

# Active and Passive Detection of Image Forgery: A Review Analysis

Md. Ashif Raja

Department of CS & IT

Maulana Azad National Urdu University,  
Hyderabad India-500032

**Abstract:-** Image Forgeries are very old issue. The issue is being continued from primitive time to till time for a mankind. Images are being used as evidence or events from ancient times. Now the current time, by using image preprocessing tools and low-cost hardware, images can be forged without difficulties to obtain lawless benefits either making false propaganda or getting own selfish objectives. So, to analyze perceptibly that the picture is forged or original is very difficult for a human. Technology has been modernized to test the authenticity and reliability of digital pictures. To solve these issues lots of research has been proposed. In this survey paper, enormous literature reviews of state-of-the-art methods of passive technique have been discussed and its types that has been explained for exposing the temper part of image.

**Keywords:-** Digital image, Digital Image Forgery, Copy-Move Image forgery, Image Forgery Detection, Tampering, Splicing, post-processing, resampling, Digital Forensics, Duplication Forgery, Detection.

## INTRODUCTION:

Forgeries are very old problem for a mankind. It is Universal truth that image speaks more truth compare to words. Due to advancement of technology no one can easily trust that is provided as a proof of evidence. These days' images perform a vital contribution in communication media. The advancement technologies develop better editing tools and software to manipulate images easily. The most popular image editing software tools like Cameran360, Adobe Imageshop, Skylum Luminar, ACDSee, ImageShop Pro, Corel PaintShop Pro etc. are available using which any given image can be easily tampered. Which can lead to serious consequences, these tampered images can be presented as a part of evidence in court that make wrong results.

Digital image forgery is the part of image forensics in which we study images of a specific scenario to demonstrate genuineness and reliability by different techniques.

These manipulated images increase on internet and multimedia very expeditiously. The advanced new digital technologies, easy availability with low cost of processing devices and tools, widespread transmissions over many website like Facebook, Twitter, Telegram, Pinterest etc., broadcasting news, these totally uplift a dangerous and serious case for the world. This also shows a big problem

and increases the impurity of digital images. In this consideration forgery detection of image is main objective of image forensic. Therefore, to check the originality of the images is more compulsory, specifically, considering these images are submitted as proof of a person in a Court of justice, a person's overall authentic records (Aadhar card, Id card, Bank passbook), as financial documents, as newspapers, as a part of medical records or Education records of a person in school, college or University. In addition, images are constantly recompressed and resized, making this easier to share them over the Internet due to the proliferation of cloud-based image sharing and editing platforms like Picasa and Flickr, brought on by social media apps such as WhatsApp, Instagram and Snapchat.

Various aspects of image forgery detection are introduced in this review paper; A detailed explanation of different image forgeries; their kinds and algorithm and methods which is for finding the forged results of images. This survey gives the drawback of different contentious tempering which have occurred in history. It provides a relative survey of present methods with its pros and cons. To show the detection of tempering is one of the ways of authentication, which means that the real images have few implicit patterns. It also outlines the good points and bad points of image tempering detection techniques presently in use.

**2. Literature review:** The image forgery categorization depends on whether taken images are real or fake. Forgery detection approach are mainly grouped into two types [1]. These are as follows:

A. Active authentication

B. Passive authentication

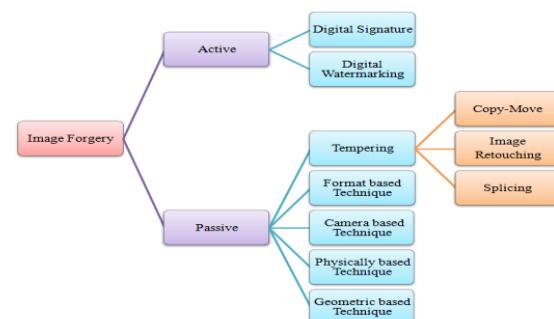



Fig: DIGITAL IMAGE FORGERY DETECTION TECHNIQUE

A.) Active authentication: In this perspective, digital picture need of preprocessing of picture like watermark inserted or created a signature on picture, that restrict their usage in practice[3]. Digital Signatures and process of authentication. Further, Active authentication technique is classified into two ways: first one is digital signature and second is

watermarking. It is done during the time of checks out the code and validate the originality of the image.

