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Abstract—The presence of noise in images can significantly 

impact the performances of computer vision algorithms and 

digital image processing. Thus, noise should be removed to 

improve the robustness of the entire process. Denoising or noise 

reduction is one of the most essential processes for digital image 

processing. The main goal of denoising is how to remove the noise 

while keeping the important features of the image. The denoising 

methods should not alter the original image, most denoising 

methods degrade or remove the fine details. This paper presents 

an Adaptive Image Denoising IP-core (AIDI) for real time 

applications. Here core first estimates the level of noise in the 

input image, then applies an adaptive Gaussian smoothing filter 

to remove the estimated noise. The filtering parameters are 

computed on-the-fly, adapting them to the level of noise in the 

image and pixel by pixel to preserve image information (e.g., 

edges or corners). In

 

this context, hardware acceleration is 

crucial, and Field Programmable Gate Arrays (FPGAs) best fit 

the growing demand of computational capabilities. The 

architecture uses FPGA, it shows the improvements with respect 

to a standard static filtering approach.
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I. INTRODUCTION

 

 

Nowadays, computer vision is one of the most 

evolving areas of Information Technology (IT). Image 

processing is widely used in several application fields, such as 

aerospace, medical, or automotive. In every computer vision 

application, one or more images are taken from a camera, and 

 

processed, in order to extract information used for edge 

detection , features identification, or 

 

image 

 

registration.

 

 

Image processing is widely used in many fields, such as 

medical imaging, scanning techniques, printing skills, license 

plate recognition, face recognition, and so on. Unfortunately, 

the technology provided by modern Charge Coupled Device 

(CCD) sensors suffers from noise. In a CCD camera there are 

many potential sources of noise, such as Shot Noise, Dark 

current, Read Noise and Quantization 

 

noise are some of 

examples. CCD manufacturers typically Combine these on-

chip noise sources, and express them in terms of a number of 

electrons Root Mean Square (RMS). However, in  image the 

level of noise does not depend on the adopted sensor only but 

also depends on the environmental condition as well. Noise 

estimation and removal are thus necessary to improve the 

effectiveness of image processing algorithms. 

 

To estimate how an image is affected by noise, a well 

characterized noise model must be defined. Since noise 

sources are random in nature, their values must be handled as 

random variables, described by probabilistic functions. In fact, 

Dark Current, proportional to the integration time and 

temperature, is modeled as a Gaussian distribution, Shot and 

Read Noise, caused by on-chip output amplifiers, are

 

modeled 

as Poisson distributions, and, detector malfunction or hot 

pixels are modeled by an impulsive distribution.

 

In most cases, all Gaussian and Poisson distributed noises are 

combined, approximating the image noise with an equivalent 

additive zero-mean white Gaussian noise distribution, 

characterized by a variance n
2.

 

While the impulsive noise can be removed in a relatively 

simple way, Gaussian noise removal is a non trivial task, 

since, to be more effective, the filter must be adapted to the 

actual level of noise in the image. Noise estimation is 

therefore a fundamental task. Nonetheless, in modern real-

time systems, a software implementation of these complex 

algorithms cannot be used, since it does not meet real-time 

constraints. In this context, FPGAs are a good choice to 

hardware accelerate the noise estimation and removal tasks. 

This enables subsequent image processing algorithms to fully 

exploit the remaining timing budget.

 

This paper presents AIDI: an Adaptive Image Denoising 

FPGA-based IP-core for real-time applications. The core first 

estimates the level of noise in the input image. It then applies 

an adaptive Gaussian smoothing filter to remove the estimated 

Gaussian noise. The filtering parameters are computed on

 

the-

fly, adapting them to the level of noise of the current image. 

