
Abstract—In this paper we propose a semi-analytic
one-dimensional acoustic model of a duct which has a
continuously varying cross-sectional area under the non-
zero mean flow condition. Our idea is to approximate the
region of varying area as a sequence of abrupt area change.
It is shown that the commonly employed approximation
method in which the area varying zone is replaced with
one abrupt area change can result in significant errors in
terms of acoustic transfer matrix.

Keywords—One-dimensional acoustic model, Acoustic
Transfer Matrix

I. INTRODUCTION

A precise acoustic model of a duct with a continuously
varying cross-sectional area, such as the interval [x1, x2]
in an acoustic model of a gas turbine engines in Fig. 1,
is a difficult task. The acoustic model of the area con-
tracting part [x1, x2] should represent physical behaviors
but at the same time it need be mathematically simple
and explicit to be integrated for an acoustic analysis of
the whole system.
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Fig. 1: A simple acoustic model of gas turbine

Some results exist in literature for the cases when there
is no mean flow and the area contraction over the interval

[x1, x2] is not significant [1]. In addition, some recent
results can handle more general cases but the model is
too complicated and implicit, e.g. see [2], [3].

An intuitively appealing and commonly used approach
in practice is to approximate the area varying region
[x1, x2] as having an abrupt area change at xe ∈ [x1, x2]
as depicted in Fig. 2. This approach can be naturally
generalised to introduce a sequence of tiny area jumps
as shown in Fig. 3 instead of one.

A fundamental question is whether or not the acous-
tic model corresponding to n-jump approximation con-
verges to a certain model in an appropriate sense as
the number of jumps n increases. In addition, assuming
that the many-jump model converges, our next question
is whether or not it is possible to cleverly choose the
fictitious area jump position xe in Fig. 2 of the single
jump model such a way that the associated model can
be reasonably close to multi-step model. These two
questions are investigated in this paper.
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Fig. 2: Single step approximation
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Fig. 3: Mutiple jump approximation

II. ACOUSTIC MODEL

A. Single step model

In one-dimensional acoustic model of a duct in Fig. 2,
we need to characterize the relations between pressure
and volume velocity perturbations between x1 and x2.

For the intervals [x1, xe) and (xe, x2], acoustic waves
simply propagate over a duct of a constant area and thus
it follows that[
p′
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where the superscript ′ and over-line denote perturbation
and mean value, respectively. Moreover ρ and c denote
density and sound speed and

τ±1 =
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(2)

Similarly we have[
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, τ±2 = (x2−xe)/(c±u1), u1 = u0/β and β = (r2/r1)

2

denotes the area ratio.
At the point of abrupt area change xe, it holds that[

p′

ρcu′

]
xe+

=

[
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] [
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ξ(β) = −2+3β2−β3

2β2 (5)

which follows from the continuity condition and the
stagnation pressure loss across the area jump [4].

A combination of the results (1), (3) and (4) gives[
p′

ρcu′

]
x2

= S(α, s)

[
p′
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]
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(6)

S(α, s) :=

[
S11(α, s) S12(α, s)
S21(α, s) S22(α, s)

]
(7)

where 0 ≤ α ≤ 1 denotes the relative location of area
jump defined

α :=
xe − x1
x2 − x1

. (8)

B. Multiple step model

We divide the interval [x1, x2] into n sub-intervals
[x1(k−1), x1k)] for k = 1, · · · , n where x1 = x10 and
x1n = x2 as shown in Fig. 3. Each sub-interval is
composed of a wave propagation for a distance ∆ :=
(x2 − x1)/n and then a sudden area contraction. This
can be written as[
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]
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[
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]
x1(k−1)

(k = 1, · · · , n) (9)

where the transfer matrix T kk−1 between sub-elements is
given
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=

(
k(r2/r1 − 1) + n

(k − 1)(r2/r1 − 1) + n
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(11)

u1k := u1(k−1)/β1k = u1/

k∏
i=1

βi (12)

τ±1k :=
(x2 − x1)/n
c1 ± u1(k−1)

(13)

Form a sequential application of the above transfer
matrix for sub-intervals, the transfer matrix of the area
varying interval [x1, x2] can be explicitly written as[

p′

ν ′

]
x2

= M(n, s)

[
p′

ν ′

]
x1

M(n, s) =

n∏
k=1

T kk−1 :=

[
M11(n, s) M12(n, s)
M21(n, s) M22(n, s)

]
.

