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Abstract—The presence of noise in images can significantly
impact the performances of computer vision algorithms and
digital image processing. Thus, noise should be removed to
improve the robustness of the entire process. Denoising or noise
reduction is one of the most essential processes for digital image
processing. The main goal of denoising is how to remove the noise
while keeping the important features of the image. The denoising
methods should not alter the original image, most denoising
methods degrade or remove the fine details. This paper presents
an Adaptive Image Denoising IP-core (AIDI) for real time
applications. Here core first estimates the level of noise in the
input image, then applies an adaptive Gaussian smoothing filter
to remove the estimated noise. The filtering parameters are
computed on-the-fly, adapting them to the level of noise in the
image and pixel by pixel to preserve image information (e.g.,
edges or corners). In this context, hardware acceleration is
crucial, and Field Programmable Gate Arrays (FPGAs) best fit
the growing demand of computational capabilities. The
architecture uses FPGA, it shows the improvements with respect
to a standard static filtering approach.

Keywords —Gaussian noise, noise estimation, Laplacian operator,
noise reduction, edge detection. Adaptive Gaussian filtering,
Gaussian noise, denoising.

I. INTRODUCTION

Nowadays, computer vision is one of the most
evolving areas of Information Technology (IT). Image
processing is widely used in several application fields, such as
aerospace, medical, or automotive. In every computer vision
application, one or more images are taken from a camera, and
processed, in order to extract information used for edge
detection , features identification, or image
registration.

Image processing is widely used in many fields, such as
medical imaging, scanning techniques, printing skills, license
plate recognition, face recognition, and so on. Unfortunately,
the technology provided by modern Charge Coupled Device
(CCD) sensors suffers from noise. In a CCD camera there are
many potential sources of noise, such as Shot Noise, Dark
current, Read Noise and Quantization noise are some of
examples. CCD manufacturers typically Combine these on-
chip noise sources, and express them in terms of a number of
electrons Root Mean Square (RMS). However, in image the
level of noise does not depend on the adopted sensor only but
also depends on the environmental condition as well. Noise
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estimation and removal are thus necessary to improve the
effectiveness of image processing algorithms.

To estimate how an image is affected by noise, a well
characterized noise model must be defined. Since noise
sources are random in nature, their values must be handled as
random variables, described by probabilistic functions. In fact,
Dark Current, proportional to the integration time and
temperature, is modeled as a Gaussian distribution, Shot and
Read Noise, caused by on-chip output amplifiers, are modeled
as Poisson distributions, and, detector malfunction or hot
pixels are modeled by an impulsive distribution.

In most cases, all Gaussian and Poisson distributed noises are
combined, approximating the image noise with an equivalent
additive zero-mean white Gaussian noise distribution,
characterized by a variance 2.

While the impulsive noise can be removed in a relatively
simple way, Gaussian noise removal is a non trivial task,
since, to be more effective, the filter must be adapted to the
actual level of noise in the image. Noise estimation is
therefore a fundamental task. Nonetheless, in modern real-
time systems, a software implementation of these complex
algorithms cannot be used, since it does not meet real-time
constraints. In this context, FPGAs are a good choice to
hardware accelerate the noise estimation and removal tasks.
This enables subsequent image processing algorithms to fully
exploit the remaining timing budget.

This paper presents AIDI: an Adaptive Image Denoising
FPGA-based IP-core for real-time applications. The core first
estimates the level of noise in the input image. It then applies
an adaptive Gaussian smoothing filter to remove the estimated
Gaussian noise. The filtering parameters are computed on the-
fly, adapting them to the level of noise of the current image.
Furthermore, the filter uses local image information to
discriminate whether a pixel belongs to an edge in the image
or not, preserving it for subsequent edge detection or image
registration algorithms. An FPGA-based implementation has
been targeted, since FPGAs are increasingly used in real-time
systems as hardware accelerators, even in mission-critical
applications, such as aerospace field. The paper is organized
as follows: Section Il gives an overview on noise estimation
and removal approaches, and their existing hardware
implementations.  Section Il presents the hardware
architecture of the proposed IP-core, while Section 1V shows
the experimental results. Finally, in Section V, some
conclusions are drawn.
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Il. RELATED WORK

Noise estimation methods, targeting additive white
Gaussian noise, can be classified in two categories: filter-
based and block-based. With the former method, the noisy
image is filtered by a low pass filter to suppress image
structures (e.g., edges), and then the noise variance is
computed based on the difference between the filtered and the
noisy image (called difference image) [1]. With the latter
method, the image is split into cells, and the noise variance is
computed identifying the most homogeneous cells [2][3].