1) Digital signature: This one is mathematical approach applied to confirm the integrity and authenticity. Digital signature comes under active methods applied for detection of image forgery. Digital Signature equivalent to the handwritten signature in which it possess a key or signature, a digital signature provide excess implicit security. A secret key  $X$  is applied to produce Y arbitrary matrices with entries homogeneously divide up in the range  $[0, 1]$  in Digital Signature. In [2] authors proposed a method of a low phase filter used for every random matrix recurrently to acquire  $X$  random pattern. The model generates a digital signature using through the signing operation to the image. Image signing operation contains the under-mentioned phase:-

- i) By applying parameterized wavelet feature images are decomposed.
- ii) Extract the Standard Digital Signature.
- iii) The crypto signature produces through the private key and hash the extracted the Standard Digital Signature Cryptographically.
- iv) Digital images along with crypto signature are delivered to the client.

(2.) **Digital watermarking:** The word watermarking is coined from the conventional use of placing a visible

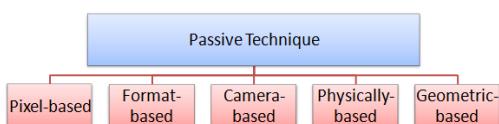



Figure: Passive-Based Technique of Image Forgery Detection

- (1) Pixel-based technique- In this technique, the detection of forgeries involves pixels of the digital images. Pixel-based are four types.
- (2) Format based technique- In this technique, the detection of forgeries based on JPEG Extension. Format based are three types.
- (3) Camera-based technique- In this technique, pictures or images are captured by digital camera after that a sequence of processing including JPEG compression, white balancing, colour correlation, texture, quantization, filtering, gamma correction, blurring, and cropping steps applying on images.
- (4) Physically-based technique- In this technique, it involve

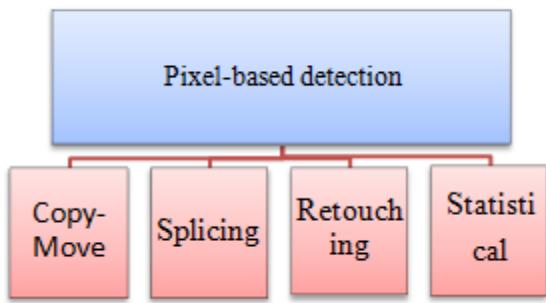
Watermarks method based on active technique for image forgery detection generally make use of data hiding. Inactive authentication methods before knowledge about the image are not dispensable to the

watermark on paper. This one is apply for image tempering detection. Digital Watermarking possess certain qualities like imperceptibility and robustness. While Others technique merge a maximum distance There is another which merge a maximum distance linear shift register range to the pixel data after that recognize this watermark through evaluating by spatial cross-correlation function to the series. This formulate to be hidden in with camera. These are partially visible watermarks but visible watermarks as well exist. Except this, a visually unidentifiable watermarking pattern is as well exist that may show the variation in one pixels and it can show where the variation occurs [4]. At the time of creating digital image the watermarks are embedded on it. Active technique has some limitations because it needed few human interference and especially equipped cameras. Reducing these issues of image forgery a passive authentication proposed. It is also behave as non-blind detection.

(B). Passive authentication: In this the identity of the client is checked and confirmed without requiring specific additional actions for the purpose of authentication. It is also behave as blind detection. In this technique there is no prior information related to Image. Assessing the originality and authenticity we used passive detection technique on images, without any using of active technique like watermarking and digital Signature. These are based on the assumptions which tell there are no clues of forged region on digital image and this may disturb the underlying image regularity of our surrounding sight image that initiates new artifacts manufacturing in numerous types of anomalies. Forged region of image is also referred as anomaly of the image. The techniques of passive image authentication chiefly classified into 5 types [1] in the objects and light interaction with 3D. For capturing image light is very important.

