Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I ssue 07, July-2021

Accretion of Suricta with DPDK for Traffic
Monitoring using Optimized Detection System
IDS/IPS

V. Pavithra
Dept. of CSE
Ramaiah Institute of Technology, affiliated to VTU
Bangalore, India

Abstract—In the era of Internet with rapid growth of
advancing technologies, the network security concerns are
increasing prominently as the number of network attacks has
attracted more professional’s attention. To ensure computer
system protection, the intrusion detection system (IDS) and
Intrusion Prevention System (IPS) Engine is been introduced as
high performance network for Suricata and a network
monitoring tool with open Source which is owned by Open
Information Security Foundation (OISF). DPDK (Data Plane
Development Kit) adopts polling method for data packet
processing, which saves CPU interruption time, memory copy
time, and provides the application layer with a quick and
effective data packet processing system, making network
applications more convenient to create. DPDK Suricata is
introduced in this paper for multiple packet ACL rules support
with the use of DPDK poll-mode driver for traffic analysis to get
better performance. Rx-Tx threads with DPDK ports for
packets interface, pre-parsing filter and rule filters to allow the
relevant packets. So, it helps to build ACL key for 1Pv4 and
IPv6, As DPDK Suricata is also added with worker mode like
IPS, IDS, BYPASS modes to configure and run the rules
accordingly.

Keywords-DPDK, Suricata, Intrusion Detection System,
Intrusion Prevention System, ACL, Poll Mode Driver, rules

I INTRODUCTION

In Today’s, business networks are emerging to a large extent
managing high traffic is so tough and transmit 10 gigabytes
per second on a backbone. So Suricata's multi-threaded
architecture allows its users to scale horizontally over a single
appliance by adding threads for packet processing as the
amount of traffic makes it obligatory. Suricata is an IDS / IPS
engine based on rules that uses externally built rule sets to
track network traffic and send system administrator warnings
when unusual events occur. Designed to be companionable
with existing components of network protection, Suricata
provides simplified functionality of output and pluggable
library options to accept calls from other applications. Any
suspicious activity or intrusion is usually recorded or
centrally collected using a network for security information
and event management.

DPDK packet processing is using polling to achieve packet
processing, thereby saving time for CPU interruption and
time for memory retrieval. DPDK provides a simple and
efficient application layer packet processing method which
makes network application more feasible. DPDK packet
capture library calls PMD's network card feature to verify if

the packet has been captured to analyze the data packet which
is stored in cache.

In our paper we discuss about DPDK and Suricata
performance by integrating Suricata into DPDK platform for
more secure to monitor the networking traffic with 3 Tuple
ACL rules can overcome the network security issues in a
large business network to detect and prevent them by
introducing Suricata pipeline for better performance. So, the
ACL rule we follow are alert, drop and forward. As Access
control list helps to manage and mitigate traffic accordingly
by avoiding cyber-attacks if any encountered. By selecting
the opmode to be IDS or IPS does the job accordingly.
Configure the DPDK interface on a Suricata work pipeline as
this helps in knowing how many interfaces are bound to our
user application. DPDK ACL in which shows the packet
processing analysis by using DPDK poll-mode drivers which
helps to send the relevant IPv4 and IPv6 on Suricata worker
pipeline.

Il. EASE OF USE

Suricata is one of the free software intrusion detection
systems, which utilizes remotely developed run sets to screen
sniffed activity and alarm when suspicious occasions arise.
One of Suricata's distinctive features, particularly as opposed
to Snort, is that it has a dynamic port agnostic protocol
security capability. This means that when these interact over
non-standard ports, it can recognize some of the more popular
application layer protocols, such as HTTP, DNS and TLS.

Intrusion Detection System Intrusion Prevention System

Firewall Firewall

[Co ™ L —_— 1 Switch

Corporate Network

Corporate Network

Figure 1: Overview of IDS and IPS

In the Figure 1 we know that an intrusion detection system
(IDS) is an application for devices or software that control a

IJERTV 101 S070040

www.ijert.org 52

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I ssue 07, July-2021

network for malicious activity or policy violations and
network monitoring tool for securely transmitting packet into
an end host. if positioned at a strategic point or points within
a network to track traffic to and from all devices on the
network, an IDS can conduct a passing traffic analysis and
compare the traffic transmitted to the database of known
attacks on the subnets. The warning can be sent to the
administrator until an attack is detected or an irregular
activity is sensed.