Proved that filter-based methods work better than block based
methods at high noise levels, but they are complex and require
high computational load. In addition, filter-based methods
assume the difference image as the noise affecting the input
image, but this assumption is not true for images with several
structures or details.

To tackle this problem, [1] estimates noise by combining a
simple edge detector and a low-pass filter. The proposed
algorithm has good performances even with high detailed
images at different level of noise, and it requires only simple
mathematical operations (i.e., convolutions and averaging
operations).

Denoising methods can be based on linear or on non-linear
models. On the one hand, median and Gaussian filters are
commonly used to remove noise, offering a good trade-off
between complexity and effectiveness in smoothing out noise.
These methods work well in the flat regions of images, but
they do not well preserve the image edges, that appear
smoothed. On the other hand, denoising methods based on
non-linear models (e.g., wavelets-based methods) can handle
edges in a better way, but are more complex, and often not
applicable in real-time image processing for high resolution
images.

In [4] the authors propose an adaptive Gaussian filter which
tries to limit the edge smoothing problem of standard Gaussian
filtering methods. A large filter variance is effective in
smoothing out noise, but, at the same time, it distorts those
parts of the image where there are abrupt changes in pixel
intensity. This can lead to edge position displacement,
vanishing of edges, or phantom edges (i.e., artifacts in the
image).

To address this problem, [4] adapts the filter variance to the
local characteristics of the input image. It makes use of the
local variance of the image, and the estimated Gaussian noise
in the image. It has been proven that this adaptive filtering
approach succeeds in preserving edges and features of an
image, even in presence of noise, better than a static filtering
approach.

Hardware implementations of denoising methods have been
widely investigated. [5] Propose FPGA-based
implementations of median filters. However, median filtering
is strictly recommended for impulse noise removal (i.e., Salt
and-Pepper noise), while it does not provide good results
when the image is affected by Gaussian noise. An FPGA-
based implementation of a Gaussian smoother has been

proposed in[6], but its main drawback is the non-adaptivity of
the filter, which results in edge smoothing. [7] propose
implementations of wavelet-based and bilateral filter image
denoisers, respectively.

However, none of these works account for a noise estimation
module to be included into the hardware architecture. In
Cartesian Genetic Programming (CGP) image filters have
been proposed. CGP-based filters are able to reduce the noise
on the image while preserving edges. Moreover, they can be
efficiently implemented on FPGAs requiring few hardware
resources. However, since CGP filters are based on
evolutionary algorithms, they require a lot of iterations to
provide the filtered image, making them inappropriate for real
time applications. Hardware implementations of noise
estimators have not been deeply investigated by the research
community. The proposed architecture wastes a lot of
hardware and memory resources to perform sorting and
logarithmic operations. Moreover a noise removal module is
not included in the architecture. The presented paper
introduces a comprehensive FPGA-based architecture,
including noise estimation and noise removal in a single IP-
core. It targets the estimation and removal of additive white
Gaussian noise. The chosen adaptive Gaussian filtering
approach ensures edge preserving capability, while the noise
estimation algorithm is able to estimate the variance of
Gaussian noise with high accuracy[1][4].

The proposed adaptive FPGA-based architecture ensures real
time performances, even with 1024x1024 pixels grey-scale
images, with 8 bit-per-pixel resolution (bpp). Nonetheless, the
proposed architecture uses few hardware resources, allowing
to include, in the same device, additional image processing
algorithms.