Think about the twinkling of stars in the night, walking down in the garden to see the stars. Both types of images created by cloning together to make one image. This comes under Physical based forgery. (5) Geometric based technique- In this technique, detection of the forgeries involved by measurements of objects at geometry level.

(A.) **Pixel-based detection:** These are grouped in four types:


(i.) **Copy move:** This image tampering technique is the most prevalent technique. In copy move techniques involves copy a particular area from one picture and paste it to another picture. After all the duplicated area belongs to the real picture thus dynamic range and color remain suitable with the remain of the picture[5].

Following steps are possessed by CMFD. This is general approach for CMFD:

Pass 1. Put the input image into the system.  
 Pass 2. Division of overlapping blocks.  
 Pass 3. Features Extraction using any algorithm like DWT(Discrete wavelet transform),DCT(Discrete Cosine Transform),PCA(Principal Component Analysis), etc.

Pass 4. Block Matching using algorithm like Radix sort, K-D Tree, Quick-Sort, Bucket -Sort, etc.

Pass 5. Explore duplicate vectors.  
 Pass 6. Block matching Performed.  
 Pass 6. Locate the forged Region.



**Fig: Pixel-Based Forgery Detection**

Few parameters such as scaling, blurring, noise, color from the tempered image may be impossible to distinguish. From the past survey CMFD is classified into [6] way. These are as follows:

**A) Block-based algorithms:** In this method taken picture is separate among overlapping blocks of picture. Forged area is received after comparison of blocks pixels. This technique involves:

Discrete Cosine Transform is mathematical function it express a finite sequence of data points in terms of a sum of cosine function used for feature extraction in images. This observes the forged areas of the image.

· Principal Component Analysis: It is statistical procedure to detract the block feature dimensions of the image. Except from the above-stated method in tempering, the feature of image computation is very significant to acquire the scaling, rotation, compressions and time complexity improvements. So for the scaling and rotation we apply feature key-point depended method.

**B) Feature key-point based:** some possess that come under Feature key-point are mentioned below:

· SIFT- In computer vision, Scale-invariant feature transform is a feature detection algorithm applied for detecting and describing the local features of pictures. Host images are extracted for duplicate detection or tempering.

· SURF- This Speed up Robust Feature method have been applied for feature extraction and also applied to locate and distinguish objects, to designed 3D scenes, to detect

objects. This is a patented local feature detector and descriptor.

Fast and robust CMFD techniques are created by merging of the block-based and feature-based algorithms. However the above methods may enhance computational complexity and show

tempered region of the image with high accuracy but some of issues that decrease the recall rate due to regularity in blocking techniques. Recent techniques minimize these problems and depend on [6] flexible over-segmentation along with feature dot matched up. In this proposed model, the partitions of blocks are irregular blocks and not overlapped. By using feature point matching and adaptive over-segmentation technique recall rate was raised due to irregularity in the blocks.

**ii. Image splicing:** It is also known as copy paste forgery. In Image Splicing we add more than single images to make one. It changes the overall meaning of real image and generates a forged image. Spliced images show blur, edges, lines, particular forged area, and color. The developments of the software processing tools have made tempering like color, texture, to add in image which is visually hardly noticeable for human. So Splicing is big issues for researchers.

Image Splicing and Steganography are two different techniques in forgery detection. However, these two techniques used for tempered images. Hence, statistical approaches such as SIFT, SURF etc. are used to find out this trace [7]. The image-splicing method possesses dimensional feature vectors. There are mainly four ways that is used for steganalysis which was applied on images. Researcher acquire 80% accuracy in this model of image splicing detection [7].

