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Abstract— A floating point CORDIC coprocessor is designed 

which accepts inputs in the IEEE 754 double precision format. 

These are internally converted into 128 bit fixed point 

representation by a preprocessor. The CORDIC module 

operates in either the rotation or vectoring modes for circular, 

linear or hyperbolic systems to produce the result. The results 

after completion of the CORDIC iterations are reconverted into 

the IEEE 754 format by a postprocessor. Improved precision is 

obtained by the use of 128 bits during CORDIC iterations. This 

project has been implemented in Quartus II.  

 

Keywords— CORDIC, coprocessor, circular, linear, 

hyperbolic, IEEE 754 

 

I.  INTRODUCTION  
 

Microprocessors are fast for number-crunching but when it 

comes to computing trigonometric functions for navigation 

systems conventional architectures are not fast enough. Jack 

E. Volder introduced COordinate Rotation DIgital Computer 

or CORDIC algorithm in 1959 in order to compute these 

functions. It was later on extended by John Walther to 

include hyperbolic and transcendental functions. 

The CORDIC algorithm is a simple and efficient algorithm 

designed to meet these requirements with simple shift and 

addition operations. CORDIC algorithm has been adapted 

into a variety of applications like the 8087 math coprocessor, 

the HP-35 calculator, radar signal processors and robotics. It 

is also useful in computing Discrete Fourier, Discrete Cosine, 

Singular Value Decomposition, matrix inversion and solving 

linear systems.  

This paper implements a floating point CORDIC 

coprocessor that can be used for the computation of 

trigonometric, linear, hyperbolic functions and other 

transcendental functions like square roots and 

exponentiations. The inputs to the system are 64 bit and are in 

IEEE 754 double precision floating point format. It is 

internally converted to 128 bit fixed point format. The result 

is reconverted into 64 bit floating point format after the 

CORDIC iterations. 

 

 

Fig. 1.

 

Design Architecture

 

Fig. 2.

  

II.

 

DESIGN

 

ARCHITECTURE

 

 

The architecture for the coprocessor is as shown in Fig. 1. 

It consists of a preprocessor, the CORDIC, postprocessor and 

processor interface modules. The design is interfaced with a 

DSP processor.

 

A.

 

Preprocessor

 

The preprocessor converts the floating point inputs from 

the processor into fixed point representation. The inputs 

follow the IEEE 754 double precision standardized format. 

This 64 bit representation is internally converted into 128 bit 

fixed representation to counter the loss of precision that occurs 

as a result of CORDIC iterations. This module also generates 

a 6 bit operation code or opcode based on the input from the 

processor to control the operation of the CORDIC module.

 

B.

 

CORDIC

 

CORDIC algorithm is based on ancient geometric 

principles wherein all trigonometric functions can be 

computed through a series of vector rotations. The CORDIC 

rotator has two modes of operation: the rotation mode and the 

vectoring mode. In the rotation mode, the vector is rotated 

through a specified angle. The angle accumulator is 

initialized with the required angle and vector is rotated 

through fixed angles until the desired angle is obtained. In the 

vectoring mode, the input vector is rotated through whatever 

angle is necessary to align the result vector with the x axis

 

[1]. 

 

The CORDIC algorithm was initially developed for the 

circular coordinate system by Jack Volder [2]. Later on it was 

extended to linear and hyperbolic systems [3]. The 

generalized CORDIC algorithm can be written as:
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xi+1 = xi - µdiyi2
-i
     (1) 

yi+1 = yi + dixi2
-i
    (2) 

zi+1 = zi – di ei   (3) 

 

where µ=1 and ei=tan
-1

(2
-i
) for circular system, µ=0 and ei=2

-i
 

for linear system and µ= -1 and ei=tanh
-1

(2
-i
) for hyperbolic 

system [4]. 

 In this design, the CORDIC module operates on the 128 

bit inputs from the preprocessor. The opcode generated by the 

preprocessor determines whether the CORDIC operates in 

circular, linear or hyperbolic modes and activates it 

accordingly. It also determines whether the rotation or 

vectoring mode is used.  