I11. AIDI ARCHITECTURE

AIDI is a highly parallelized and pipelined FPGA-
based IPcore that gets in input, through a 32-bit interface, a
1024x1024 grey scale image (e.g., from a CCD camera) with 8
bpp and outputs a filtered pixel each clock cycle, through a 25
bit interface. Input pixels are received as a set of 32-bit
packets (i.e., 4 pixels are received in a clock cycle), without
any header or padding bit. In order to self-adapt the Gaussian
filter to the current input image, AIDI applies the approach
presented in [4]. This approach can be mathematically
formalized as follow:

i}
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where @ (X, y) is the variance of the Gaussian filter to be

applied at the pixel of the input image in (X, y) position, o2 is

the estimated white Gaussian noise variance of the input
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image, k is a constant equal to 1.5, and a’ol (X, y) is the

local variance of the image without noise (i.e., noise free
image) in (x, y) pixel, that can be computed as:

o1 (%, Y) = a%ni (X, Y) - on’ ©)

where @2y (X, y) is the local variance associated with the
noisy input pixel image. Basically, this algorithm adapts the
variance of the Gaussian filter @% (x, y) pixel-by-pixel, in
order to strongly reduce the noise in smoothed image areas
(i.e., low image local variance @20 (X, y)), and to reduce the

distortion in areas with strong edges (i.e., high @2 (X, y)). In
other words, % (x, y) is increased in the first case and

decreased in the second one. &%(X, y) can range from values

near 0 to 1.5.

AIDI includes three main modules (Fig.1): the Local
Variance Estimator (LVE), the Noise Variance Estimator
(NVE) and the Adaptive Gaussian Filter.

First, the input pixels feed the NVE and, in parallel, they are
stored into an external memory through a 32-bit interface.

The NVE, exploiting the algorithm presented in, computes the

Gaussian noise variance (i.e., @2, affecting the input image.

The selected algorithm involves highly parallelizable
operations.
External Memaory
F oo U-iom
WVE = Adaptive I} 2om g g
|nput 225 m G:,I_jlmm 7 Pixels
Packets / . tler

Figure 1: AIDI Internal architecture

It first requires to extract the strongest edges (or features) of
the input image exploiting the Sobel features extractor. This
task is performed using two 2D convolutions between the
input image and the Sobel kernels (Eq. (3)).

Where I(x; y) is the pixel intensity in the (x, y) position of the
input image, and G is the edge map associated with the input
image. The strongest edges are then extracted by selecting the
highest 10% values inside G. example (as shown in Fig.2)

-1 -2 -1
Gx=l(x,y)* |0 0 O
1 2 1 ,
-1 0 1
Gy=l(x,y)* |2 0 2
1 0 1
G=[Gx| + |Gy] ®)

Figure 2: Detect edges using the Sobel method

Finally, a2, can be computed as:
Gzn:[:l': . E! (xy)=edge |1 (x,v) =N |}_ 4

Where N is the 3x3 Laplacian kernel and C is a constant
defined as:

3 1
O = \/i .
2 6(W-2)(H -2
. ) ) )

where W and H are the width and height of the input image,
respectively (in our architecture W = H = 1024).

Fast Method for Image Noise Estimation Using laplacian
operator

Laplacian Operator: We assume that the image is corrupted
by additive, white Gaussian noise with unknown deviation &,

and the model is given by:
In (X, y) = C1(x, y)+ 00X, y) (6)

Where x and y are the vertical and horizontal coordinates of a
pixel, In(x, y), I(X, y) and n(x, y) are the noisy image, the
original image and the additive Gaussian noise respectively.
Our goal is to estimate the standard deviation o, of the noise
from the noisy image.

