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Abstract - Retina, an inner layer of the eye consists of rods 

and cones which provides vision for humans. 

Haemorrhage is an abnormality in retina and its 

symptoms are fragile blood vessels, bleeding in blood 

vessels etc. which affects the vision. In the development of 

automated screening system, haemorrhage detection in 

retinal fundus image is an important step. Retinal color 

images are partitioned in to non-overlapping segments. 

Each segment is called a splat. The splat contains pixels 

with similar colour and spatial location. A set of features 

such as color, contrast, correlation, homogeneity, spatial 

location, etc are extracted from each splat to describe its 

characteristics relative to its neighbouring splats. Optimal 

subsets of splat features are extracted by filter approaches 

which are followed by wrapper approach. A neural 

classifier is trained with splat-based expert annotations 

and evaluated on the publicly available Messidor dataset.  

 

Index terms- haemorrhage detection, splat, and neural 

classifier 

1. INTRODUCTION 

 The most widely spread and severe eye disease is the 

diabetic retinopathy. Its symptoms are exudates, drusen, 

haemorrhage, cotton wool spots and micro aneurysms. This 

paper concerns only the detection of haemorrhages. There are 

two different types of haemorrhages, namely small and large 

haemorrhages. Small haemorrhages are regular in shape and 

many systems have been developed to detect these lesions, 

whereas large haemorrhages are irregular in shape and occur 

infrequently. Their appearances are highly invariable, making 

a challenge for automated detection.   

   Retinal haemorrhages are caused by retinal ischemia 

and are primarily caused by abnormal fragile blood vessels in 

hypertension, malaria and so on. The evaluation of automated 

DR detection systems shows that only image containing large 

haemorrhages provides false negatives of about 50%. Large 

haemorrhages indicate more severe disease and these 

improved detection of such lesions will lead to elimination of 

severe false negatives. Haemorrhage detection primarily fall 

in to three categories: pixel based approaches, lesion based 

approaches and image based approaches. Pixel based 

approaches focuses on the location of haemorrhages on retina. 

Lesion based approaches use morphological operations to 

define candidate lesions and to count them. Image based 

approaches aimed at detecting eyes with haemorrhages. 

 Detecting DR lesions are often accomplished by 

supervised classification, which involves training of 

classifiers using expert labelled target objects at pixel level. 

Features are extracted from each pixel and then soft labels are 

assigned accordingly, indicating the probability of the pixel 

being one or part of the target object. Abnormal pixels are 

then combined in to objects. The problems still exists as 

follows: 

 Ideally training samples are intended to be both 

informative to the classification model and diverse so 

that information provided by individual samples overlaps 

as little as possible. But often in a single trained image, 

there can be a huge number of similar pixel samples. 

 It is expensive to acquire expert labelled reference 

standards for training and evaluation. 

    Sensitivity for detection of large haemorrhages     has 

negligible effect on unweighted performance   metrics. 

 

                       The above said problems can be addressed using a 

higher level entity- the splat, which is a collection of pixels 

with similar color and spatial location. As haemorrhages 

consist of blood, they share appearance features with 

intravascular blood. That makes it difficult to differentiate 

these from retinal vessels using low level pixel features. On 

the contrary, by upgrading samples for classification from 

pixel level to splat level, information is encoded at the splat 

level, with fewer disturbances from pixel level noise. 

 

 The purpose of this study is to present a supervised 

classification algorithm to detect large, irregular retinal 

haemorrhages. Reference standard haemorrhage locations 

were delineated by a retinal specialist (MDA) using splat-

based image representation. Supervised classification predicts 

the likelihood of splats being haemorrhages with the optimal 

feature subset selected in a two-step feature selection process. 

From the resulting haemorrhageness map, a haemorrhage 

index is assigned as the image level output. 
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2. PRE-PROCESSING 
The images that are fed to the systems are acquired 

at different sites, by different operators using different 

cameras and camera settings. The first processing step of the 

system is aimed at making the difference in field-of-view 

(FOV) size between exams smaller, removing the sharp 

border between the FOV and the image background and 

clipping away unused background pixels. A typical image 

before and after processing is shown in Figure1. In normal 

quality images, the FOV may be segmented by thresholding 

one of the color planes to obtain a binary FOV mask. 

However, in many cases the use of a fixed threshold will fail 

due to differences in FOV brightness or the presence of local, 

underexposed areas in the image. Because there are different 

shapes of FOV the circularity cannot be used reliably to 

detect failed segmentations. 