The applications of this technique are:

· 2-Dimensional Markov chain- By using these three directions (the main diagonal, horizontal, vertical) feature is extracted. In this model researcher acquired 76.25% accuracy for forgery detection.

**Singular Value Decomposition-** It is depending on 50-Dimensional characteristics vector combined by DCT. The researcher obtains 78.82% of detection accuracy.

Addition of One-Dimension and Two-Dimension - statistical moments of One-Dimension and Two-Dimension characteristic features are derived through local domain along with MB-DCT are merged. In this model researcher acquired 87.07% accuracy for forgery detection.

**iii. Image retouching:** The retouching means enhanced or reduces lighting, blurring, Texture of the image. Image retouching used in fashion photography and many commercial applications. In retouching only single image used for tempering. Available of original make the retouching to detect easily. Image retouching is used for showing the redness, blurring, enhancements, color changes and brightness or lighting effect in the tempered images. There are Global or local modifications done in retouching [8].

In copy-move only local modification can be applied while in retouching global modification can be applied. Global modification contains brightness, Texture and blurring.

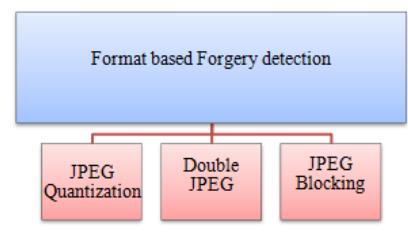
In [9] to detect between tempered and original image a model is proposed. It possess some process such that a change in texture, lightness, color, blurring etc.

In [10], an algorithm explains a procedure which gives indication about histogram equalization along with find the global enhancement.

As the same method which depends on the probabilistic method of picture-element was elaborated in [11]. It approximates to show the percentage of contrast modification. It provides more correct results in terms of enhancement which was non-standard. Some enhancement algorithms are discussed which easily detect the tempering and what the processing or modification is applied on image in either globally or locally and in both way [10][12]. This may be feasible that the part of the picture is untouched at all in false captioning. However, the inscription of the picture that gives the background is altered through the real condition and the intent to misguide the viewers and readers.

Authors in [8] purpose a method which shows contrast. The binary equality assesses functions and gives the variations. The actual and efficacious outcomes are created in circumstance of the images which is deeply converted.

In [13] proposed a model for finding the gamma correction for detecting tempered images. This method has depended on the evaluation of histogram features which are estimated through peak gap characteristics. These characteristics are distinguished through pre-processing histograms in order to gamma improvement for detecting in pictures. The outcomes of the method show incredibly helpful for all global along with local gamma improvement alteration.


In [14] the researchers propose a way to detect the retouching which is based on bi-Laplacian filtering. The method applies on matching blocks based on a K-D tree sorting method for every block of images. Since image is two dimensional arrays so K-D Tree works well in low dimension. This method also works well for both either compressed or uncompressed images. Accuracy as well relies on the region of the tampered parts of the compressed images. There are two methods proposed in [15] for showing the results of increasing the contrast in pictures. This shows the percentage of contrast increase used for JPEG-compressed pictures. Primary method of this model is histogram peak/gap which artifact transacted from JPEG compression along with picture-element amount mapping is explored in theory and differentiate through recognize by zero-height gap fingerprint. One more method in the similar paper developed an algorithm to recognize the compound picture made through applying the contrast adjustment either on one side or both side of origin area.

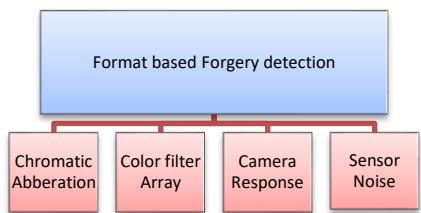
These pick/gap bins are grouped together to recognize the percentage of contrast improvement. This algorithm used for completely dissimilar source areas. The above two methods are very successful for detection of forgery images.

