
 Accretion of Suricta with DPDK for Traffic

Monitoring using Optimized Detection System

IDS/IPS

V. Pavithra
Dept. of CSE

Ramaiah Institute of Technology, affiliated to VTU

Bangalore, India

Abstract—In the era of Internet with rapid growth of

advancing technologies, the network security concerns are

increasing prominently as the number of network attacks has

attracted more professional’s attention. To ensure computer

system protection, the intrusion detection system (IDS) and

Intrusion Prevention System (IPS) Engine is been introduced as

high performance network for Suricata and a network

monitoring tool with open Source which is owned by Open

Information Security Foundation (OISF). DPDK (Data Plane

Development Kit) adopts polling method for data packet

processing, which saves CPU interruption time, memory copy

time, and provides the application layer with a quick and

effective data packet processing system, making network

applications more convenient to create. DPDK Suricata is

introduced in this paper for multiple packet ACL rules support

with the use of DPDK poll-mode driver for traffic analysis to get

better performance. Rx-Tx threads with DPDK ports for

packets interface, pre-parsing filter and rule filters to allow the

relevant packets. So, it helps to build ACL key for IPv4 and

IPv6, As DPDK Suricata is also added with worker mode like

IPS, IDS, BYPASS modes to configure and run the rules

accordingly.

Keywords-DPDK, Suricata, Intrusion Detection System,

Intrusion Prevention System, ACL, Poll Mode Driver, rules

I. INTRODUCTION

 In Today’s, business networks are emerging to a large extent

managing high traffic is so tough and transmit 10 gigabytes

per second on a backbone. So Suricata's multi-threaded

architecture allows its users to scale horizontally over a single

appliance by adding threads for packet processing as the

amount of traffic makes it obligatory. Suricata is an IDS / IPS

engine based on rules that uses externally built rule sets to

track network traffic and send system administrator warnings

when unusual events occur. Designed to be companionable

with existing components of network protection, Suricata

provides simplified functionality of output and pluggable

library options to accept calls from other applications. Any

suspicious activity or intrusion is usually recorded or

centrally collected using a network for security information

and event management.

DPDK packet processing is using polling to achieve packet

processing, thereby saving time for CPU interruption and

time for memory retrieval. DPDK provides a simple and

efficient application layer packet processing method which

makes network application more feasible. DPDK packet

capture library calls PMD's network card feature to verify if

the packet has been captured to analyze the data packet which

is stored in cache.

In our paper we discuss about DPDK and Suricata

performance by integrating Suricata into DPDK platform for

more secure to monitor the networking traffic with 3 Tuple

ACL rules can overcome the network security issues in a

large business network to detect and prevent them by

introducing Suricata pipeline for better performance. So, the

ACL rule we follow are alert, drop and forward. As Access

control list helps to manage and mitigate traffic accordingly

by avoiding cyber-attacks if any encountered. By selecting

the opmode to be IDS or IPS does the job accordingly.

Configure the DPDK interface on a Suricata work pipeline as

this helps in knowing how many interfaces are bound to our

user application. DPDK ACL in which shows the packet

processing analysis by using DPDK poll-mode drivers which

helps to send the relevant IPv4 and IPv6 on Suricata worker

pipeline.

II. EASE OF USE

Suricata is one of the free software intrusion detection

systems, which utilizes remotely developed run sets to screen

sniffed activity and alarm when suspicious occasions arise.

One of Suricata's distinctive features, particularly as opposed

to Snort, is that it has a dynamic port agnostic protocol

security capability. This means that when these interact over

non-standard ports, it can recognize some of the more popular

application layer protocols, such as HTTP, DNS and TLS.

Figure 1: Overview of IDS and IPS

In the Figure 1 we know that an intrusion detection system

(IDS) is an application for devices or software that control a

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS070040
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 07, July-2021

52

www.ijert.org
www.ijert.org
www.ijert.org

network for malicious activity or policy violations and

network monitoring tool for securely transmitting packet into

an end host. if positioned at a strategic point or points within

a network to track traffic to and from all devices on the

network, an IDS can conduct a passing traffic analysis and

compare the traffic transmitted to the database of known

attacks on the subnets. The warning can be sent to the

administrator until an attack is detected or an irregular

activity is sensed.

An intrusion prevention device operates by actively

monitoring transmitted network traffic for malicious activities

and established patterns of attack. The IPS engine analyzes

network traffic and continuously compares the bitstream for

identified attack patterns to its internal signature database.