Furthermore, the filter uses local image information to 

discriminate whether a pixel belongs to an edge in the image 

 

or not, preserving it for subsequent edge detection or image 

registration algorithms. An FPGA-based implementation has 

been targeted, since FPGAs are increasingly used in real-time 

systems as hardware accelerators, even in mission-critical 

applications, such as aerospace field. The paper is organized 

as follows: Section II gives an overview on

 

noise estimation 

and removal approaches, and their existing hardware 

implementations. Section III

 

presents the hardware 

architecture of the proposed IP-core, while Section IV shows 

the experimental results. Finally, in Section V, some 

conclusions are drawn.
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II. RELATED WORK

 

 

Noise estimation methods, targeting additive white 

Gaussian noise, can be classified in two categories: filter-

based and block-based. With the former method, the noisy 

image is filtered by a low pass filter to suppress image 

structures

 

(e.g., edges), and then the noise variance is 

computed based on the difference between the filtered and the 

noisy image (called difference image)

 

[1]. With the latter 

method, the image is split into cells, and the noise variance is 

computed identifying the most homogeneous cells

 

[2][3].

 

 

 

Proved that filter-based methods work better than block based 

methods at high noise levels, but they are complex and require 

high computational load. In addition, filter-based methods 

assume the difference image as the noise affecting the input 

image, but this assumption is not true for images with several 

structures or details.

 

To tackle this problem, [1] estimates noise by combining a 

simple edge detector and a low-pass filter. The proposed 

algorithm has good performances even with high detailed 

images at different level of noise, and it requires only simple 

mathematical operations (i.e., convolutions and averaging 

operations).

 

Denoising methods can be based on linear or on non-linear 

models. On the one hand, median and Gaussian filters are 

commonly used to remove noise, offering a good trade-off 

between complexity and effectiveness in smoothing out noise. 

These methods work well in the flat regions of images, but 

they do not well preserve the image edges, that appear 

smoothed. On the other hand, denoising methods based on 

non-linear models (e.g., wavelets-based methods) can handle 

edges in a better way, but are more complex, and often not 

applicable in real-time image processing for high resolution 

images.

 

In

 

[4]

 

the authors propose an adaptive Gaussian filter which 

tries to limit the edge smoothing problem of standard Gaussian 

filtering methods. A large filter variance is effective in 

smoothing out noise, but, at the same time, it distorts those 

parts of the image where there are abrupt changes in pixel 

intensity. This can lead to edge position displacement, 

vanishing of edges, or phantom edges (i.e., artifacts in the 

image).

 

To address this problem, [4] adapts the filter variance to the 

local characteristics of the input image. It makes use of the 

local variance of the image, and the estimated Gaussian noise 

in the image. It has been proven that this adaptive filtering 

approach succeeds in preserving edges and features of an 

image, even in presence of noise, better than a static filtering 

approach. 

 

Hardware implementations of denoising methods have been 

widely investigated. [5] Propose FPGA-based 

implementations of median filters. However, median filtering 

is strictly recommended for impulse noise removal (i.e., Salt 

and-Pepper noise), while it does not provide good results 

when the image is affected by Gaussian noise. An FPGA-

based implementation of a Gaussian smoother has been 

proposed in[6], but its main drawback is the non-adaptivity of 

the filter, which results in edge smoothing. [7]

 

propose 

implementations of wavelet-based and bilateral filter image 

denoisers, respectively. 

 

However, none of these works account for a noise estimation 

module to be included into the hardware architecture. In 

Cartesian Genetic Programming (CGP) image filters have 

been proposed. CGP-based filters are able to reduce the noise 

on the image while preserving edges. Moreover, they can be 

efficiently implemented on FPGAs requiring few hardware 

resources. However, since CGP filters are based on 

evolutionary algorithms, they require a lot of iterations to 

provide the filtered image, making them inappropriate for real

 

time applications.

 

Hardware implementations of noise 

estimators have not been deeply investigated by the research 

community.

 

The proposed architecture wastes a lot of 

hardware and memory resources to perform sorting and 

logarithmic operations. Moreover a noise removal module is 

not included in the architecture. The presented paper 

introduces a comprehensive FPGA-based architecture, 

including noise estimation and noise removal in a single IP-

core. It targets the estimation and removal of additive white 

Gaussian noise. The chosen adaptive Gaussian filtering 

approach ensures edge preserving capability, while the noise 

estimation algorithm is able to estimate the variance of 

Gaussian noise with high accuracy[1][4].

 

 

The proposed adaptive FPGA-based architecture ensures real 

time performances, even with 1024x1024 pixels grey-scale 

images, with 8 bit-per-pixel resolution (bpp). Nonetheless, the 

proposed architecture uses few hardware resources, allowing 

to

 

include, in the same device, additional image processing 

algorithms.