Authors in [16] proposed a method which is depend on photo-response non-uniformity (PRNU). By applying sensor pattern noise, it finds out the forged images. This method exhibits better results and broad utilization. There are many algorithms and techniques have been introduced which talk over the retouching image forgery. The extent of the most of the methods performs nicely if the image is too much tampered in compare to the real images.

**iv. Statistical based:** Statistical analysis of input image,  $I_1(x, y)$ : In this step statistical analysis of input image is done using various measures like mean, mode, median, variance, standard deviation, covariance, skewness, kurtosis etc. Selection of statistical measure: Depending upon the requirements in output optimized image, the statistical parameter is chosen.

**B) Format-based technique:** This one is common images formats used current time is the JPEG lossy compression format. [17] Images alteration does not validate malicious manipulation of color adjustment for image improvement, image format modification and image compression. Quantization table determine the property of a picture and the size. This table tends to distinguish among camera maker. These tempering do not change the fundamental parts of real images, however, malicious manipulation may change the value of images, like modifying images in a scene. Clearly, this method doesn't perform well in order to non-JPEG images and these depend over artifacts proposed through JPEG procedure. These malicious tampering in collaborate with consequent manipulation like color adjustment, contrast adjustment, JPEG compression, Texture effect, etc., would difficult to detect such retouching easily. Therefore picture-tampering detection determined whether the pictures are real, authenticate and it also helping for furthermore study.




In [17], [18], researcher has explain a way to recognize bitmap compression history. This method shows the origin of the lossy compression. The prime motive of this paper is not for forgery detection. This will give us indirect proof of forged area. Due to block artifacts Jpeg images may be different. There is other challenge concerning JPEG forgeries are that detecting the double JPEG compression. Similar compression rise to fixed artifacts that utilized to disclose forgery. Detection of double

compression may optional implies formalicious intent. For instance, over a communication network, this is fully achievable to turn back aimages with a low quality factor in order to faster transfer.

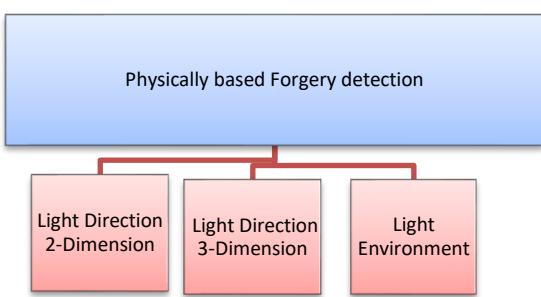
In [19], Researcher has introduced a way to recover the first quantization coefficients of the first jpg compression in a double compressed jpg images. He estimates the first quantization matrix through a double-compressed JPEG picture. In this model, if the second quantization factor is lower than the first one then the first quantization coefficients can be determined.

In [20], Researcher has proposed a model to estimate JPEG images compressed or not. It used discrete cosine transform coefficients for feature extraction which is initiated by dual JPEG compression. It depends on DCT coefficients of histogram.

**C.) Camera-based techniques:** In this technique, pictures or images are captured by digital camera after that a sequence of processing including JPEG compression, white balancing, colour correlation, texture, quantization, filtering, gamma correction, blurring, and cropping steps applying on images. Some artifacts exist in cameras that may be applied for images with standard cameras. Many Different methods exist to facilitate this form of images forensics. Low price and more cameras are being replaced by typical cameras. In daily life images are achieved through different companies of cameras, like Leica, Sony, Fujifilm, Pentax, Panasonic, Canon, Nikon, etc.



The primary issues of this resource identification are the categorization of cameras for the taken images.


The bad impact of these methods does not mean that picture may not be made through a camera by a specific lens, due to the lens can have been cleaned of the dust. For the resolve of this issue, we should examine the interchangeable images file format (EXIF) header of the outcome images for camera identification. EXIF header possess these settings like the manufacturing of camera, Flash control, color balance the model of the camera, Filter Effects, Monochrome, location info, size of images, time of exposure, pocket mode, and the quantization matrix [21] apply in JPEG compression. When taken picture is exceed the given range of the taken camera settings then it may be examine that images did not come from the camera or it may be tempered or forged one at least.