Intrusion detection mechanisms may also make monitoring

and analysis more difficult, such as observing and responding

to unusual traffic patterns or packets. Can include detection

mechanisms

Data Plane Development Kit (DPDK) is a set of data plane

libraries which is managed by Linux foundation as it is open

source software project. The network interface controller with

poll-mode drivers to offload TCP packet processing from the

operating system kernel to user space. Using the interrupt-

driven processing provided in the kernel, this offloading

achieves higher efficiency and packet throughput than is

possible.

Figure 2: DPDK Structure

In this Figure 2 describes a core component of DPDK as it

consists of Environment abstraction layer, Ring Buffer

management, Memory Pool management, Network message

buffer management, Timer management and specifying

detailed structure. It picks-up and sets a single pThread on

each core, and then becomes a thread run-to-completion.

DPDK uses SR-IOV to bypass the Linux kernel for direct

ports control. The PMD uses SR-IOV Virtual Feature

interfaces one per PMD to manage the connection to port

hardware. The applications, along with many utilities, use

DPDK generic APIs to access and manage the ports. As each

application runs on a single core for better performance,

Applications need to share data, then the application needs to

provide the means to communicate, and DPDK contains

several types of ways to communicate between lockless rings,

semaphor. The application needs to survey the ports that it

wants to accept data packets called mbufs, RTE_MBUF.

III. LITERATURE SURVEY

In this section the research scholars work has been discussed

with various way of bestowing knowledge out by interested

key domain to highlight network related issues. With the

Internet usage exceeds to peaks in day-to-day life by accessing

various applications in a huge traffic, the flow of packet

processing is analyzed in their setup to get better performance.

DPDK and Suricata is been a main work carried out by the

authors for their research as security concern and performance

of an application using various environments. So, they are

detailed below with the work carried by the researchers.

[1] Naga Surya Lakshmi et al. use open-source IDS tools for

performance analysis of Suricata and Snort with respect to

speed and size of a packet. The packet size ranging from 512,

1024, 2048 with speed of internet from 200Mbps, 400Mbps,

600Mbps, 800Mbps, 1Gbps. With two protocols i.e TCP and

UDP are compared with Snort and Suricata so the packet loss

is noticed at both the end. The increase in packet size with

decrease in packet loss thus follows reciprocal relationship

between them. The rate of packet size increases with internet

speed simultaneously.

[2] Dongyan et al. comparison of Snort and DPDK to enhance

performance using 100Mbps to 1000Mbps. using DPDK

based intrusion detection system solves the problem of

traditional snort ids which detects all the packets sent. whereas

snort ids detect less compare to DPDK ids so it optimizes to

better performance of an various packet size and higher speed

for network flow more than 1000Mbps gives better result.

[3] Zhang et al. FloWatcher-DPDK, a lightweight high-speed

software traffic controller capable of generating fine-grained

per-packet and per-flow statistics with 64B packets at a line

rate of 10 Gbps, using only 2 CPU cores. The method

leverages the RSS hash, previously determined by the NIC

and available as packet metadata, as a flow identifier to

prevent unnecessary computation and memory access and

employs a cautious design where flow tables are matched with

line boundaries of caches. FloWatcher-DPDK outperforms

state-of-the-art alternative solution to its environment and

comprehensive parameter tuning was conducted.

[4] Martino et al. Proposed DPDKStat, a high-speed Statistical

Traffic Analysis (STA) that combines the Intel DPDK system

with the passive traffic analyzer Tstat to achieve a line rate

processing of 40Gbps. In addition to publishing a concise

assessment using real-time traffic traces, the architecture

challenges to achieve scalability. A periodic package

acquisition strategy (leveraging the latest SCHED

DEADLINE Linux scheduling discipline, never considered in

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS070040
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 07, July-2021

53

www.ijert.org
www.ijert.org
www.ijert.org

previous works), conduct an in-depth analysis to reduce

timestamp errors and prevent packet reconfiguration and

losses.

[5] Kevin et al. Supported level for Supervisory Control and

Data Acquisition (SCADA) protocols in well-known open

source intrusion detection (IDS) systems. identify and

improve a different IDS, Suricata, to provide support for the

monitoring threats against SCADA devices that run the

industrial control protocol EtherNet / IP (ENIP). At an

18Mbps throughput reflecting several SCADA networks,

Suricata can run viably on hardware platforms with smaller

memory and a less powerful CPU. Adding a module to

process the Suricata ENIP rules did not affect output in terms

of CPU utilization or Packet Drops. observed that there are

varying levels of the 3 most popular open source IDS systems.

Support to 3 SCADA protocols. Description of the new

protocol by rule. Analyze the rule and store it in the data

structure that fits the rule, Add an ENIP packet parser. ENIP

module-one focused on the analysis of individual packets and

of packet streams. In the end, the other was adopted and

accepted for integration as part of Suricata's main distribution.