 
 

Figure 1. Example of an image as it is acquired on site 

 

 
 

Figure 2. The same image after pre-processing 

 

The large difference in intensity at the edge of the FOV can 

be a problem when extracting image features near the border 

of the FOV. Therefore a ―mirroring‖ operation is performed 

to remove the intensity gradient at the border. This operation 

is applied to every pixel outside the FOV.  

3. SPLAT SEGMENTATION 

 Based on the assumption that pixels that are part of 

the same object or structure sharing similar color, intensity 

and spatial location, the image is partitioned into non 

overlapping splats of similar intensity covering the entire 

image. Splat-based representation is an image re-sampling 

strategy onto an irregular grid. Background regions with 

gradual variations in appearance, tends to be consist of fewer 

large splats while foreground regions consist of a larger 

number of smaller splats. At pixel level, the distributions of 

haemorrhage pixels and non haemorrhage pixels are 

imbalanced, since haemorrhages usually account for a small 

fraction of the entire image. Instead of including only a subset 

of background pixels for training, as many resampling 

methods do, a splat-based approach maximizes the diversity 

of training samples by retaining all important Samples. 

 

3.1.  Scale-Specific Image Over-Segmentation 
 Splats are created by over-segmenting images using 

watershed or toboggan algorithms. Conventional image over 

segmentation on a regular grid generates so called ―super 

pixels‖, a similar concept to ―splats.‖ But super pixels are 

roughly homogeneous in size and shape, resulting in a lattice 

pattern. In contrast, a splat-based approach divides images 

into an irregular grid, depending on the properties of target 

objects to be detected. 

 To create splats which preserve desired boundaries 

precisely, i.e., boundaries separating haemorrhages from 

retinal background, scale-specific image over-segmentation 

should occur in two steps. Due to the variability in 

appearance of haemorrhages, we firstly aggregate gradient 

magnitudes of the contrast enhanced dark-bright opponency 

image at a range of scales for localization of contrast 

boundaries separating blood and retinal background. Next, the 

maximum of these gradients over scale-of-interest (SOI) is 

taken in performing watershed segmentation. 

 Assuming that we establish a scale-space 

representation of image I(x,y;k) with Gaussian kernel Gk at 

SOI k є k1,...,kn, the gradient magnitude ǀ∇𝐼(𝑥, 𝑦; 𝑘)ǀ is 

computed from its horizontal and vertical derivatives  

 

        ǀ∇𝐼(𝑥, 𝑦; 𝑘)ǀ 

      =    𝐼𝑥𝑥(𝑥, 𝑦; 𝑘)2 + 𝐼𝑦 (𝑥, 𝑦; 𝑘)2 

      =     
𝜕

𝜕𝑥
 𝐺𝑘 ∗ 𝐼 𝑥, 𝑦   

2

+  
𝜕

𝜕𝑦
 𝐺𝑘 ∗ 𝐼 𝑥, 𝑦   

2

 

     =      
𝜕𝐺𝑘

𝜕𝑥
∗ 𝐼 𝑥, 𝑦  

2

+  
𝜕𝐺𝑘

𝜕𝑦
∗ 𝐼 𝑥, 𝑦  

2

 

          k = 𝑘1, … , 𝑘𝑛                   4.1  

where symbol * represents convolution and  (∂Gk)/( ∂x), 

(∂Gk)/( ∂y) are the first order derivatives of Gaussian at scale 

along the horizontal and vertical direction. The maximum of 

the gradient magnitude aggregated over the scale band 

ǀ∇𝐼(𝑥, 𝑦)ǀ is 

 ∇𝐼 𝑥, 𝑦   = max𝑖   ∇𝐼 𝑥, 𝑦; 𝑘𝑖                              
                                                                     4.2  

The application of gradient magnitude from a 

maximum pooling operation ǀ∇𝐼(𝑥, 𝑦)ǀ across certain scales as 

the topographic surface in watershed segmentation is 

important to obtain meaningful splats preserving haemorrhage 

boundaries precisely. A comparison of it with the original 

intensity image and gradient images outside SOI as the 

topographic surface for splat creation is given. Each image in 
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this figure contains a similar number of splats generated by 

the same watershed algorithm. The number of splats in each 

image is set to be within a limit, which is achieved by 

thresholding the topographic surface iteratively.  

 

3.2.  Splat-Based Reference Standard Acquisition 
 Supervised algorithms require labelled samples by 

experts, but it is expensive to acquire such data, because 

substantial time is required to delineate irregular boundaries 

of haemorrhages. Any misalignment with true boundaries 

introduces noise at the training stage. Given the limited 

number of training samples, it has considerable impact on 

system performances. This problem may be simplified by 

splat-based image formulation. We compared both a pixel-

based approach and a splat-based approach in Figure 3 using 

―Truth marker‖-an iPad app developed to provide a 

convenient user interface for clinicians to perform reference 

standard annotation. 