An intrusion prevention device operates by actively
monitoring transmitted network traffic for malicious activities
and established patterns of attack. The IPS engine analyzes
network traffic and continuously compares the bitstream for
identified attack patterns to its internal signature database.
Intrusion detection mechanisms may also make monitoring
and analysis more difficult, such as observing and responding
to unusual traffic patterns or packets. Can include detection
mechanisms

Data Plane Development Kit (DPDK) is a set of data plane
libraries which is managed by Linux foundation as it is open
source software project. The network interface controller with
poll-mode drivers to offload TCP packet processing from the
operating system kernel to user space. Using the interrupt-
driven processing provided in the kernel, this offloading
achieves higher efficiency and packet throughput than is
possible.

DPDK Sample Apps Customer Apps ISV Ecosystem Apps

|
"~ Cos o
' |
I, .. .
| 1l |
! |
! |
' |
|

e
Classify | n Extensions ! QoS f PktFramework |

lesesennilecnennancnnnanannananilennncen Heosnssossnnnasn [

! I
! I
! I
! I
I I)
| I
1 1 A R
! |
o - - .

I
! I
! I
| I
! I
! I
! I
| I

RING
oD m
om o
22 F?[e- """""""""" P- Mp? -N-a-t!v.e.&. .V!r}l_lel _____________) User Space
KNI 168 UI0 Vi U0 _PCI GENERIC Kermel

Figure 2: DPDK Structure

In this Figure 2 describes a core component of DPDK as it
consists of Environment abstraction layer, Ring Buffer
management, Memory Pool management, Network message
buffer management, Timer management and specifying
detailed structure. It picks-up and sets a single pThread on
each core, and then becomes a thread run-to-completion.

DPDK uses SR-IOV to bypass the Linux kernel for direct
ports control. The PMD uses SR-IOV Virtual Feature
interfaces one per PMD to manage the connection to port
hardware. The applications, along with many utilities, use
DPDK generic APIs to access and manage the ports. As each
application runs on a single core for better performance,
Applications need to share data, then the application needs to
provide the means to communicate, and DPDK contains
several types of ways to communicate between lockless rings,
semaphor. The application needs to survey the ports that it
wants to accept data packets called mbufs, RTE_MBUF.

Ill. LITERATURE SURVEY
In this section the research scholars work has been discussed
with various way of bestowing knowledge out by interested
key domain to highlight network related issues. With the
Internet usage exceeds to peaks in day-to-day life by accessing
various applications in a huge traffic, the flow of packet
processing is analyzed in their setup to get better performance.
DPDK and Suricata is been a main work carried out by the
authors for their research as security concern and performance
of an application using various environments. So, they are
detailed below with the work carried by the researchers.
[1] Naga Surya Lakshmi et al. use open-source IDS tools for
performance analysis of Suricata and Snort with respect to
speed and size of a packet. The packet size ranging from 512,
1024, 2048 with speed of internet from 200Mbps, 400Mbps,
600Mbps, 800Mbps, 1Gbps. With two protocols i.e TCP and
UDP are compared with Snort and Suricata so the packet loss
is noticed at both the end. The increase in packet size with
decrease in packet loss thus follows reciprocal relationship
between them. The rate of packet size increases with internet
speed simultaneously.
[2] Dongyan et al. comparison of Snort and DPDK to enhance
performance using 100Mbps to 1000Mbps. using DPDK
based intrusion detection system solves the problem of
traditional snort ids which detects all the packets sent. whereas
snort ids detect less compare to DPDK ids so it optimizes to
better performance of an various packet size and higher speed
for network flow more than 1000Mbps gives better result.
[3] Zhang et al. FloWatcher-DPDK, a lightweight high-speed
software traffic controller capable of generating fine-grained
per-packet and per-flow statistics with 64B packets at a line
rate of 10 Gbps, using only 2 CPU cores. The method
leverages the RSS hash, previously determined by the NIC
and available as packet metadata, as a flow identifier to
prevent unnecessary computation and memory access and
employs a cautious design where flow tables are matched with
line boundaries of caches. FloWatcher-DPDK outperforms
state-of-the-art alternative solution to its environment and
comprehensive parameter tuning was conducted.
[4] Martino et al. Proposed DPDKStat, a high-speed Statistical
Traffic Analysis (STA) that combines the Intel DPDK system
with the passive traffic analyzer Tstat to achieve a line rate
processing of 40Gbps. In addition to publishing a concise
assessment using real-time traffic traces, the architecture
challenges to achieve scalability. A periodic package
acquisition strategy (leveraging the latest SCHED
DEADLINE Linux scheduling discipline, never considered in