The first step of the “Fast Estimation” method is to suppress
the image structures by the following Laplacian operator:

1 2 1
N=-2 4 -2 @
1 21

Then the standard deviation of the noise can be using eq. (4)
When the computation of 2, is completed, the overall image
is read out from the external memory and provided in input to
the LVE. The LVE computes the local variance associated
with each input pixel @2y (X, y). The local variance of a pixel
is defined as the variance calculated on an image window (i.e.
patch) centered around the considered pixel (As shown in Fig.
4).
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Figure 3: Block diagram of “fast estimation”

To perform this task, LVE applies the following formula:

GZN'(XI y):S— [ % E':J.'.].'_"E*pntrh 1 [1‘1_}?] J : (8)

where T is a constant equal to the number of elements in the
patch (a 11x11 pixels patch has been selected in our
architecture to ensure an accurate local variance estimation),
and S is equal to:

1 n

S= [; E':x._\',"fpnrch I [.1"1 -}?j_:l (9)
Since LVE has a pipelined internal architecture, at each clock
cycle it provides in output the =2y (X, y) and the related pixel
values composing the patch.
The Adaptive Gaussian  Filter receives the o2,
computed by NVE, and the outputs of the LVE. The filter
computes equations (1) and (2), in order to find the best filter
variance value (i.e., % (X, y)). After this computation, this
module applies the Gaussian smoothing on the current
received pixel.
The Gaussian filtering operation is performed by means of a
2D-convolution on the input image with a 11x11 pixels
Gaussian kernel. The selected filter size allows to accurately
represent the Gaussian function with variance values in the
selected range (i.e., (0, 1.5], as described before). The values
of the Gaussian kernel are adapted pixel-by-pixel, depending
on the computed =% (X, y), as described in Subsection IV -C.
In the following subsections all the hardware implementation
details of the AIDI modules are deeply analyzed.

-] + |-
- -i —
I-.L

~ 4

Figure 4: Pixel neighboring comparison

A. Noise Variance Estimator

The NVE module receives the input image through a 32-
bit interface (4 pixels are received at each clock cycle), and it
provides in output the estimated white Gaussian noise

variance &2, affecting the image. The internal architecture of
NVE is shown in Fig. 5.

™ NVE

A1x25 Bkl

Input
) bt it

-l-ll / H
Pixels SIWB

L0,

# Laplacian

Figure 5: NVE Internal architecture

Since NVE must perform operations involving patches (see
Sec. 1V), in order to speed up the computation, the input pixels
are stored exploiting a circular buffering approach,
implemented by the Smart Image Window Buffer (SIWB) of
Fig. 6.

IWB
HeY/H L ] Pixels
anux‘§§ ; : : E% | Register || of the
Pivels 7| = |- : = 215 window || current
p N, — patch

Figure 6: SIWB Internal architecture

Input pixels, grouped in 32-bit packets, are sent to the IWB
writer that serializes the pixels using a FIFO, and stores them
inside the Image Window Buffer (IWB in Fig. 3). IWB is
composed of 3 FPGA internal Block-RAMs (BRAMS), each
devoted to store an entire image row. 3 BRAMs are used since
pixels from 3 different rows of the image are needed at the
same time, to perform the required operations on a 3x3 pixels
image patch.

Initially, the IWB writer fills each BRAM, starting from the
top one to the bottom one.

During a convolution operation image borders are not
processed [8], thus, when all BRAMs are filled, the pixels
necessary to process the second row of the image are available
to be read-out. While the second row is being processed,
pixels associated with the fourth row of the image are
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received. They overwrite the content of the BRAM that
contains the oldest row (i.e., the first row in this case).

In general, while the i-th image row is being processed, pixels
of the (i+2)-th image row are being received. The IWB writer
stores received pixels in the BRAM that contains the ones
associated to the (i-1)-th image row (i.e., IWB works as a
circular buffer). This buffering approach leads to two
advantages: (i) when the 3 BRAMs are filled, all required
pixels to compute a row are available, allowing a pixel every
clock cycle to be processed; (ii) it completely avoids any
access to the external memory, because when an image row in
the buffer is overwritten by a new one, the data of the replaced
row are not needed for the following computations.