 For pixel level annotation illustrated in Figure 3(a), 

we allow two types of annotations by expert: large 

haemorrhages and small haemorrhages. Large haemorrhages 

are indicated by a few points along the boundaries (shown as 

small circles) and then spline fitting is applied to connect 

those discrete points as enclosed curves shown in cyan. Small 

haemorrhages are indicated by a single point shown as a 

green dot. Thus considerable noise is introduced and the time 

costs of experts are still high. For splat level annotation 

shown in Figure 3(b), this process is simplified substantially. 

Experts only perform a single click in a splat to indicate a 

haemorrhage splat. As splats preserve haemorrhage 

boundaries, the resulting reference standard is less noisy. 

 

 
 

Figure 3. Sample labelling acquired from expert annotation with: (a) pixel-

based approach; (b) splat-based approach 

 

 To produce an image level reference standard, 

images with splat-based annotation from the expert, i.e., 

images containing haemorrhages are given labels of ―1‖ and 

the rest are given labels of ―0‖ as they contain no 

haemorrhage splats. 

 

3.3.  Edge Effect Removal 

Edge effects due to limited field of view (FOV) and 

vignetting in fundus photographs have to be addressed to 

suppress irrelevant responses during feature extraction. This 

effect is visible in Figure 4. It is conventionally performed in 

two ways. One is to fill the region outside FOV with the mean 

color of the region within FOV. The other possibility is to 

mirror the FOV outside the FOV. If the artifacts were not 

completely eliminated, they would interfere with features to 

be identified. This problem can be easily handled with splat-

based image representation as is shown in Figure 4. While 

features are extracted from all of splats, those containing 

pixels on the circular boundaries of FOV are excluded from 

further processing. This avoids abrupt intensity changes 

across splat boundaries and enables the retention of only 

splats formed by the real content of the image. 

 
 

Figure 4. Valid splat coverage 

4. SPLAT FEATURE EXTRACTION 

Given splats with their associated feature vectors and 

reference standard labels, a classifier can then be trained to 

detect target objects. In this study, two categories of features 

are extracted for splat-based haemorrhage detection as 

follows: 1) splat features aggregated from pixel-based 

responses; 2) splat wise features (no aggregation is required). 

 

4.1.  Pixel-Based Feature Responses 

 Color within each splat is extracted in RGB color 

space and dark-bright (db), red-green (rg), and blue-yellow 

(by) opponency images, which comprises of six color 

components in splat feature space. To accommodate color 

variations across the dataset, we normalize each image 

according to its dominant pixel values at three color channels, 

which means most frequent pixel values present in the image, 

are shifted to the origin of RGB color space. No separate 

rescaling is performed in order to preserve the ratio between 

color components. 

 

4.2. Aggregation Of Pixel-Based Responses 
 Similar to the way splats are created so that 

haemorrhage boundaries are preserved precisely, splat 

features are more meaningful when response images exhibit 

high intra-splat similarity and low inter-splat similarity 

between target classes. To find the optimal strategy to 

aggregate pixel responses within each splat and associate it 

with a single feature value, two approaches are used, resulting 

in four sets of features. 

 Firstly, the mean and standard deviation (SD) of 

filtering response within splat are computed. Taking the 

above DoG responses RDOG, for example,  
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𝑓1
𝜎  =      

1

𝑎𝑝
      𝐺𝜎 ∗   𝐼 𝑥, 𝑦 − 𝐺𝜎0

∗ 𝑥 ,𝑦 ∈𝛺𝑝

𝐼 𝑥, 𝑦   

                  = 
1

𝑎𝑝
 𝑅𝐷𝑂𝐺

𝜎  𝑥, 𝑦  𝑥 ,𝑦 ∈𝛺𝑝
                                      

                                       4.3  

    𝑓2
𝜎    =  

1

 𝑎𝑝
   𝑅𝐷𝑂𝐺

𝜎  𝑥, 𝑦 −  𝑓1
𝜎  2

 𝑥 ,𝑦 ∈𝛺𝑝
 

1
2 

                    

 4.4  

Where Ωp represents the set of pixels within splat p with 

area 𝑎𝑝 , 𝐺𝜎  represents Gaussian kernel at scale 𝜎 and 𝜎0 = 

0.5. 