IJERTV 101 S070040

www.ijert.org 53

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I ssue 07, July-2021

previous works), conduct an in-depth analysis to reduce
timestamp errors and prevent packet reconfiguration and
losses.

[5] Kevin et al. Supported level for Supervisory Control and
Data Acquisition (SCADA) protocols in well-known open
source intrusion detection (IDS) systems. identify and
improve a different IDS, Suricata, to provide support for the
monitoring threats against SCADA devices that run the
industrial control protocol EtherNet / IP (ENIP). At an
18Mbps throughput reflecting several SCADA networks,
Suricata can run viably on hardware platforms with smaller
memory and a less powerful CPU. Adding a module to
process the Suricata ENIP rules did not affect output in terms
of CPU utilization or Packet Drops. observed that there are
varying levels of the 3 most popular open source IDS systems.
Support to 3 SCADA protocols. Description of the new
protocol by rule. Analyze the rule and store it in the data
structure that fits the rule, Add an ENIP packet parser. ENIP
module-one focused on the analysis of individual packets and
of packet streams. In the end, the other was adopted and
accepted for integration as part of Suricata's main distribution.

IV. METHODOLOGY

With rapid growth of high-speed networks and increasing
complexity in cyber-attacks, high-performance IDS tools are
needed to process packets quickly, reconstruct streams and
apply pattern matching for signature-based threat detection.
The efficiency of these systems depends on many factors
including the efficiency of its pattern matching engine in
which incoming packets are tested.

Packet Queue

| I Thread 3
Packet Packet — Stream
Acquisition p— Decoding Fasiet Processing
Thread 1 | Thread 2 I

Packet Queue
‘ |
L8 acioet
Scheme —
| |

Packet Packet

Detection Detection
Al ~. | Shared | .~ 7
Data

Thread 4 Thread n

Figure 3: Suricata Architecture [5]

In the Figure 3 As Suricata plays very important role in
various aspects especially with security concerns in the
network by processing a data packet has a capability to detect
and analyze the traffic pattern. It is compatible with other
environments for more efficient and higher performance with
their respective environment like DPDK Suricata is been
introduced. Suricata has been developed as a "next phase IDS
platform" with IPS (Intrusion Prevention System) capabilities
configured to be backwards compatible with Snort rulesets.

Suricata has been designed as a multi-threaded system,
allowing multiple cores to be exploited.

In above architecture there are n number of threads which
performs different actions as packet acquisition which collect
huge amount of data which is received from the network is
been sent from thread 1 to packet queue to forward the
packets in thread 2. Thread 2 receives packet and start
decoding and analyzing the network traffic and with the help
of packet queue is been forwarded next thread i.e Thread 3 as
packet stream are further portioned into sub streams and
distributed across the processing task for parallelism with
load balancing. In order to allow maximum use of the
computing power available in a multi-core system and to
avoid processor race conditions, there is a need to ensure
even Load Balancing (LB) between cores. The aim of
Suricata's LB is to evenly dispatch the workload across all
cores and minimize idle time.

Suricata therefore shows superior performance on multi-core
machines with rulesets designed for Suricata. As a result, it
can easily analyze huge traffic volumes without having to cut
down on the number of laws. Suricata also stands out for its
ability to provide visibility into the application layer and
faster HTTP stream parsing.

It may analyze HTTP traffic regardless of the port number
used and does not rely on port numbers for traffic
identification. Suricata also enables inspection of streams
within the protocol and can therefore extract files for further
analysis from HTTP sessions.

V. IMPLEMENTATION

A. Proposed Workflow

As discussed in introduction, Suricata is an open source
software project which gives better performance when run on
a DPDK platform for better efficiency and packet processing.
The DPDK environment for packet processing applications
allows for two configurations, run-to-completion and
pipeline. In the run-to-completion model, the RX descriptor
ring for packets is polled through an API in a specific port.
Packets are then processed at the same core and put through
an API for transmission on a port's TX descriptor ring.