 

 

III. AIDI ARCHITECTURE

 

 

AIDI is a highly parallelized and pipelined FPGA-

based IPcore that gets in input, through a 32-bit interface, a 

1024x1024 grey scale image (e.g., from a CCD camera) with 8 

bpp and outputs a filtered pixel each clock cycle, through a 25 

bit interface. Input pixels are received as a set of 32-bit 

packets (i.e., 4 pixels are received in a clock cycle), without 

any header or

 

padding bit.

 

In order to self-adapt the Gaussian 

filter to the current input image, AIDI applies the approach 

presented

 

in [4]. This approach can be mathematically 

formalized as follow:

 

 

        (1)

 
 

where 
2

f

 

(x, y)

  

is the variance of the Gaussian filter to be 

applied at the pixel of the input image in (x,

 

y) position, 
2
n

 

is 

the estimated white Gaussian noise variance of the input 
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image, k is a constant equal to 1.5, and 
2

OI

 

(x, y)

  

is the 

local variance of the image without noise (i.e., noise free 

image) in (x,

 

y) pixel, that can be computed as:

 

 

2
OI

 

(x, y)

 

=  2
NI

 

(x, y)

 

-

 

n
2

  

     (2)

 

 

where 2
NI

 

(x, y)  is the local variance associated with the 

noisy input pixel image. Basically, this algorithm adapts the 

variance of the Gaussian filter 2
f

 

(x, y) pixel-by-pixel, in 

order to strongly reduce the noise in smoothed image areas 

(i.e., low image local variance 2
OI

 

(x, y)), and to reduce the 

distortion in areas with strong edges (i.e., high 2
OI

 

(x, y)). In 

other words, 2
f

 

(x, y) is increased in the first case and 

decreased in the second one. 2
f(x, y) can range from values 

near 0 to 1.5.

 

 

AIDI

 

includes three main modules (Fig.1): the Local 

Variance Estimator (LVE), the Noise Variance Estimator 

(NVE) and the Adaptive Gaussian Filter.

 

First, the input pixels feed the NVE and, in parallel, they are 

stored into an external memory through a 32-bit interface.

 

The NVE, exploiting the algorithm presented in, computes the 

Gaussian noise variance (i.e., 2
n) affecting the input image. 

The selected algorithm involves highly parallelizable 

operations.

 

 

Figure 1: AIDI Internal architecture

 

 

 

It first requires to extract the strongest edges (or features) of 

the input image exploiting the Sobel features extractor. This 

task is performed using two 2D convolutions between the 

input image and the Sobel kernels (Eq. (3)).

 

Where I(x; y) is the pixel intensity in the (x, y) position of the 

input image, and G is the edge map associated with the input 

image. The strongest edges are then extracted by selecting the 

highest 10% values inside G. example (as shown in Fig.2)  
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*     
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0     
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                                1     2      1      ,
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*     -2    0     2

 

                                1     0     1           

 

  G

 

=

 

  Gx     

 

+   

 

Gy

  

   (3)

 

 

 

Figure 2: Detect edges using the Sobel method

 

 

Finally, 
2
n can be computed as:                                                        

                                

 

σ2
n=             (4)

 

Where N is the 3x3 Laplacian kernel and C is a constant 

defined as:

 

 

              (5)

 

 

where W and H are the width and height of the input image, 

respectively (in our architecture W

 

=

 

H = 1024).

 

Fast Method for Image Noise Estimation Using

 

laplacian 

operator

 

Laplacian Operator:

 

We assume that the image is corrupted 

by additive,

 

white Gaussian noise with unknown deviation n,

 

and the model is given by:

 

 

I n

 

(x, y) = I (x, y n(x, y)                    (6)

 

 

Where x and y are the vertical and horizontal coordinates of a 

pixel, In(x, y), I(x, y) and n(x, y) are the noisy image, the 

original image and the additive Gaussian noise respectively. 

Our goal is to estimate the standard deviation σn

 

of the noise 

from the noisy image.

 

The first step of the “Fast Estimation”

 

method is to suppress 

the image structures by the following Laplacian operator:

 

 

                  

 

1   

 

-2

 

    1

 

N = -2

  

4    -2

 

                                              (7)

 

                   1    -2    1     

 

 

Then the standard deviation of the noise can be using eq.