In [22], there are few limits in this proposed technique. If the region of image has common intensity of lighting defects in pixel, that is apparent only in darker regions or in lighter regions. Due to different wavelengths of the light, this bent

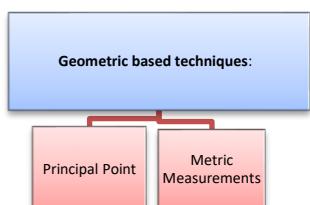
on different extents by the lens. Due to temperature the defects causes in pixels. In addition, few post-processing manipulation like image, contrast, compression, blurring, etc., can exclude faulty pixels. Because of high cost, many manufacturers used a only one sensor rather than multiple sensors for clicking a natural colour scene. Hence, colour filter array (CFA) often used in sensor for regulate the band of wavelengths which reaching into CCD array. Reconstructing for full-resolution colour sight, few projection algorithms have been proposed. These calculation are generally carry through detached the vicinal pixel-element applying a matrix contain values through the lost picture-element that is referred as demosaicing methods [23]. The authors in [24] explain pattern noise which contain two primary constituent: first one is the fixed pattern noise which is abbreviated as FPN and the second one is Picture-response non-uniformity noise which is abbreviated as PRNU. On a CCD chip, FPN is especially generates from dusky current. The dusky current occurs because of thermal operation in the image. That was depending on the shutter which is either opened or locked. Obviously, the quantities of dusky current on a CCD are continuously with identically and it is completely different pixels that could be discontinuous generations speed of dark current. Also in [24], to spot the video camera by videotape pictures authors applied FPN. One hundred black pictures are recorded by them and after that graphs of the images were collected to depress the impact of the arbitrary noise. The evaluated output exhibits few light dots are ascertained within the collected pictures. The light points are at various locations for every camera. After all, FPN is detectable solely in the dusky structure. Other first origin of pattern noise of the picture sensor is PRNU. PRNU is the picture-element transformation under brightness while light is not reached then FPN is created thermally in the sensor. Fixed pattern noise is an offset, whereas images-response non-uniformity is a benefit. Hence, the main origin of pattern noise carried in natural picture may be picture-response non-uniformity.

**D.) Physically-based techniques:** In this technique, it involve in the objects and light interaction with 3D. For capturing a image light is very important. Another major issue in making substantial spliced images which has pairs the light-source side of the pictures being merged. This variation of light applies for the proof of tampering in a picture. In this technique, Images are merged at the time of modification which is acquired in various lighting circumstances. It happen troublesome to matchup the lighting state by adding these images. The lighting inconsistency in the mixed images may apply for showing the tempered portions of image forgery. First time Johnson and Farid [24] initiated a method for these issues. They discover a way for assessing the side of a lighting source in the first degree of

freedom for showing the results of tampering.



By assessing the direction and magnitude of light source Johnson and Farid again in[25] build a classifier to detect forgery which is depend on lighting anomaly. This technique is inspired by an earlier technique[26] even if this generalize classifier by assessing extra complex illuminating and may be adapted to one illuminating resource. It assesses parameter of model from one image.


In[27] authors explain a model to assess the 3-D lighting environment with a low dimensional model. It assesses parameter of model from one image.

In[28], Researcher proposes a method for showing the results of forged part of image that depend on anomaly in light direction. The above method applied to estimate the plane normal matrix of the picture by using blind identification methods. In this model researcher acquired 87.33%.accuracy for forgery detection.

In [29] researchers developed a method which depend on tempering part of image detection applying a 2D lighting system. It does not estimate the 3-D shape of the object.