The pixels of the image, associated with the current 3x3 patch,
are read-out from the IWB by the IWB reader. IWB reader is a
Finite-State-Machine (FSM) charged of reading out the pixels
from the IWB and providing them to the 3x3 Register window
in the right order. Basically, when all pixels needed to process
the i-th image row (i.e., pixels from the i-1th row to i+1th row)
are stored in the IWB, the IWB reader can start to read a pixel
from each BRAM of the buffer. Read pixels are loaded into
the first column of the 3x3

8-bit FFs Register Window. Each row of the 3x3 Register
windows is a shift register. Thus, at the next clock cycle, when
another column of 3 pixels is loaded, the previous column is
shifted to the next position. Whenever the 3x3 Register
windows is filled with all the pixels of a patch, they are
provided in output of the SIWB. It is important to highlight
that the IWB writer loads the image rows in the IWB as in a
circular buffer. Thus, the image rows are stored in the IWB in
an out-of-order manner (w.r.t. the original image).
Consequently, IWB reader must rearrange the position of the
pixels in order to store them in the 3x3 Register windows with
the same order as in the original image. In this way, at each
clock cycle, the pixels of the current patch are provided in
output of the SIWB in the right order.

The outputs of SIWB feed the two main modules of LVE: the
Sobel Extractor (SE in Fig. 5), and the Laplacian. Basically,
SE extracts the features from the input image and asserts its
output flag only if the currently processed pixel is one of the
10% strongest features in the image.First, SE computes the
operations reported in Eqg. (3). The Gx and Gy modules
receive in input the pixels of the current 3x3 patch and
compute the 2D convolutions between the input pixels and the
Sobel kernels. These two modules are internally implemented
as a MUL/ADD tree composed of 6 multipliers (only 6 values
are different from zero in Sobel kernels) and 3 adder stages,
for a total amount of 5 adders. Moreover, since the Sobel
kernel factors can only be equal to 1, -1, 2 or -2, in order to
reduce the area occupation, the multipliers are replaced by a
wire, a sign inverter, a shifter, and a sign inverter & shifter,
respectively.

The outputs of the Gx and Gy are then added together, through
a 16 bit adder, to find the G value (see Eq. (3)). The computed
G is compared with a threshold in order to set the SE output
only if the current pixel is one of the 10% strongest features in
the image.

The threshold value cannot be determined at design time since
it strongly depends on the camera and environment conditions.
Thus, the TH adpt module (see Fig. 5) is in charge of
calculating the initial threshold value and adapting it frame by
frame, by simply applying Algorithm1.

where N target features represents the strongest features in the
input image (i.e., the 10% of the complete image).

Algorithm 1 Adaptive Thresholding algorithm

N_target_features + 0.1 % size(G)
Gap + N_Sobel_features — (N_target_features)
Of fset + Gap = (0.5/3000) * Current_TH
if Gap < —3000 || Gap > 3000 then
New_TH + Current_TH + Of fset
else
New_TH + Current_ TH
end if

Gap is the difference between the current number of extracted
Sobel features (N Sobel features) and N target features. If the
value of Gap is less than -3000 or more than 3000, the current
value of the threshold (i.e., Current_TH) is incremented or
decremented (depending on its value) by one Offset. The new
calculated value for the threshold (i.e., New_TH) represents
the threshold to be provided in input to the comparator for the
next input image. Since at high frame rates the image
conditions between two consecutive frames are approximately
the same, the threshold value calculated from the previous
frame can be applied to the current processed frame. This task
is performed for every input frame, in order to maintain the
number of extracted features around N target features.
Obviously, at startup the Current TH is initialized to a low
value, and experiments using a MATLAB implementation of
the NVE, applied on the Affine Covariant regions Datasets
[9], have shown that TH adpt need a maximum of 8 frames to
reach a stable threshold value.

In parallel to the SE operations, the Laplacian module
computes the convolution between the input image and the
3x3 Laplacian Kernel (see Sec. IIlI) This operation is
performed adopting the same approach used in the Gx and Gy
modules.

Although, in this case the MUL/ADD tree is composed of 9
multipliers (all Laplacian Kernel factors are different from
zero) and 4 adder stages, for a total amount of 8 adders.

The Laplacian output is provided in input to an accumulator
(acc in Fig. 5). This accumulator is enabled only when SE
provides in output a zero, in other words only when the
current processed pixel is not one of the 10% strongest
features. In this way, when the complete image has been
received acc contains the value of the sum in Eq. (4).