 

(4)

 

When the computation of 2
n

 

is completed, the overall image 

is read out from the external memory and provided in input to 

the LVE. The LVE computes the local variance associated 

with each input pixel 2
NI

 

(x, y). The local variance of a pixel 

is defined as the variance calculated on an image window (i.e. 

patch) centered around the considered pixel

 

(As shown in Fig. 

4).
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Figure 3: Block diagram of “fast estimation” 

 

To perform this task, LVE applies the following formula:                                 

                                                                      

 

                                                     

σ2
NI(x, y)=S           (8) 

where T is a constant equal to the number of elements in the 

patch (a 11x11 pixels patch has been  selected in our 

architecture to ensure an accurate local variance estimation), 

and S is equal to: 

                                  

     S                         (9) 

Since LVE has a pipelined internal architecture, at each clock 

cycle it provides in output the 2
NI (x, y) and the related pixel 

values composing the patch. 

The Adaptive Gaussian Filter receives the 2
n                   

computed by NVE, and the outputs of the LVE. The filter 

computes equations (1) and (2), in order to find the best filter 

variance value (i.e., 2
f (x, y)). After this computation, this 

module applies the Gaussian smoothing on the current 

received pixel. 

The Gaussian filtering operation is performed by means of a 

2D-convolution on the input image with a 11x11 pixels 

Gaussian kernel. The selected filter size allows to accurately 

represent the Gaussian function with variance values in the 

selected range (i.e., (0, 1.5], as described before). The values 

of the Gaussian kernel are adapted pixel-by-pixel, depending 

on the computed 2
f (x, y), as described in Subsection IV -C. 

In the following subsections all the hardware implementation 

details of the AIDI modules are deeply analyzed. 

 
 

Figure 4: Pixel neighboring comparison 

 

 
 

A. Noise Variance Estimator

 

 

The NVE module receives the input image through a 32-

bit interface (4 pixels are received at each clock cycle), and it 

provides in output the estimated white Gaussian noise 

variance 
2

n affecting the image. The internal architecture of 

NVE is shown in Fig. 5.

 

 
 

Figure 5: NVE Internal architecture

 

 

Since NVE must perform operations

 

involving patches (see 

Sec.

 

IV), in order to speed up the computation, the input pixels 

are stored exploiting a circular buffering approach, 

implemented by the Smart Image Window Buffer (SIWB) of 

Fig. 6.

 

 

 
 

Figure 6: SIWB Internal architecture

 
 

Input pixels, grouped in 32-bit packets, are sent to the IWB 

writer that serializes the pixels using a FIFO, and stores them 

inside the Image Window Buffer (IWB in Fig. 3). IWB is 

composed of 3 FPGA internal Block-RAMs (BRAMs), each 

devoted to store an entire image row. 3 BRAMs are used since 

pixels from 3 different rows of the image are needed at the 

same time, to perform the required operations on a 3x3 pixels 

image patch.

 

Initially, the IWB writer fills each BRAM, starting from the 

top one to the bottom one.

 

During

 

a convolution operation image borders are not 

processed [8],

 

thus, when all BRAMs are filled, the pixels 

necessary to process the second row of the image are available 

to be read-out. While the second row is being processed, 

pixels associated with the fourth row of the image are 
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received. They overwrite the content of the BRAM that 

contains the oldest row (i.e., the first row in this case).

 

In general, while the i-th image row is being processed, pixels 

of the (i+2)-th image row are being received. The IWB

 

writer 

stores received pixels in the BRAM that contains the ones 

associated to the (i-1)-th image row (i.e., IWB works as a 

circular buffer). This buffering approach leads to two 

advantages: (i) when the 3 BRAMs are filled, all required 

pixels to compute a row are available, allowing a pixel every 

clock cycle to be processed; (ii) it completely avoids any 

access to the external memory, because when an image row in 

the

 

buffer is overwritten by a new one, the data of the replaced 

row are not needed for the following computations.

 

The pixels of the image, associated with the current 3x3 patch, 

are read-out from the IWB by the IWB reader. IWB reader is a 

Finite-State-Machine (FSM) charged of reading out the pixels 

from the IWB and providing them to the 3x3 Register window 

in the right order.

