
A VLSI Implementation of Floating Point

CORDIC Coprocessor

 Roshny G. Kumar

 Assistant Professor
 Department of Electronics and Communication

 Mar Baselios College of Engineering and Technology
 Thiruvananthapuram, Kerala, India

K. Padmakumar
 Sci/Eng ‗SF‘

 Flight Computer Division, VSSC, ISRO
 Thiruvananthapuram, Kerala, India

Abstract— A floating point CORDIC coprocessor is designed

which accepts inputs in the IEEE 754 double precision format.

These are internally converted into 128 bit fixed point

representation by a preprocessor. The CORDIC module

operates in either the rotation or vectoring modes for circular,

linear or hyperbolic systems to produce the result. The results

after completion of the CORDIC iterations are reconverted into

the IEEE 754 format by a postprocessor. Improved precision is

obtained by the use of 128 bits during CORDIC iterations. This

project has been implemented in Quartus II.

Keywords— CORDIC, coprocessor, circular, linear,

hyperbolic, IEEE 754

I. INTRODUCTION

Microprocessors are fast for number-crunching but when it

comes to computing trigonometric functions for navigation

systems conventional architectures are not fast enough. Jack

E. Volder introduced COordinate Rotation DIgital Computer

or CORDIC algorithm in 1959 in order to compute these

functions. It was later on extended by John Walther to

include hyperbolic and transcendental functions.

The CORDIC algorithm is a simple and efficient algorithm

designed to meet these requirements with simple shift and

addition operations. CORDIC algorithm has been adapted

into a variety of applications like the 8087 math coprocessor,

the HP-35 calculator, radar signal processors and robotics. It

is also useful in computing Discrete Fourier, Discrete Cosine,

Singular Value Decomposition, matrix inversion and solving

linear systems.

This paper implements a floating point CORDIC

coprocessor that can be used for the computation of

trigonometric, linear, hyperbolic functions and other

transcendental functions like square roots and

exponentiations. The inputs to the system are 64 bit and are in

IEEE 754 double precision floating point format. It is

internally converted to 128 bit fixed point format. The result

is reconverted into 64 bit floating point format after the

CORDIC iterations.

Fig. 1.

Design Architecture

Fig. 2.

II.

DESIGN

ARCHITECTURE

The architecture for the coprocessor is as shown in Fig. 1.

It consists of a preprocessor, the CORDIC, postprocessor and

processor interface modules. The design is interfaced with a

DSP processor.

A.

Preprocessor

The preprocessor converts the floating point inputs from

the processor into fixed point representation. The inputs

follow the IEEE 754 double precision standardized format.

This 64 bit representation is internally converted into 128 bit

fixed representation to counter the loss of precision that occurs

as a result of CORDIC iterations. This module also generates

a 6 bit operation code or opcode based on the input from the

processor to control the operation of the CORDIC module.

B.

CORDIC

CORDIC algorithm is based on ancient geometric

principles wherein all trigonometric functions can be

computed through a series of vector rotations. The CORDIC

rotator has two modes of operation: the rotation mode and the

vectoring mode. In the rotation mode, the vector is rotated

through a specified angle. The angle accumulator is

initialized with the required angle and vector is rotated

through fixed angles until the desired angle is obtained. In the

vectoring mode, the input vector is rotated through whatever

angle is necessary to align the result vector with the x axis

[1].

The CORDIC algorithm was initially developed for the

circular coordinate system by Jack Volder [2]. Later on it was

extended to linear and hyperbolic systems [3]. The

generalized CORDIC algorithm can be written as:

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS091154

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

1266

xi+1 = xi - µdiyi2
-i
 (1)

yi+1 = yi + dixi2
-i
 (2)

zi+1 = zi – di ei (3)

where µ=1 and ei=tan
-1

(2
-i
) for circular system, µ=0 and ei=2

-i

for linear system and µ= -1 and ei=tanh
-1

(2
-i
) for hyperbolic

system [4].

 In this design, the CORDIC module operates on the 128

bit inputs from the preprocessor. The opcode generated by the

preprocessor determines whether the CORDIC operates in

circular, linear or hyperbolic modes and activates it

accordingly. It also determines whether the rotation or

vectoring mode is used.

 Normally serial shifters are used for shifting purposes.

This requires more than one clock cycle to complete a single

iteration of the CORDIC. Here barrel shifters are used which

ensure that an iteration requires only one clock cycle.