The following two multipliers conclude the computation of
Eqg. (4). To ensure a minimal error, the C constant needs to be
represented in the 0.25 fixed-point formats and, for the same
reason, the following multipliers maintain the same number of
bits for the fractional part. The estimated noise variance in
output is then truncated to 12.25 fixed-point formats. Thus, the
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NVE is able to estimate Gaussian noise variance values up to
4000.

Finally, to improve the timing performances of the NVE
module, pipeline stages have been inserted in the MUL/ADD
trees and between the two output multipliers.

B. Local Variance Estimator

The LVE module receives in input the pixels read
from the external memory, and it provides in output @2y (X,

y), computed exploiting Eq. (8). The internal parallel
architecture of LVE is shown in Fig. 7.

It is composed of three main blocks: the SIWB, the Mean2
and the S-comp. Since both Mean? and S-comp perform
operations involving patches, the input pixels are stored
exploiting the same buffering approach adopted in the NVE
module (i.e. SIWB explained in Sec. IV-A). The only
difference concerns the IWB, which is composed of 11
BRAMs, because the LVE operations involve 11x11 pixels
patches, as discussed in Sec. IlI.

The SIWB output pixels are provided in input to the Mean?
and the S-comp modules. Moreover, the SIWB output pixels
are also provided in output of LVE.

Mean? computes the second term of Eq. (9). The received
pixels are sent to the ADD tree that computes the sum by
means of a balanced tree composed of 7 adder stages, for a
total amount of 120 adders. Finally, the output of the tree is
sent to the two following multipliers to complete the
computation of the second term of Eq. (9). To ensure a high
precision, the value of the 1/T constant and of the two
multiplier outputs are represented in fixed-point format, with
15 bit for the fractional part.In parallel to the operations
performed by Mean?, S-comp computes the S variable (see Eq.

9)).

S —_— Meanh LVE
[ aoxls  23x23'
_:' ADD hit bit |
Lo Tree
(T3]
T
Pixels from i T
External ~b SIWB ('z===zzzz22222223 U [Lot vy
! S-com R
Memaory I
i i ixls
[Tl MUL/ADD | it
I B
L Tree
|
: T 1
""""""""" SIWE
'i Delzy |- pixels

Figure 7: LVE Internal architecture

The outputs of SIWB are provided in input to the MUL/ADD
Tree. This tree is composed of a multiplier stage (i.e., 121
8x8-bit multipliers), that computes the square of the pixels in
the current patch, and 7 adder stages (i.e., 120 adders), that

compute the sum in Eq. (8). In order to obtain the S value, the
output of the tree is multiplied by the 1/T constant.

Finally, the local variance &2 (X, y) is computed as the

difference between the output of the S-comp module and the
one of the Mean? module, resorting to a 31-hit subtractor.

As shown in Fig. 7, in order to reduce the area occupation, the
data parallelism of each arithmetic component (i.e., multiplier
or subtractor) has been truncated to a fixed format able to
represent the maximum achievable value. The maximum
values obtainable during the computation have been defined
exploiting an exhaustive validation campaign using a
MATLAB LVE implementation, applied on the Affine
Covariant Regions Datasets.

Moreover, several pipeline stages have been inserted to
improve the timing performances of the LVE module. For this

reason, since a1 (X, Y) must be provided in output with the

associated patch, the SIWB pixels are delayed in order to
synchronize the LVE outputs.

C. Adaptive Gaussian Filter

Gaussian Filter receives the a2n, the a1 (X, Y),

and the pixels in output from the SIWB of the LVE (see Sec.
I11-B), and it outputs a filtered pixel each clock cycle. The
internal architecture of this module is summarized with Fig. 8.
The Adaptive Gaussian Filter is composed of three main
modules: the Filter Variance Estimator (FVE), the Kernel
Factors Selector (KFS), and the Gaussian Filter. FVE

computes o by applying Eq. (1). Thanks to a test campaign

using a MATLAB implementation of the Adaptive Gaussian
Filter, applied on the Affine Covariant Regions Datasets, it is
possible to understand that Eq. (1) can be modelled exploiting
Algorithm 2.