 

Basically, when all pixels needed to process 

the i-th image row (i.e., pixels from the i-1th row to i+1th row) 

are stored in the IWB, the IWB reader can start to read a pixel 

from each BRAM of the buffer. Read pixels are loaded into 

the first column of the 3x3

 

 

8-bit FFs Register Window. Each row of the 3x3 Register 

windows is a shift register. Thus, at the next clock cycle, when 

another column of 3 pixels is loaded, the previous column is 

shifted to the next position. Whenever the 3x3 Register 

windows is filled with all the pixels of a patch, they are 

provided in output of the SIWB. It is important to highlight 

that the IWB writer loads the image rows in the IWB as in a 

circular buffer. Thus, the image rows are stored in the IWB in 

an out-of-order manner (w.r.t. the original image).

 

Consequently, IWB reader must rearrange the position of the 

pixels in order to store them in the 3x3 Register windows with 

the same order as in the original image. In this way, at each 

clock cycle,

 

the pixels of the current patch are provided in 

output of the SIWB in the right order.

 

The outputs of SIWB feed the two main modules of LVE: the 

Sobel Extractor (SE in Fig. 5), and the Laplacian. Basically, 

SE extracts the features from the input image and asserts its 

output flag only if the currently processed pixel is one of the 

10% strongest features in the image.First, SE computes the 

operations reported in Eq. (3). The Gx and Gy modules 

receive in input the pixels of the current 3x3 patch and 

compute the 2D convolutions between the input pixels and the 

Sobel kernels. These two modules are internally implemented 

as a MUL/ADD tree composed of 6 multipliers (only 6 values 

are different from zero in Sobel kernels) and 3

 

adder stages, 

for a total amount of 5 adders. Moreover, since the Sobel 

kernel factors can only be equal to 1, -1, 2 or -2, in order to 

reduce the area occupation, the multipliers are replaced by a 

wire, a sign inverter, a shifter, and a sign inverter & shifter, 

respectively.

 

The outputs of the Gx and Gy are then added together, through 

a 16 bit adder, to find the G value (see Eq. (3)). The computed 

G is compared with a threshold in order to set the SE output 

only if the current pixel is one of the 10% strongest features in 

the image.

 

The threshold value cannot be determined at design time since 

it strongly depends on the camera and environment conditions. 

Thus, the TH adpt module (see Fig. 5) is in charge of 

calculating the initial threshold value and adapting it frame by 

frame, by simply applying Algorithm1.

 

where N target features represents the strongest features in the 

input image (i.e., the 10% of the complete image).

 

 

 
 

Gap is the difference between the current number of extracted 

Sobel features (N Sobel features) and N target features.

 

If

  

the 

value of Gap is less than -3000 or more than 3000, the current 

value of the threshold (i.e., Current_TH) is incremented or 

decremented (depending on its value) by one Offset. The new 

calculated value for the threshold (i.e., New_TH) represents 

the

 

threshold to be provided in input to the comparator for the 

next input image.

 

Since at high frame rates the image 

conditions between two consecutive frames are approximately 

the same, the threshold value calculated from the previous 

frame can be applied to the current processed frame. This task 

is performed for every input frame, in order to maintain the 

number of extracted features around N target features. 

Obviously, at startup the Current TH is initialized to a low 

value, and experiments using a MATLAB implementation of 

the NVE, applied on the Affine Covariant regions Datasets 

[9], have shown that TH adpt need a maximum of 8 frames to 

reach a stable threshold value.

 

In parallel to the SE operations, the Laplacian module 

computes the convolution between the input image and the 

3x3 Laplacian Kernel (see Sec. III)

 

This operation is 

performed adopting the same approach used in the Gx and Gy 

modules.

 

Although, in this case the MUL/ADD tree is composed of 9 

multipliers (all Laplacian Kernel factors are different from 

zero) and 4 adder stages, for a total amount of 8 adders.

 

The Laplacian output is provided in input to an accumulator 

(acc in Fig. 5). This accumulator is enabled only when SE 

provides in output a zero, in other words only when the 

current processed

 

pixel is not one of the 10% strongest 

features. In this way, when the complete image has been 

received acc contains the value of the sum in Eq. (4).