 This module implements 53 iterations of the CORDIC

equations. Circular, linear or hyperbolic iterations are chosen

according to the opcode and the corresponding lookup tables

are selected. Some functions like tan and tanh require

compound iterations. In the case of tan, iterations in circular

rotation mode are followed by iterations in linear vectoring

mode. State machines are used for control of the CORDIC

module. Fig. 2 shows the architecture followed for the

CORDIC module.

C. Postprocessor

 The postprocessor converts the results from the CORDIC

into 64 bit floating point format. The result obtained after

CORDIC iterations is 128 bits long. It is normalized and

rounded to the standardized format. Here rounding to the

nearest even scheme is used. The results are reconverted into

the sign, exponent, mantissa format as described by the IEEE

754 double precision format for floating point numbers [5],

[6].

D. Processor Interface

 The processor interface module acts as an interface

between the coprocessor and the processor. It also acts as a

control for the whole system. This module receives the data

inputs from the processor. Each of the data inputs are 64 bits.

The interface module also receives a 4 bit command from the

processor which specifies the function required to be

computed by the CORDIC. It operates by means of state

transitions.

III. VERIFICATION METHODOLOGY

The verification of the RTL design is done using the

golden model method. It uses three reference models for

validating the design: 1) The golden model 2) The algorithm

reference model and 3) The hardware equivalent model in

software.

A. The Golden Model

The golden model serves as the standard for comparing

the results of all the other models. It is implemented using the

standard built-in functions in C like sin, cos etc. All results

obtained are validated against the golden model.

B. The Algorithm Reference Model

In this model the CORDIC algorithm has been

implemented for decimal numbers. This model serves as a

study of the algorithm. It was developed in different stages.

First, the algorithm was implemented for circular system in

the rotation mode. This was followed by the implementation

of the circular system in vectoring mode. This was followed

by the implementation of the algorithm for linear and

hyperbolic systems in a similar manner. Double iterations of

the hyperbolic system were used to achieve convergence.

C. The Hardware Equivalent Model

This model works on binary numbers. The GCC tool was

used to implement this. The model used the pre and post

processors for conversion of floating point numbers in

decimal to fixed numbers in binary and vice versa.

All the above models were implemented in C.

IV. SIMULATION RESULTS

Fig. 3 shows the simulation result for the integrated

module. Initially, the processor interface accepts the inputs

from the processor. Once all the inputs are available, the

other modules are activated one after the other at the right

times. In the figure, the data inputs provided are

data1=3fe0c15237db38a0 and data2=0000000000000000

and cmd=0000 for sine and cosine computation. The final

results are done=1, result= 3febb67af83461c2 for cosine and

result2= 3fe0000008a68cc2 for sine.

Fig. 3. CORDIC Architecture

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS091154

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

1267

Fig. 4.

Simulation Result

V.

CONCCLUSION

A CORDIC coprocessor has been designed which accepts

64 bit floating point inputs. These inputs are internally

converted into 128 bit fixed point representation. The

CORDIC iterations are performed in circular, linear or

hyperbolic case for rotation or vectoring modes based on the

requirement and the results are reconverted to floating point

format. The

RTL diagram of the design is shown in Fig. 4.

Currently

the design

works for inputs between -90
0

to

+90
0
. As a future work, it is planned to extend this

range so

that it works for any angle. Redundant arithmetic can also be

used for CORDIC implementation. This can help to improve

the range

further. Normally radix 2 is used. Implementation

using higher radices can also be attempted.

Fig. 5.

RTL diagram

REFERENCES

[1]

Ray Andraka, "A Survey of CORDIC Algorithms for FPGA based
Computers", Andraka Consulting Group, Inc, North Kingstown,

RI02852, 2011.

[2]

J.E. Volder. "The CORDIC Trigonometric Computing Technique",
IRE Transactions on Electronic Computing, vol EC-8, pp

330-334,

Sept 1959.

[3]

J.S. Walther, "A Unified Algorithm for Elementary Functions", Proc.
Spring Joint Computers Conference, pp. 379-385, 1971.

[4]

Behrooz Parhami, Chapter 22, ―Computer Arithmetic: Algorithms and

Hardware Designs‖, 2nd edition, Oxford University Press, New York,
2010

[5]

Israel Koren, Chapter 4, ―Computer Arithmetic Algorithms‖ ,2nd

edition, A.K. Peters, Natick, MA, 2002

[6]

W. Kahan, ―Lecture notes on the Status of IEEE Standard 754 for

Binary Floating Point Arithmetic‖, October 1, 1997

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS091154

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 9, September- 2014

1268

