system assigned high 

sharpening strength (approaching the maximum of 3.0) to 

these images, successfully elevating all of them to higher 

quality categories. 

 

3. Optimal Resource Allocation: This technique allocates the 

computational resources very wisely. It applies the higher 

enhancement intensity to where it needed. The method auto 

adjusts the computational processing. The sharp images 

receive minimal computation, while degraded images 

receive intensive processing. This is particularly valuable in 

large-scale image processing pipelines. 

 

4. Consistency Across Heterogeneous Datasets: Real-world 

applications accept data from customers, so the image 

quality is not in our hands. The input image variations are 
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generally caused because of varying capture conditions, 

equipment, or processing histories. The adaptive approach 

ensures consistent output quality regardless of input 

heterogeneity. 

1.1 Fuzzy Logic Benefits in Image Processing 

In comparison to the traditional crisp threshold-based approach, 

one can underline several advantages of fuzzy logic when it is 

used in adaptive sharpening: 

 

1. Natural Representation of Gradual Blur: To count the 

goodness of an image, human beings prefer a fuzzy 

approach. Since between blurry image and sharp image 

there exist multiple values, it is not binary.  Fuzzy linguistic 

variables (very blurry, slightly blurry, acceptably sharp, 

very sharp) naturally capture this continuum, aligning 

computational processing with perceptual reality. 

 

2. Smooth Transitions: Fuzzy membership functions offer 

multiclass memberships so often the class boundaries are 

little blurry with overlapped region. But these overlapping 

regions ensure smooth transitions between blur categories. 

Whenever there is an image with a blur score near a category 

boundary, it receives contributions from multiple rules. And 

that helps in smooth sharpening strength variation rather 

than abrupt changes that could introduce processing 

artefacts. 

 

3. Interpretability: Many applications demands explain ability 

and transparency for example, applications like medical 

imaging or forensic etc. Since. fuzzy rules are expressed in 

natural language (IF-THEN statements), it makes the 

decision-making process transparent and interpretable.  

 

4. Expert Knowledge Integration: For decision making 

systems, domain knowledge is crucial. So, if we must ensure 

that decision making process aligns with the best practices 

of image processing, we must make sure domain expertise 

guides the system's behaviour. In this case, Fuzzy rules 

encode expert knowledge about the relationship between 

blur levels and appropriate enhancement.  

 

5. Robustness to Uncertainty: Fuzzy can offer the best solution 

here, because of the ability to deal with the uncertainty by 

means of membership degrees. Since there are multiple 

factors affecting the blurriness like image content, texture, 

and noise, Blur assessment inherently involves uncertainty.    

1.2 Limitations and Considerations 

Though the results seem highly promising they even offers few 

limitations which needs to be discussed: 

 

1. Residual Slightly Blurry Images: Despite applying the 

enhancement process, fifteen images (1.43%) remained 

slightly blurry. There can be different reasons for that like: 

- Inherent low contrast: Some images may have naturally 

low contrast or texture. Because of that there are 

limitations on the effectiveness of sharpening 

- Severe degradation: Whenever the images are extremely 

degraded it demands pre-processing (e.g., denoising) 

before applying sharpening process.  

- Content characteristics: Images with predominantly 

smooth regions (e.g., sky, water) may have low blur 

scores even when sharp, complicating categorization 

 

In a near future, these cases must be investigated to refine 

the fuzzy rules or incorporate additional image features 

(e.g., contrast, texture) into the decision-making process. 

 

2. Computational Cost: The adaptive approach requires blur 

score computation for each image, adding computational 

overhead compared to direct fixed-parameter sharpening. 

However, this cost is modest (Laplacian convolution and 

variance calculation) and is offset by the quality 

improvements. For real-time applications, blur scores could 

be computed once and cached. 

 

3. Parameter Sensitivity: The fuzzy membership functions and 

rule parameters were designed based on the specific dataset 

characteristics (blur score range, distribution). Different 

datasets may require adjustment of these parameters. The 

ANFIS model partially addresses this by learning from data, 

but initial membership function design still requires domain 

knowledge or exploratory analysis. 

 

4. Evaluation Metrics: This study used blur score 

recategorization as the primary evaluation metric. While 

effective for demonstrating quality improvement, additional 

metrics such as perceptual quality scores (e.g., SSIM, PSNR 

with reference images where available) or human subjective 

evaluation could provide complementary validation. 

 

5. Generalization to Other Blur Types: The Laplacian variance 

method is effective for general blur assessment but may 

have varying sensitivity to different blur types (motion blur, 

defocus blur, Gaussian blur). Future work could investigate 

the method's performance across specific blur sources and 

potentially incorporate blur type classification into the 

adaptive framework. 

 

6. Edge Cases: Images with unusual characteristics (e.g., very 

low resolution, extreme noise, artistic blur) may not fit well 

into the defined fuzzy categories. These cases must be 

handled separately in near future since it may require 

additional pre-processing or specialized rules. 

 

Though the framework shows these limitations, but still the 

overall framework demonstrates strong performance. 

 

VII. CONCLUSION AND FUTURE DIRECTIONS 

 

Published by : International Journal of Engineering Research & Technology (IJERT)
https://www.ijert.org/ ISSN: 2278-0181
An International Peer-Reviewed Journal Vol. 15 Issue 01 , January - 2026

IJERTV15IS010205 Page 8

(This work is licensed under a Creative Commons Attribution 4.0 International License.)



This research has presented a comprehensive adaptive image 

sharpening framework that leverages fuzzy logic and ANFIS to 

intelligently determine optimal enhancement parameters based 

on quantitative blur assessment. The key contributions and 

findings include: 

 

1. Effective Fuzzy Categorization: The fuzzy linguistic 

mechanism could generate multiple classes (very blurry, 

slightly blurry, acceptably sharp, very sharp) to captures 

the gradual nature of blur perception. This aligns with the 

human judgment for decision making. 

 

2. Robust Fuzzy Rule-Based System: This system underlines 

the inverse relationship between blur severity and 

sharpening strength and makes sures that there is 

appropriate enhancement for diverse level of blurriness.  

 

3. High-Performance ANFIS Model: This model enables 

automated parameter selection for new images without 

manual tuning. And at the same time it demonstrates 

accurate learning (MSE = 1.27) of the blur-to-sharpening 

mapping and strong generalization capability.  

 

4. Dramatic Quality Improvement: The adaptive approach 

achieved 100% elimination of very blurry images (638 to 

0) and a 1622.81% increase in very sharp images (57 to 

982), demonstrating exceptional effectiveness in 

enhancing degraded images while preserving already 

sharp images. 

 

5. Superiority Over Fixed-Parameter Methods: The adaptive 

system prevents over-sharpening artefacts while ensuring 

adequate enhancement of degraded images. When 

compared with the traditional fixed parameter model this 

proves to be better.  

 

In conclusion, this work demonstrates that fuzzy logic and 

ANFIS provide powerful tools for adaptive image processing, 

enabling intelligent systems that handle real-world variability 

with human-like reasoning. The dramatic quality improvements 

achieved on the 1050-image dataset validate the approach and 

establish a strong foundation for future advances in adaptive 

image enhancement. 
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