 

The following two multipliers conclude the computation of 

Eq. (4). To ensure a minimal error, the C constant needs to be 

represented in the 0.25 fixed-point formats and, for the same 

reason, the following multipliers maintain the same number of 

bits for the fractional part. The estimated noise variance in 

output is then truncated to 12.25 fixed-point formats. Thus, the 
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NVE is able to estimate Gaussian noise variance values up to 

4000.

 

Finally, to improve the timing performances of the NVE 

module, pipeline stages have been inserted in the MUL/ADD 

trees and between the two output multipliers.

 

 

B. Local Variance Estimator

 

 

The LVE module receives in input the pixels read 

from the external memory, and it provides in output 2
NI

 

(x, 

y), computed exploiting Eq. (8). The internal parallel 

architecture of LVE is shown in Fig. 7.

 

It is composed of three main blocks: the SIWB, the Mean2 

and the S-comp. Since both Mean2

 

and S-comp perform 

operations involving patches, the input pixels are stored 

exploiting the same buffering approach adopted in the NVE 

module (i.e. SIWB explained in Sec. IV-A). The only 

difference concerns the IWB, which is composed of 11 

BRAMs, because the LVE operations involve 11x11 pixels 

patches, as discussed in Sec. III. 

 

 

The SIWB output pixels are provided in input to the Mean2

 

and the S-comp modules. Moreover, the SIWB output pixels 

are also provided in output of LVE.

 

Mean2

 

computes the second term of Eq. (9). The received 

pixels are sent to the ADD tree that computes the sum by 

means of a balanced tree composed of 7 adder stages, for a 

total amount of 120 adders. Finally, the output of the tree is 

sent to the two following multipliers to complete the 

computation of the second term of Eq. (9). To ensure a high 

precision, the value of the 1/T constant and of the two 

multiplier outputs are represented in fixed-point format, with 

15 bit for the fractional part.In parallel to the operations 

performed by Mean2, S-comp computes the S variable (see Eq. 

9)).

 

 

 
 

Figure 7: LVE Internal architecture

 

 

The outputs of SIWB are provided in input to the MUL/ADD 

Tree. This tree is composed of a multiplier stage (i.e., 121 

8x8-bit multipliers), that computes the square of the pixels in 

the current patch, and 7 adder stages (i.e., 120 adders), that 

compute the sum in Eq. (8). In order to obtain the S value, the 

output of the tree is multiplied by the 1/T constant.

 

Finally, the local variance 
2

NI

 

(x, y)

 

is computed as the 

difference between the output of the S-comp module and the 

one of the Mean2

 

module, resorting to a 31-bit subtractor.

 

As shown in Fig. 7, in order to reduce the area occupation, the 

data parallelism of each arithmetic component (i.e., multiplier 

or subtractor) has been truncated to a fixed format able to 

represent the maximum achievable value. The maximum 

values obtainable during the computation have been defined 

exploiting an exhaustive validation campaign using a 

MATLAB LVE implementation, applied on the Affine 

Covariant Regions Datasets.

 

Moreover, several pipeline stages have been inserted to 

improve the timing performances of the LVE module. For this 

reason, since 
2

NI

 

(x, y)

 

must be provided in output with the 

associated patch, the SIWB pixels are delayed in order to 

synchronize the LVE outputs.

 

 

C. Adaptive Gaussian Filter

 

 

Gaussian Filter receives the 
2

n, the 
2

NI

 

(x, y), 

and the pixels in output from the SIWB of the LVE (see Sec. 

III-B), and it outputs a filtered pixel each clock cycle. The 

internal architecture of this module is summarized with Fig. 8.

 

The Adaptive Gaussian Filter is composed of three main 

modules: the Filter Variance Estimator (FVE), the Kernel 

Factors Selector (KFS), and the Gaussian Filter. FVE 

computes 
2

f

 

by applying Eq. (1). Thanks to a test

 

campaign 

using a

 

MATLAB implementation of the Adaptive Gaussian 

Filter, applied on the Affine Covariant Regions

 

Datasets, it is 

possible to understand that Eq. (1) can be modelled exploiting 

Algorithm 2.