5. SPLAT FEATURE SELECTION AND 

CLASSIFICATION 

 Feature selection, also known as variable selection, 

attribute selection or variable subset selection, is the process 

of selecting a subset of relevant features for use in model 

construction. The central assumption when using a feature 

selection technique is that the data contains many redundant 

features or irrelevant features. Redundant features are those 

which provide no more information than the currently 

selected features, and irrelevant features provide no useful 

information in any context. Feature selection techniques are a 

subset of the more general field of feature extraction. Feature 

extraction creates new features from functions of the original 

features, whereas feature selection returns a subset of the 

features. Feature selection techniques are often used in 

domains where there are many features and comparatively 

few samples (or data points). The archetypal case is the use of 

feature selection in analysing DNA microarrays, where there 

are many thousands of features, and a few tens to hundreds of 

samples. Feature selection techniques provide three main 

benefits when constructing predictive models: 

 Improved model interpretability. 

 Short training times. 

 Enhanced generalisation by reducing the overfitting. 

Feature selection is also useful as a part of the data 

analysis process, as shows which features are important for 

prediction, and how these features are related. A feature 

selection algorithm can be seen as the combination of a search 

technique for proposing new feature subsets, along with an 

evaluation measure which scores different feature subsets. 

 

5.1. Two-Step Splat Feature Selection 
 Feature selection reduces the dimensionality of 

feature space by identifying relevant features and ignoring 

those irrelevant or redundant ones, which is particularly 

important to higher separability between classes. There are 

two major approaches for feature selection: the filter approach 

and the wrapper approach. The filter approach is fast, 

enabling their practical use on high dimensional feature 

spaces. It assesses individual feature separately without 

considering their interactions. The wrapper approach assesses 

different combinations of feature subsets tailored to a 

particular classification algorithm at the cost of longer 

computation time. To take advantage of both approaches, we 

use a two-step feature selection process—a filter approach 

followed by a wrapper approach. 

5.2. Preliminary Feature Selection with a    Filter 

Approach 
 The goal of preliminary feature selection is to 

exclude those individual features that are not effective or 

irrelevant in separating haemorrhage or non haemorrhage 

splats. It relies on general characteristics of the data to 

evaluate and select relevant feature subsets without involving 

any chosen induction algorithms. 

 The training set is further partitioned into a training 

subset and a testing subset. Given reference standard labels, 

splats in the training subset are grouped into haemorrhage 

splats and non haemorrhage splats. The t-test is applied to 

each feature of the two groups. The –values sorted in 

ascending order are taken as measures of how effective those 

features are in predicting the correct labels of splats. 

 The appropriate number of features to be retained is 

determined by inspecting how it varies with the 

misclassification error (MCE) using cross-validation. 

Classification is carried out using quadratic discriminant 

analysis (QDA), which performs likelihood ratio test under 

the assumption of multivariate normal distributions. The 

percentages of misclassified splats on the training subset and 

the testing subset are plotted as a function of increasing 

number of sorted features. Overfitting occurs where the error 

on the testing subset increases while the error on the training 

subset decreases. The appropriate number of features is 

chosen according to the turning point where the smallest 

MCE on the test set is reached right before overfitting begins 

to occur. 

 

5.3. Feature Selection with a Wrapper Approach 
 After preliminary selection, irrelevant features are 

removed. By taking interactions among features into account, 

a wrapper approach selects optimal combinations of relevant 

features with their redundancy minimized. Potential 

combinations are evaluated depending upon certain 

classification algorithms. A k-nearest neighbour (kNN) 

classifier is used for this purpose – the same as what we use 

for testing in the following sections. 

 Sorted relevant features identified from the filter 

approach are applied to sequential forward feature selection 

(SFS), which attempts to select a feature subset that 

maximizes area under the receiver operating characteristic 

(ROC) curve (AUC) of the classification system. The 

accuracy of splat labels predicted by kNN classifier is 

assessed using leave-one-out cross-validation. 

 

5.4. K-Nearest Neighbour (KNN) Classification 
 In k-Nearest Neighbour classification, the training 

dataset is used to classify each member of a "target" dataset. 

The structure of the data is that there is a classification 

variable of interest and a number of additional predictor 

variables. Generally speaking, the algorithm is as follows: 

1. For each row (case) in the target dataset (the set to be 

classified), locate the k closest members (the k nearest 

neighbours) of the training dataset. A Euclidean Distance 

measure is used to calculate how close each member of 
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the training set is to the target row that is being 

examined.      

2. Examine the k nearest neighbours. Assign this category 

to the row being examined. 