One core poll in the pipe-line model is rings one or more RX
descriptors of a port via an API. Packets are obtained and
passed through a ring to another hub. The other core
continues processing the packet which can then be positioned
on a port's TX descriptor ring for transmission through an
API.

A Poll Mode Driver (PMD) comprises of APIs which are
provided to configure the devices and their respective queues
through the BSD driver running in user space. In addition, a
PMD accesses the RX and TX descriptors directly without
interruptions (except for interrupts with Connection Status
Change) to instantly receive, process and transmit packets in
the user's application.

IJERTV 101 S070040

www.ijert.org 54

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I'ssue 07, July-2021

Match for rule
st

(Rpure Decode Smeam Detet Ouput

Capture ™= Decode ™ Sream == Detect ™ Ouput

Figure 4: DPDK-Suricata Architecture for Proposed Work.

The overall software optimization strategies must be
considered and balanced against available low-level
hardware-based optimization features (CPU cache properties,
bus speed, NIC PCI bandwidth, and so on) to achieve
optimum performance. The expense of invoking the
rte_eth_tx one function between multiple packets. Enable
rte_eth_tx burst to take advantage of burst-oriented hardware
features (prefetch data in cache, use of NIC head / tail
registers) to reduce the number of Processor cycles per
packet.

For example, avoiding excessive read memory accesses to
ring transmitter descriptors, or consistently using pointer
arrays that match cache line boundaries and sizes exactly. To
suppress operations that would otherwise be inevitable, such
as ring index wrap back control, apply burst-oriented device
optimization techniques.

B. Experimental Setup

The test analysis is performed based on the rule set on
Suricata-dpdk in turn uses 2 protocol, they are TCP and UDP.
In the process of setup we mainly need dpdk pktgen, dpdk-
19.11,suricta_3.0 and rules.

Our test is mainly focusing on 2 protocols with the scenario of
64,128,512,1024 byte line rate and assigning 1 DPDK thread
for 10G interface for IPS/IDS. In ruleset our analysis is
focused only on alert and allow to stress single worker thread.
Mainly focusing on DPDK rx_burst and tx_burst to capture
the line rate of packets and the threshold limit is measured
only for single worker thread with minimal zero_copy. As per
Figure 4.

VI. RESULTS
Figure 4 shows the traffic received from the interface is run
on PacketAcquireLoop function of Suricta as there is no
dedicated worker thread to handle the traffic in the interface
provided so the packets scheduled for worker thread fetches
from PMD interfaces which is in userspace.

forwarded to PacketAcquireLoop function with the help of
ring buffer. It is receiving thread excepts in pipeline model
which will not allow on same core with yaml config so the
worker threads scheduled fetches packets by dequeuing ring
buffer which is connected to it in the userspace.

The CPUAffinity is checked for getting enough core
available to receive traffic on interface which are present in
dpdkintel and run on dedicated dpdklcore. As we add rule or
signature we must extend the filtering to rule the matched
packet by allowing packets forwarded to copy_interface and
further the worker thread process for matched rules.

12000000

10000000

8000000

uo
6000000 -

W 25%

4000000 -

m50%

W 100%

2000000 -

[

R T L S S S
& RN ’{,)Q: P Sy '\/@y\’&b‘

Figure 5: The number of packets sent and received on port 0

10000000 -
9000000 -
8000000 -
7000000
6000000 -
5000000 +
4000000 +
3000000 +
2000000 1
1000000 A
O -

m0%

W 25%

" 50%
m100%

Figure 6: The number of packets sent and received on port 1

The graph above in fig 5 and fig 6 is tested for port0 and 1
with no rule hit in 64,128,256,512,1024 byte line rate as in the
graph blue,red,green and purple indicates packetsize per rate.