 

The selected model allows a very efficient hardware 

implementation of the selection condition, by simply adopting 

a shifter and a comparator (see Fig. 8). Then, 
2

f

 

(x,

 

y) is 

computed using a pipelined divider and a multiplier, and it is 

provided in input to KFS.

 

This module aims at defining the Gaussian kernel factors 

associated with the current 
2

f

 

(x,

 

y). These values cannot be 

computed in real-time, because the associated formula [8] is 

very complex and time consuming, so they are precomputed 

and stored inside the hardware.

 

 

Figure 8: Adaptive Gaussian Internal architecture
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Since each value of 
2

f

 

(x,

 

y) (represented using 31 bit) has a 

different associated kernel of 121 factors (i.e., the size of the 

kernel used to perform the filtering task is 11x11 pixels),

 

a 

huge amount of data should be stored (231.

 

121 kernel factors). 

In order to reduce the required memory resources, in the 

proposed hardware implementation, the range of 
2

f

 

(x,

 

y)

 

(i.e. (0, 1.5], see Sec. III) has been discretized adopting a 

resolution of 0.1.

 

 
 

In this way, the number of sets of 121 Gaussian kernel factors 

has been limited to 14. Moreover, the required storage 

capability has been limited exploiting the symmetry of 

Gaussian kernel, also. Since Gaussian kernels are circularly 

symmetric matrices, many factors inside them are equal to 

each others. Fig. 9

 

shows an example of a 5x5 Gaussian kernel 

structure, in which the kernel factors to be stored have been 

highlighted.

 

 

 
 

Figure 9: Example of a 5 x 5 Gaussian Kernel Structure

 

 

Since in a 11x11 Gaussian kernel the number of distinct kernel 

factors is equal to 21, in the proposed hardware architecture 

the internally stored data for each  
2

f

 

(x,

 

y)

  

has been limited

 

to this value.

 

For these reasons, KFS has been implemented has a cluster of 

14 21-input multiplexers, in which each multiplexer is driven 

by the same selection signal, whose value

 

is defined 

depending on the current 
2

f

 

(x,

 

y). In this way, the cluster of 

multiplexers is able to provide in output the 21 factors useful 

to represent the Gaussian kernel associated with the current 
2

f

 

(x,

 

y). Finally, the multiplexer outputs are duplicated in 

order to reconstruct the complete set of 121 kernel

 

factors for 

a given 
2

f

 

(x,

 

y).

 

The reassembled set of kernel factors are then provided in 

input to the the Gaussian Filter together with the input pixels 

from

 

the SIWB, that are delayed to be synchronized with the 

kernel factors. Then, Gaussian Filter computes the 2D 

convolution between the input pixel patch (i.e., Pixels from 

SIWB in Fig. 6) by means of a MUL/ADD tree composed of a 

multiplier stage (i.e., 121 multipliers) and 7 adder stages (i.e., 

120 adders).

 

 

 

IV. EXPERIMENTAL RESULTS

 

 

To evaluate the hardware resources usage and the 

timing performances, the proposed architecture has been 

synthesized, resorting to Xilinx ISE Design Suite 14.4, on a 

Xilinx Virtex 6 VLX240 FPGA device. Post-place and route 

simulations have been done with Modelsim SE 10.0c. Table I 

shows the resources utilization and the maximum operating 

frequency of each module composing AIDI.

 

 

To compare our architecture with the FPGA-based 

architectures for noise estimation and static Gaussian filtering 

presented, AIDI has been also synthesized on a Virtex II 

FPGA.

 

Concerning the NVE module, it uses 3,202 LUTs and 

3 BRAMs, while the real-time noise estimator presented uses 

4,608 LUTs, 72 BRAMs

 

and 24 DSP elements.

  

The performances achieved by AIDI have been also compared 

with the architecture presented in [6]. Regarding the area 

occupation on a Virtex II FPGA device, the proposed 

architecture uses 37,695 LUTs and 24 BRAMs, whereas the 

FPGA-based static

 

Gaussian filter presented in [6] uses 22,464 

LUTs, 39 BRAMs and 32 DSP elements. The higher logic 

resource occupation (i.e., LUTs) of the proposed architecture 

is due

 

to two main aspects. The former concerns the kernel 

used to perform the filtering task, that in AIDI is 11x11 while 

in [6] is 7x7 (i.e., the 7x7 kernel size does not provide high 

filtering performance for high level of noise). The latter 

regards the adaptivity provided by AIDI that is not supported 

by [6]. Moreover, AIDI provides better timing performance 

than [6]. 