IV. METHODOLOGY

With rapid growth of high-speed networks and increasing

complexity in cyber-attacks, high-performance IDS tools are

needed to process packets quickly, reconstruct streams and

apply pattern matching for signature-based threat detection.

The efficiency of these systems depends on many factors

including the efficiency of its pattern matching engine in

which incoming packets are tested.

Figure 3: Suricata Architecture [5]

In the Figure 3 As Suricata plays very important role in

various aspects especially with security concerns in the

network by processing a data packet has a capability to detect

and analyze the traffic pattern. It is compatible with other

environments for more efficient and higher performance with

their respective environment like DPDK Suricata is been

introduced. Suricata has been developed as a "next phase IDS

platform" with IPS (Intrusion Prevention System) capabilities

configured to be backwards compatible with Snort rulesets.

Suricata has been designed as a multi-threaded system,

allowing multiple cores to be exploited.

In above architecture there are n number of threads which

performs different actions as packet acquisition which collect

huge amount of data which is received from the network is

been sent from thread 1 to packet queue to forward the

packets in thread 2. Thread 2 receives packet and start

decoding and analyzing the network traffic and with the help

of packet queue is been forwarded next thread i.e Thread 3 as

packet stream are further portioned into sub streams and

distributed across the processing task for parallelism with

load balancing. In order to allow maximum use of the

computing power available in a multi-core system and to

avoid processor race conditions, there is a need to ensure

even Load Balancing (LB) between cores. The aim of

Suricata's LB is to evenly dispatch the workload across all

cores and minimize idle time.

Suricata therefore shows superior performance on multi-core

machines with rulesets designed for Suricata. As a result, it

can easily analyze huge traffic volumes without having to cut

down on the number of laws. Suricata also stands out for its

ability to provide visibility into the application layer and

faster HTTP stream parsing.

It may analyze HTTP traffic regardless of the port number

used and does not rely on port numbers for traffic

identification. Suricata also enables inspection of streams

within the protocol and can therefore extract files for further

analysis from HTTP sessions.

V. IMPLEMENTATION

A. Proposed Workflow

As discussed in introduction, Suricata is an open source

software project which gives better performance when run on

a DPDK platform for better efficiency and packet processing.

The DPDK environment for packet processing applications

allows for two configurations, run-to-completion and

pipeline. In the run-to-completion model, the RX descriptor

ring for packets is polled through an API in a specific port.

Packets are then processed at the same core and put through

an API for transmission on a port's TX descriptor ring.

One core poll in the pipe-line model is rings one or more RX

descriptors of a port via an API. Packets are obtained and

passed through a ring to another hub. The other core

continues processing the packet which can then be positioned

on a port's TX descriptor ring for transmission through an

API.

A Poll Mode Driver (PMD) comprises of APIs which are

provided to configure the devices and their respective queues

through the BSD driver running in user space. In addition, a

PMD accesses the RX and TX descriptors directly without

interruptions (except for interrupts with Connection Status

Change) to instantly receive, process and transmit packets in

the user's application.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS070040
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 07, July-2021

54

www.ijert.org
www.ijert.org
www.ijert.org

Figure 4: DPDK-Suricata Architecture for Proposed Work.

The overall software optimization strategies must be

considered and balanced against available low-level

hardware-based optimization features (CPU cache properties,

bus speed, NIC PCI bandwidth, and so on) to achieve

optimum performance. The expense of invoking the

rte_eth_tx one function between multiple packets. Enable

rte_eth_tx burst to take advantage of burst-oriented hardware

features (prefetch data in cache, use of NIC head / tail

registers) to reduce the number of Processor cycles per

packet.

For example, avoiding excessive read memory accesses to

ring transmitter descriptors, or consistently using pointer

arrays that match cache line boundaries and sizes exactly. To

suppress operations that would otherwise be inevitable, such

as ring index wrap back control, apply burst-oriented device

optimization techniques.

B. Experimental Setup

The test analysis is performed based on the rule set on

Suricata-dpdk in turn uses 2 protocol, they are TCP and UDP.

In the process of setup we mainly need dpdk pktgen, dpdk-

19.11,suricta_3.0 and rules.

Our test is mainly focusing on 2 protocols with the scenario of

64,128,512,1024 byte line rate and assigning 1 DPDK thread

for 10G interface for IPS/IDS. In ruleset our analysis is

focused only on alert and allow to stress single worker thread.

Mainly focusing on DPDK rx_burst and tx_burst to capture

the line rate of packets and the threshold limit is measured

only for single worker thread with minimal zero_copy. As per

Figure 4.