16000000

14000000
12000000

10000000

mo

8000000

m25%
6000000 -

m50%

4000000 - I
100%
2000000 - ¥

o

Koo A& oo <& oF A& o
SF gP P

Py
AR

Figure 7: The number of packets sent and received on Port 0 with rule

Figure 5,6,7,8,9 and 10 depicts the traffic is received in the match.
interface run on specified DPDKIlcore, then this packets are
IJERTV 101 S070040 www.ijert.org 55

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I'ssue 07, July-2021

The graph shown above in figure 7 and figure 8 is
validated for alert rule in port 0 using yaml config and the rule
set as alert udp any any -> any any, alert tcp any any -> any
any. This are tested in 64,128,256,512,1024 byte line rate with
0,25,50,100 pactketsize per rate by rx and tx .

16000000
14000000

12000000
10000000

8000000 0%
6000000 m25%
4000000 50%
2000000 1 = 100%
. m ln du da aa
‘ Tx | Rx Tx |Rx Tx |Rx Tx |Rx Tx | Rx
64 128 256 512 | 1024

F

gure 8: Number of packet sent and received in port 1

16000000

14000000
12000000
10000000
=m0
8000000
W 25%
6000000 +—
50%
4000000 +—
m100%
2000000 - 4' 1 1
ollm Hu dm da aa
A+ o+ > oF AF o+ <> oF A+ o+
™ Db D o o WA [
@ QT A oy G

Figure 9: Number of packets sent and received in port 0 using allow rule
match.

The graph in figure 9 and 10 depicts for allow rule in port
0 and 1 with yaml configured as allow udp any any -> any
any, allow tcp any any -> any any. This is tested with specifed
line rate and packetsize shown in the above graph.

16000000

14000000

12000000

10000000

8000000 0%
6000000 m25%
4000000 {4 50%
2000000 1 = 100%
. m Hu duw da a4
‘ Tx|Rx| | Tx Tx|Rx| | Tx|Rx| |Tx|Rx
64 128 256 512 | 1024

Figure 10: Number of packets sent and received for allow rule in port 1

As the Tests are done using 2 ports dedicated to suricata
dpdk, the graph shown above for allow rule in port 1. So this
are done for 1 DPDK thread and 1 worker thread for 2*10G.

VII. CONCLUSION AND FUTURE SCOPE
Suricata is a high performance monitoring tool for IPS and
IDS with the utilization of single DPDK worker thread with
the network traffic received on the interface by allocating
dedicated Icore using CPU affinity(yaml config) which
accelerates the IDS and IPS processing of suricata worker
thread to perform better.

The future scope of work is to add multi worker thread to per
core, To allocate and deallocate ‘structpkt’ using the mbuff
sector, Pre parsing the frame to accelerate the decode logic.

ACKNOWLEDGMENT
I would like to acknowledge the Ramaiah Institute of
Technology college Management, Staff and my Mentor for
their very indeed and extreme support and encouragement to
do this research.

REFERENCES

[1] M. Naga Surya Lakshmi, Y Radhika, “A Comparative paper on
measuring the performance of Snort and Suricata with variable packet
size and speed”, (IJET) International Journal of Engineering &
Technology, 8(1) (2019) 53-58

[2] Dongyan Zhang and Shuo Wang “Optimization of Traditional Snort
Intrusion detection system”, IOP Conference Series: Materials Science
and Engineering, 2019

[3] Roman Fekolkin, “Intrusion Detection and Prevention Sysytems:
Overview of Snort and suricata”, 2015

[4] Tianzhu Zhang, Leonardo Linguaglossa, Massimo Gallo, Paolo
Giaccone, Dario Rossi,”FloWatcher-DPDK: light-weight line-rate
flow-level monitoring software”, 2019.

[5] Kevin Wong, Craih Dilabough, Nabil Seddigh, Biswajit
Nandy,”Enhancing Suricata Intrusion Detection System for Cyber
Security in SCADA Networks”, IEEE 30" Canadian Conference on
Electrical and Computer Engineering(CCECE), 2017.

[6] Haozhe Ren, & Mei Nian. (2018). Dpdk-based high-speed packet
acquisition method. Computer system applications, 27(6), 242-245.

[7] Park, W., & Ahn, S. (2017). Performance comparison and detection
analysis in snort and suricata environment. Wireless Personal
Communications, 94(2), 241-252.

[8] Ning Zhao, & Shucui Xie. (2016). Analysis and application of dpdk-
based efficient packet acquisition technology. Computer engineering
and science, 38(11), 2209-2215.

IJERTV 101 S070040

www.ijert.org 56

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