The selected model allows a very efficient hardware
implementation of the selection condition, by simply adopting

a shifter and a comparator (see Fig. 8). Then, o’ (X, y) is
computed using a pipelined divider and a multiplier, and it is

provided in input to KFS.
This module aims at defining the Gaussian kernel factors

associated with the current & (X, y). These values cannot be

computed in real-time, because the associated formula [8] is
very complex and time consuming, so they are precomputed
and stored inside the hardware.

Addaptive Ganssian Filter

Pixels ”

; Gaussian Filtered

from —l"l Dhelay s R T

P Rt B Perr———— E Filter Pixels
i & I i

1
1
L :
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1 Factors
I
!
|
I
1
]
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I

2
T
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Figure 8: Adaptive Gaussian Internal architecture
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Since each value of &2 (x, y) (represented using 31 bit) has a
different associated kernel of 121 factors (i.e., the size of the
kernel used to perform the filtering task is 11x11 pixels), a
huge amount of data should be stored (23. 121 kernel factors).
In order to reduce the required memory resources, in the
proposed hardware implementation, the range of o% x, y)

(i.e. (0, 1.5], see Sec. Ill) has been discretized adopting a
resolution of 0.1.

Algorithm 2 Modelled selection condition

if 02, (z,y) < 202 then
2

In

2, .
oj(zy) kot
else
JQ(‘I, y)+k
endi%

In this way, the number of sets of 121 Gaussian kernel factors
has been limited to 14. Moreover, the required storage
capability has been limited exploiting the symmetry of
Gaussian kernel, also. Since Gaussian kernels are circularly
symmetric matrices, many factors inside them are equal to
each others. Fig. 9 shows an example of a 5x5 Gaussian kernel
structure, in which the kernel factors to be stored have been
highlighted.

A | Ay | Sy | By | Dy

Ay | Ay | Ay | Ay | e

g | Hay | G2z | By | By

Ay | gy | g | By | iy

Apgy | Ay | Hzp | By | Ao

Figure 9: Example of a 5 x 5 Gaussian Kernel Structure

Since in a 11x11 Gaussian kernel the number of distinct kernel
factors is equal to 21, in the proposed hardware architecture

the internally stored data for each o (X, ¥) has been limited

to this value.

For these reasons, KFS has been implemented has a cluster of
14 21-input multiplexers, in which each multiplexer is driven
by the same selection signal, whose value is defined

depending on the current a’ (X, y). In this way, the cluster of

multiplexers is able to provide in output the 21 factors useful
to represent the Gaussian kernel associated with the current

o (%, y). Finally, the multiplexer outputs are duplicated in
order to reconstruct the complete set of 121 kernel factors for
agiven % (X, ¥).

The reassembled set of kernel factors are then provided in

input to the the Gaussian Filter together with the input pixels
from the SIWB, that are delayed to be synchronized with the

kernel factors. Then, Gaussian Filter computes the 2D
convolution between the input pixel patch (i.e., Pixels from
SIWB in Fig. 6) by means of a MUL/ADD tree composed of a
multiplier stage (i.e., 121 multipliers) and 7 adder stages (i.e.,
120 adders).

IV. EXPERIMENTAL RESULTS

To evaluate the hardware resources usage and the
timing performances, the proposed architecture has been
synthesized, resorting to Xilinx ISE Design Suite 14.4, on a
Xilinx Virtex 6 VLX240 FPGA device. Post-place and route
simulations have been done with Modelsim SE 10.0c. Table |
shows the resources utilization and the maximum operating
frequency of each module composing AIDI.

To compare our architecture with the FPGA-based
architectures for noise estimation and static Gaussian filtering
presented, AIDI has been also synthesized on a Virtex Il
FPGA. Concerning the NVE module, it uses 3,202 LUTs and
3 BRAMSs, while the real-time noise estimator presented uses
4,608 LUTs, 72 BRAMs and 24 DSP elements.