In[30] researcher explain a model for detect the tempered images which is depends on anomalies in the colour of lighting. Knowledge through physical or statistical-based illuminate assessor on images area of identical material is applied. SVM meta-fusion model is applied. In this method researcher acquired 86% accuracy for forgery detection. The benefits of this approach are that it creates the lighting anomalies within the forged picture which is easy to show. In this model, the researcher acquired 87.33%.accuracy for forgery detection.

**E.) Geometric based techniques:** A geometric method is obtained by transforming the image into geometric primitives like angle movement curves and points. The variations of the calculated principal point throughout the picture may be applied for the proof of the originality of the picture.



In [31], the researcher proposed a unique method for PIM and PRCG classification for detecting the tempered images. They explored the physical variations in the generation among CG and image graphic. In this model researchers

acquired with a classification accuracy of 83.5% for forgery detection.

## REFERENCING

- [1] H. Farid, "Image forgery detection," *IEEE Signal Process. Mag.*, vol. 26, no. 2, pp. 16–25, 2009, doi: 10.1109/MSP.2008.931079.
- [2] S. . P. Doke, Kanchan K, "Digital Signature Scheme for Image," vol. 49, no. 16, pp. 1–6, 2012, doi: 10.5120/7708-1012.
- [3] J. Fridrich, "Robust Bit Extraction from Images," pp. 536–540, 1999.
- [4] X. Zhao, J. Li, S. Li, and S. Wang, "Detecting Digital Image Splicing in Chroma Spaces," pp. 12–13, 2011, doi: 10.1007/978-3-642-18405-5\_2.
- [5] S. B. Å and A. K. Nandi, "Automated detection and localisation of duplicated regions affected by reflection, rotation and scaling in image forensics," *Signal Processing*, vol. 91, no. 8, pp. 1759–1770, 2011, doi: 10.1016/j.sigpro.2011.01.022.
- [6] C. Pun, S. Member, X. Yuan, and X. Bi, "Image Forgery Detection Using Adaptive Over-Segmentation and Feature Point Matching," vol. 6013, no. c, pp. 1–12, 2015, doi: 10.1109/TIFS.2015.2423261.
- [7] Z. Moghaddasi, H. A. Jalab, and R. Noor, "SVD-based Image Splicing Detection," 2014, pp. 27–30, doi: 10.1109/ICIMU.2014.7066598.
- [8] S. Khan, K. Khan, F. Ali, and K. Kwak, "SS symmetry Forgery Detection and Localization of Modifications at the Pixel Level," pp. 1–10, 2020, doi: 10.3390/sym12010137.
- [9] S. Bayram, N. Memon, M. Ramkumar, and B. Sankur, "A Classifier Design For Detecting Image Manipulations," 2004, pp. 1–4, doi: 10.1109/ICIP.2004.1421647.
- [10] M. S. and K. J. R. Liu, "BLIND FORENSICS OF CONTRAST ENHANCEMENT IN DIGITAL IMAGES," 2008, pp. 3112–3115, doi: 10.1109/ICIP.2008.4712454.
- [11] M. C. S. and K. J. R. Liu and Dept., "FORENSIC ESTIMATION AND RECONSTRUCTION OF A CONTRAST ENHANCEMENT MAPPING," 2010, pp. 1698–1701, doi: 10.1109/ICASSP.2010.5495488.
- [12] M. C. Stamm, S. Member, and K. J. R. Liu, "Forensic Detection of Image Manipulation Using Statistical Intrinsic Fingerprints," vol. 5, no. 3, pp. 492–506, 2010, doi: 10.1109/TIFS.2010.2053202.
- [13] H. Kong, "FORENSIC ESTIMATION OF GAMMA CORRECTION IN DIGITAL IMAGES Gang," 2010, pp. 2097–2100, doi: 10.1109/ICIP.2010.5652701.
- [14] Y. Lv, X. Shen, and H. Chen, "An improved image blind identification based on inconsistency in light source direction," pp. 50–67, 2011, doi: 10.1007/s11227-010-0531-y.
- [15] G. Cao, Y. Zhao, S. Member, R. Ni, and X. Li, "Contrast Enhancement-Based Forensics in Digital Images," vol. 9, no. 3, pp. 515–525, 2014, doi: 10.1109/TIFS.2014.2300937.
- [16] G. Chierchia, S. Member, G. Poggi, C. Sansone, and L. Verdoliva, "A Bayesian-MRF Approach for PRNU-Based Image Forgery Detection," 2014, vol. 9, no. 4, pp. 554–567, doi: 10.1109/TIFS.2014.2302078.
- [17] M. A. Qureshi and M. Deriche, "A Review on Copy Move Image Forgery Detection Techniques," pp. 1–5, 2014, doi: 10.1109/SSD.2014.6808907.
- [18] Z. Fan, R. L. De Queiroz, and S. Member, "Identification of Bitmap Compression History: JPEG Detection and Quantizer Estimation," vol. 12, no. 2, pp. 230–235, 2003, doi: 10.1109/TIP.2002.807361.
- [19] J. Lukáš and J. Fridrich, "Estimation of Primary Quantization Matrix in Double Compressed JPEG Images," Researchgate, pp. 1–17, 2003.
- [20] B. R. Donald, "Statistical Tools for Digital Image Forensics," pp. 1–137, 2004.
- [21] H. Farid, "Digital Image Ballistics from JPEG Quantization," pp. 1–6, 2006.
- [22] Z. J. Geradts, J. Bijnhold, M. Kieft, K. Kurosawa, and K. Kuroki, "Methods for identification of images acquired with Digital cameras," vol. 4232, pp. 505–512, 2001, doi: 10.1117/12.417569.
- [23] A. C. Popescu and H. Farid, "Exposing Digital Forgeries in Color Filter Array Interpolated Images," vol. 53, no. 10, pp. 3948–3959, 2005, doi: 10.1109/TSP.2005.855406.