 

In order to evaluate the improvements provided by AIDI w.r.t. 

a static Gaussian filtering approach, an evaluation campaign 

has been performed on the image dataset reported in Fig.7.

 

On these images, different levels of white Gaussian noise have 

been injected, spanning from a noise variance of 100 to 4,000, 

exploiting the imnoise function provided by the MATLAB

 

Image Processing Toolbox. Fig. 8 shows some examples of 

the injected noise on an image.

 

The benefits provided by the adaptivity have been quantified 

computing the Mean Square Error (MSE):

 

 

MSE = ∑   (I(x, y) –

 

IF(x, y))2                             (11)

 

 

where H and W are the height and the width of the input 

image, and

 

I(x; y) and IF

 

(x; y) are the pixel intensities in the 

(x, y) position of the noise free and the filtered images, 

respectively.

 

 

Each noisy image has been filtered using:
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(i) A static 11x11 Gaussian filter (with a 
2

f

 

equal to 

                                   

k (see Sec.

 

IV).

 

(ii) A MATLAB model of AIDI (Adaptive (SW)), involving 

the double precision.

 

(iii) The AIDI hardware implementation (Adaptive (HW)), 

which involves fixed-point representation. The graphs in Fig. 

12

 

plot the trends of the MSEs, computed for each image 

composing the adopted image dataset (see Fig. 11), versus the 

variance of the injected noise. Fig. 12

 

highlights two main 

aspects:

 

 

1) The error introduced by the fixed-point 

          

representation w.r.t. the double precision 

implementation can be neglected (Adaptive (SW) vs. 

Adaptive (HW) in Fig.

 

12)

 

2) The MSE associated with the output of AIDI is 

always lower than the one affecting the output of a 

static Gaussian filter (Adaptive (HW) vs. Static in 

Fig. 12). Moreover, the benefits increase for noise 

levels with 
2

f

  

≤ 1; 000, while for higher noise 

levels, the improvement decreases because the local 

variance of the image is greatly influenced by the 

noise, and so it cannot be accurately computed.

 

 

 

 
 

Figure 10: Image dataset exploited for the evaluation campaign

 

 

Finally, to prove the effectiveness of the proposed FPGA

 

based adaptive filter in preserving edges w.

 

r.

 

t. a standard 

static

 

Gaussian filtering approach, the images filtered with 

both methods have been provided in input to a Laplacian edge 

detector. Fig. 10a shows an example of image affected by 

white Gaussian noise with 
2

n

 

= 1,500, while Fig. 12b, Fig. 

12c, and Fig. 12d show the edges extracted from the non-

filtered image, the filtered image with a static Gaussian filter, 

and the image filtered with AIDI, respectively. Despite the 

high injected noise, AIDI is able to filter the image without 

smoothing edges, improving the performance

 

of the edge 

detector. Instead, the static Gaussian filter outputs a smoothed 

image, in which edges are weakened and difficult

 

to be 

detected.

 

 

 
 

Figure 11: Example of injected level of noise

 

 

V. CONCLUSION

 

 

This paper presented AIDI

 

a high performance FPGA

 

based image denoiser for real-time applications. This IP core 

enables to self adapt the filtering parameters to the level of 

noise in the input image pixel by pixel, resulting in a more 

accurate filtered image.

 

The experimental results show a strong improvement of the 

quality of the filtered image w.r.t. the one obtained from a 

static Gaussian filter, especially for noise level with 
2

n ≤ 1; 

000.

 

These enhancements allow to increase the precision of all 

the modules, composing an image processing chain, that 

receive in input the filtered image (e.g., edge detector).

 

 

 

Figure 12: Laplacian edge extraction –

 

(a) Noisy image in input  (σ2
n

 

=

 

1500) 

(b) Edge extracted from noisy image (c) Edge extracted From the image 
filtered by a static 11 x 11 filter (d) Edge extracted from image filtered by 

AIDI
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