3. Repeat this procedure for the remaining rows (cases) in 

the target set. 

As the computing time goes up as k goes up, but the 

advantage is that higher values of k provide smoothing that 

reduces vulnerability to noise in the training data. In practical 

applications, typically, k is in units or tens rather than in 

hundreds or thousands.   

After feature selection, a trained kNN classifier is set up 

in a ―calibrated‖ feature space with a set of discriminative 

features and a set of labelled instances. The kNN classifier 

assigns soft class labels to query splats based on the labels of 

their k nearest neighbours in the feature space, i.e., those 

instances in the training set. When neighbours were labelled 

as being a haemorrhage splat, the posterior probability that 

the query splat comes from haemorrhage itself was 

determined by p=n/k. The distance for finding the nearest 

neighbours is measured with Euclidean metric in the 

optimized feature space. At the testing stage, the system is 

fully automatic. 

The nearest neighbour rule attempts to estimate the 

posterior probabilities from labelled training samples. A large 

value of k is desirable to obtain reliable estimates. But only 

when all of the nearest neighbours are close enough to the 

query sample, its a posteriori probability can be approximated 

by the majority labels of its neighbours. Therefore, a 

compromise has to be made so that the value of accounts for 

only a small fraction of the training samples. 

6. POST-PROCESSING 

 Classifier performance is enhanced by the inclusion 

of a two step post-processing stage: the first step is aimed at 

filling pixel gaps in detected blood vessels, while the second 

step is aimed at removing falsely detected isolated vessel 

pixels. 

 

6.1. Assigning Image Level Haemorrhage Index 
 The ultimate goal of splat feature classification is to 

develop a haemorrhage detector, indicating whether or not an 

image is normal, i.e., free of haemorrhages, or abnormal, i.e., 

containing one or more haemorrhages. When the a posteriori 

probability of each splat being haemorrhage is determined, a 

haemorrhageness map can be created for each testing image. 

It is then upgraded to a single haemorrhage index as image 

level decision, which can be fused with results from other 

lesion detectors consisting of a DR screening system. To 

eliminate spurious responses in haemorrhageness map, firstly 

low probability responses are suppressed. A desired 

separability between haemorrhage splats and the background 

retina can be reached by setting a threshold where a majority 

of haemorrhage splats receive higher probabilities than non 

haemorrhage splats. 

 Secondly, given a limited number of haemorrhage 

splats coming out from the first step, those neighbouring ones 

are merged together to form objects. Objects with small areas 

are removed because they are more likely to be red lesions or 

micro aneurysms, which are supposed to be detected by 

separate detectors. 

 Thirdly, splats formed by the fovea, whose locations 

are detected automatically, are masked out to suppress 

potential false positives. Because detectors consisting of a 

screening system attempt to help early detection of sight 

threatening diseases and prevent their progressions among 

large populations unaware of any abnormalities for their 

vision, subjects would have noticed if there are any lesions 

present at the fovea. 

 The haemorrhage index assigned at image level is 

simply calculated as the probability summation of the 

consequently processed haemorrhageness map.  

 

7. DISCUSSION AND CONCLUSION 

In this paper, a splat-based feature classification 

algorithm with application to large, irregular haemorrhage 

detection in fundus photographs is presented. Neighbouring 

pixels with similar intensity are grouped into non 

overlapping splats. A set of features is extracted from each 

splat to describe its characteristics. These splats are taken as 

samples for supervised classification in a selected feature 

space. Splat-based image representation provides an 

efficient and natural way to model irregular shaped 

abnormalities in medical images. Aggregating features 

within splats improves their robustness and stability, as it is 

resistant to pixel level noise and intensity bias. Moreover, 

certain high level texture features are only meaningful when 

considering regions instead of pixels.  

 Many of the haemorrhages are connected 

(continuous) with the retinal vessels. Because many of the 

false positives in our approach are parts of retinal vessel, an 

alternative approach would be to mask out all blood vessels 

using one of the common vessel segmentation methods. 

However, preliminary studies not presented here show that 

such an approach, attractive at first consideration, also 

masked out many of the large haemorrhages we are trying to 

detect in the first place. 

Another potential improvement is use of an active 

learning approach .As we mentioned earlier, one of the 

problems for supervised classification is its high cost in 

acquiring labelled data for training. If we design a classifier 

that can automatically choose examples with the highest 

classification uncertainty, i.e., at the decision surface 

boundary, for manual labelling during the learning process, 

human experts need to label as little data as possible to 

achieve the same classification confidence. 
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