- [24] M. K. Johnson, "Exposing Digital Forgeries by Detecting Inconsistencies in Lighting," pp. 1–9, 2005, doi: 10.1145/1073170.1073171.
- [25] M. K. Johnson, S. Member, and H. Farid, "Exposing Digital Forgeries in Complex Lighting Environments," vol. 2, no. 3, pp. 1–17, 2007, doi: 10.1109/TIFS.2007.903848.
- [26] M. K. Johnson and H. Farid, "Exposing Digital Forgeries Through Specular Highlights on the Eye," Springer, pp. 1–15, 2007, doi: 10.1007/978-3-540-77370-2\_21.
- [27] E. Kee and H. Farid, "Exposing digital forgeries from 3-D lighting environments," in 2010 IEEE International Workshop on Information Forensics and Security, WIFS 2010, 2010, vol. 03755, pp. 1–6, doi: 10.1109/WIFS.2010.5711437.
- [28] Y. Lv, X. Shen, and H. Chen, "An improved image blind identification based on inconsistency in light source direction," pp. 50–67, 2011, doi: 10.1007/s11227-010-0531-y.
- [29] W. Fan, K. Wang, F.-S. H, and C. Science, "3D LIGHTING-BASED IMAGE FORGERY DETECTION USING SHAPE-FROM-SHADING GIPSA-Lab , 11 rue des Math ' eres Cedex , France," 2012, no. 2011602067, pp. 1–5.
- [30] T. J. De Carvalho et al., "Exposing Digital Image Forgeries by Illumination Color Classification," vol. 8, no. 7, pp. 1182–1194, 2013, doi: 10.1109/TIFS.2013.2265677.
- [31] T. Ng, S. Chang, J. Hsu, and L. Xie, "Physics-Motivated Features for Distinguishing Photographic Images and Computer Graphics," 2005, pp. 1–10, doi: 10.1145/1101149.1101192.