(14)
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III. A NUMERICAL CASE STUDY

The following parameters were chosen for a numerical
case study ;

L = x2 − x1 = 60, r1 = 32.5, r2 = 10.6 (15)

in [milli-meter] unit and c = 345 [meter/sec].

A. Model Convergence
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Fig. 4: Bode plot of M11(n, s) with n ∈ [2, 10] and
u1 = 0
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Fig. 5: Bode plot of M12(n, s) for n ∈ [2, 10] and u1 = 0
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Fig. 6: Bode plot of M21(n, s) for n ∈ [2, 10] and u1 = 0
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Fig. 7: Bode plot of M22(n, s) for n ∈ [2, 10] and u1 = 0

We have computed the Bode plots of four component
Mij(n, s) of the acoustic transfer matrix in (14). The
horizontal axis in Fig. 4-7 denotes the normalized fre-
quency w/Lc (w = 2πf) , L = x2 − x1 and the arrows
indicates the direction of increasing n ∈ [2, 10].

The overall results strongly suggests that the multiple
step model quickly converges to a limit model as the
number of steps increases.
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B. Resonance frequency shift

The anti-resonance frequency around w/Lc ≈ 1 in
Fig. 4 was zoomed with a larger n ∈ [5, 30] in Fig. 8.
An interesting observation here is that, as n increases,
the anti-resonance frequency slightly decreases toward
w/Lc = 0.968 roughly. Another way of looking at this
result is that the area variation gave rise to an increased
duct length L→ L/0.968 = 1.03L (3%) effectively.

0.85 0.9 0.95 1 1.05 1.1 1.15
0

0.05

0.1

0.15

0.2

0.25

0.3

Fig. 8: First anti-resonance frequency of M11(n, s) on
n ∈ [5, 30] and u1 = 0

C. Mean flow effect

One of the most surprising result in this paper is
that the acoustic transfer matrix significantly depends on
mean flow.

One can see this clearly in the Bode magnitude plot of
M11(n, s) (upper) and M12(n, s) (lower) in Fig. 9 where
n = 10 and the Mach number M1 := u0/c ∈ [0, 0.02].

Note that the tiny mean flow u0 = 6.9 (meter/sec) of
the case M1 = 0.02 can virtually eliminate the anti-
resonance peak around w/Lc = 1. Our computation
revealed, but not included here, that the mean flow
dependency however is less significant in the cases of
another two components M21(n, s) and M22(n, s).

D. Dependency on jump position

Let us consider the next question ; Is it possible to
cleverly choose a fictitious area jump position xe of
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Fig. 9: Bode magnitude plots of |M11(n, jw)| and
|M12(n, jw)| with mean flow M1 ∈ [0, 0.02]

the one-jump model (7) such that the resulting model
becomes similar to the multi-jump model (14) ?

Seeking an answer to this question, we have compared
the Bode plot of S(α, s) with M(10, s) in Fig, 10-13
with a zero-mean flow. The thick cyan lines in those
figures denote the Bode plot of M(10, s).

An interesting fact is that, in the case of {S11, S22}
shown in Fig. 10 and Fig. 13, both α and 1−α give the
same results.

Note from Fig. 10 that either a small α = 0.1 or a
large α = 0.9 results in S11(α, s) close to M11(10, s).
In contrast, in other three cases in Fig. 11-13, the single
step model becomes similar to multiple step model with
a moderate choice α ≈ 0.5 in overall.

These observation suggest that the single step model
is an intrinsically different from the multiple step model
and thus it is an inaccurate acoustic model, irrespectively
of how to choose a step location.

IV. CONCLUSION

We developed a semi-analytic one-dimensional acous-
tic model of a duct with a continuously varying cross-
sectional area under the non-zero mean flow condition.
Our numerical case study suggests that the acoustic
transfer matrix of a multiple step approximation for
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Fig. 10: Bode plot of {M11(10, s), S11(α, s)}

0 0.5 1 1.5 2 2.5 3
0

5

10

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

0.9

0.1

Fig. 11: Bode plot of {M12(10, s), S11(α, s)}

the varying cross-sectional region converges to a limit
matrix as the number of steps increases. In addition,
it was found that a single step model is an erroneous
approximation irrespectively of the choice of a step
location.
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