VI. RESULTS

Figure 4 shows the traffic received from the interface is run

on PacketAcquireLoop function of Suricta as there is no

dedicated worker thread to handle the traffic in the interface

provided so the packets scheduled for worker thread fetches

from PMD interfaces which is in userspace.

Figure 5,6,7,8,9 and 10 depicts the traffic is received in the

interface run on specified DPDKlcore, then this packets are

forwarded to PacketAcquireLoop function with the help of

ring buffer. It is receiving thread excepts in pipeline model

which will not allow on same core with yaml config so the

worker threads scheduled fetches packets by dequeuing ring

buffer which is connected to it in the userspace.

The CPUAffinity is checked for getting enough core

available to receive traffic on interface which are present in

dpdkintel and run on dedicated dpdklcore. As we add rule or

signature we must extend the filtering to rule the matched

packet by allowing packets forwarded to copy_interface and

further the worker thread process for matched rules.

Figure 5: The number of packets sent and received on port 0

Figure 6: The number of packets sent and received on port 1

The graph above in fig 5 and fig 6 is tested for port0 and 1

with no rule hit in 64,128,256,512,1024 byte line rate as in the

graph blue,red,green and purple indicates packetsize per rate.

Figure 7: The number of packets sent and received on Port 0 with rule

match.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS070040
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 07, July-2021

55

www.ijert.org
www.ijert.org
www.ijert.org

The graph shown above in figure 7 and figure 8 is

validated for alert rule in port 0 using yaml config and the rule

set as alert udp any any -> any any, alert tcp any any -> any

any. This are tested in 64,128,256,512,1024 byte line rate with

0,25,50,100 pactketsize per rate by rx and tx .

Figure 8: Number of packet sent and received in port 1

Figure 9: Number of packets sent and received in port 0 using allow rule
match.

The graph in figure 9 and 10 depicts for allow rule in port

0 and 1 with yaml configured as allow udp any any -> any

any, allow tcp any any -> any any. This is tested with specifed

line rate and packetsize shown in the above graph.

Figure 10: Number of packets sent and received for allow rule in port 1

As the Tests are done using 2 ports dedicated to suricata

dpdk, the graph shown above for allow rule in port 1. So this

are done for 1 DPDK thread and 1 worker thread for 2*10G.

VII. CONCLUSION AND FUTURE SCOPE

Suricata is a high performance monitoring tool for IPS and

IDS with the utilization of single DPDK worker thread with

the network traffic received on the interface by allocating

dedicated lcore using CPU affinity(yaml config) which

accelerates the IDS and IPS processing of suricata worker

thread to perform better.

The future scope of work is to add multi worker thread to per

core, To allocate and deallocate ‘structpkt’ using the mbuff

sector, Pre parsing the frame to accelerate the decode logic.

ACKNOWLEDGMENT

I would like to acknowledge the Ramaiah Institute of

Technology college Management, Staff and my Mentor for

their very indeed and extreme support and encouragement to

do this research.

REFERENCES
[1] M. Naga Surya Lakshmi, Y Radhika, “A Comparative paper on

measuring the performance of Snort and Suricata with variable packet

size and speed”, (IJET) International Journal of Engineering &
Technology, 8(1) (2019) 53-58

[2] Dongyan Zhang and Shuo Wang “Optimization of Traditional Snort

Intrusion detection system”, IOP Conference Series: Materials Science
and Engineering, 2019

[3] Roman Fekolkin, “Intrusion Detection and Prevention Sysytems:

Overview of Snort and suricata”, 2015
[4] Tianzhu Zhang, Leonardo Linguaglossa, Massimo Gallo, Paolo

Giaccone, Dario Rossi,”FloWatcher-DPDK: light-weight line-rate

flow-level monitoring software”, 2019.
[5] Kevin Wong, Craih Dilabough, Nabil Seddigh, Biswajit

Nandy,”Enhancing Suricata Intrusion Detection System for Cyber

Security in SCADA Networks”, IEEE 30th Canadian Conference on
Electrical and Computer Engineering(CCECE), 2017.

[6] Haozhe Ren, & Mei Nian. (2018). Dpdk-based high-speed packet

acquisition method. Computer system applications, 27(6), 242-245.
[7] Park, W., & Ahn, S. (2017). Performance comparison and detection

analysis in snort and suricata environment. Wireless Personal

Communications, 94(2), 241-252.
[8] Ning Zhao, & Shucui Xie. (2016). Analysis and application of dpdk-

based efficient packet acquisition technology. Computer engineering

and science, 38(11), 2209-2215.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS070040
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 07, July-2021

56

www.ijert.org
www.ijert.org
www.ijert.org