The performances achieved by AIDI have been also compared
with the architecture presented in [6]. Regarding the area
occupation on a Virtex Il FPGA device, the proposed
architecture uses 37,695 LUTs and 24 BRAMSs, whereas the
FPGA-based static Gaussian filter presented in [6] uses 22,464
LUTs, 39 BRAMs and 32 DSP elements. The higher logic
resource occupation (i.e., LUTSs) of the proposed architecture
is due to two main aspects. The former concerns the kernel
used to perform the filtering task, that in AIDI is 11x11 while
in [6] is 77 (i.e., the 7x7 kernel size does not provide high
filtering performance for high level of noise). The latter
regards the adaptivity provided by AIDI that is not supported
by [6]. Moreover, AIDI provides better timing performance
than [6].

In order to evaluate the improvements provided by AIDI w.r.t.
a static Gaussian filtering approach, an evaluation campaign
has been performed on the image dataset reported in Fig.7.

On these images, different levels of white Gaussian noise have
been injected, spanning from a noise variance of 100 to 4,000,
exploiting the imnoise function provided by the MATLAB
Image Processing Toolbox. Fig. 8 shows some examples of
the injected noise on an image.

The benefits provided by the adaptivity have been quantified
computing the Mean Square Error (MSE):

1

HSE Z (1%, y) = Ir(x, y))z (11)

MSE =

where H and W are the height and the width of the input
image, and I(x; y) and Ir (x; y) are the pixel intensities in the
(x, y) position of the noise free and the filtered images,
respectively.

Each noisy image has been filtered using:
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(i) A static 11x11 Gaussian filter (with a a’ equal to

k (see Sec. IV).

(ii) A MATLAB model of AIDI (Adaptive (SW)), involving
the double precision.

(iii) The AIDI hardware implementation (Adaptive (HW)),
which involves fixed-point representation. The graphs in Fig.
12 plot the trends of the MSEs, computed for each image
composing the adopted image dataset (see Fig. 11), versus the
variance of the injected noise. Fig. 12 highlights two main
aspects:

1) The error introduced by the fixed-point
representation  w.rt. the double precision
implementation can be neglected (Adaptive (SW) vs.
Adaptive (HW) in Fig. 12)

2) The MSE associated with the output of AIDI is
always lower than the one affecting the output of a
static Gaussian filter (Adaptive (HW) vs. Static in
Fig. 12). Moreover, the benefits increase for noise

levels with % < 1; 000, while for higher noise

levels, the improvement decreases because the local
variance of the image is greatly influenced by the
noise, and so it cannot be accurately computed.

(b) Cameraman

(c) Mandrill

(d) Mars

Figure 10: Image dataset exploited for the evaluation campaign

Finally, to prove the effectiveness of the proposed FPGA
based adaptive filter in preserving edges w. r. t. a standard
static Gaussian filtering approach, the images filtered with
both methods have been provided in input to a Laplacian edge
detector. Fig. 10a shows an example of image affected by
white Gaussian noise with 2, = 1,500, while Fig. 12b, Fig.

12¢, and Fig. 12d show the edges extracted from the non-
filtered image, the filtered image with a static Gaussian filter,
and the image filtered with AIDI, respectively. Despite the
high injected noise, AIDI is able to filter the image without

smoothing edges, improving the performance of the edge
detector. Instead, the static Gaussian filter outputs a smoothed
image, in which edges are weakened and difficult to be
detected.

(©) o2 = 2500 (d) o2 = 4000

Figure 11: Example of injected level of noise

V. CONCLUSION

This paper presented AIDI a high performance FPGA
based image denoiser for real-time applications. This IP core
enables to self adapt the filtering parameters to the level of
noise in the input image pixel by pixel, resulting in a more
accurate filtered image.

The experimental results show a strong improvement of the
quality of the filtered image w.r.t. the one obtained from a

static Gaussian filter, especially for noise level with o2, < 1

000. These enhancements allow to increase the precision of all
the modules, composing an image processing chain, that
receive in input the filtered image (e.g., edge detector).

(a)

(c) (d)

Figure 12: Laplacian edge extraction — (a) Noisy image in input (c%, = 1500)
(b) Edge extracted from noisy image (c) Edge extracted From the image
filtered by a static 11 x 11 filter (d) Edge extracted from image filtered by
AIDI
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