 Normally serial shifters are used for shifting purposes. 

This requires more than one clock cycle to complete a single 

iteration of the CORDIC. Here barrel shifters are used which 

ensure that an iteration requires only one clock cycle.  

 This module implements 53 iterations of the CORDIC 

equations. Circular, linear or hyperbolic iterations are chosen 

according to the opcode and the corresponding lookup tables 

are selected. Some functions like tan and tanh require 

compound iterations. In the case of tan, iterations in circular 

rotation mode are followed by iterations in linear vectoring 

mode. State machines are used for control of the CORDIC 

module. Fig. 2 shows the architecture followed for the 

CORDIC module. 

C. Postprocessor   

 The postprocessor converts the results from the CORDIC 

into 64 bit floating point format. The result obtained after 

CORDIC iterations is 128 bits long. It is normalized and 

rounded to the standardized format. Here rounding to the 

nearest even scheme is used. The results are reconverted into 

the sign, exponent, mantissa format as described by the IEEE 

754 double precision format for floating point numbers [5], 

[6].  

D. Processor Interface  

 The processor interface module acts as an interface 

between the coprocessor and the processor. It also acts as a 

control for the whole system. This module receives the data 

inputs from the processor. Each of the data inputs are 64 bits. 

The interface module also receives a 4 bit command from the 

processor which specifies the function required to be 

computed by the CORDIC. It operates by means of state 

transitions. 

 

III. VERIFICATION METHODOLOGY       
 

The verification of the RTL design is done using the 

golden model method. It uses three reference models for 

validating the design: 1) The golden model 2) The algorithm 

reference model and 3) The hardware equivalent model in 

software.  

A. The Golden Model 

The golden model serves as the standard for comparing 

the results of all the other models. It is implemented using the 

standard built-in functions in C like sin, cos etc. All results 

obtained are validated against the golden model. 

B. The Algorithm Reference Model 

In this model the CORDIC algorithm has been 

implemented for decimal numbers. This model serves as a 

study of the algorithm. It was developed in different stages. 

First, the algorithm was implemented for circular system in 

the rotation mode. This was followed by the implementation 

of the circular system in vectoring mode. This was followed 

by the implementation of the algorithm for linear and 

hyperbolic systems in a similar manner. Double iterations of 

the hyperbolic system were used to achieve convergence. 

C. The Hardware Equivalent Model 

This model works on binary numbers. The GCC tool was 

used to implement this. The model used the pre and post 

processors for conversion of floating point numbers in 

decimal to fixed numbers in binary and vice versa.  

 

All the above models were implemented in C.  

 

IV. SIMULATION  RESULTS 
 

Fig. 3 shows the simulation result for the integrated 

module. Initially, the processor interface accepts the inputs 

from the processor. Once all the inputs are available, the 

other modules are activated one after the other at the right 

times. In the figure, the data inputs provided are 

data1=3fe0c15237db38a0 and data2=0000000000000000 

and cmd=0000 for sine and cosine computation. The final 

results are done=1, result= 3febb67af83461c2 for cosine and 

result2= 3fe0000008a68cc2 for sine. 

   

 

 
Fig. 3. CORDIC Architecture 
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Fig. 4.

 

Simulation Result

 

V.

 

CONCCLUSION

 

 

A CORDIC coprocessor has been designed which accepts 

64 bit floating point inputs. These inputs are internally 

converted into 128 bit fixed point representation. The 

CORDIC iterations are performed in circular, linear or 

hyperbolic case for rotation or vectoring modes based on the 

requirement and the results are reconverted to floating point 

format. The

 

RTL diagram of the design is shown in Fig. 4. 

 

Currently

 

the design

 

works for inputs between -90
0

 

to 

+90
0
. As a future work, it is planned to extend this

 

range so 

that it works for any angle. Redundant arithmetic can also be 

used for CORDIC implementation. This can help to improve 

the range

 

further. Normally radix 2 is used. Implementation 

using higher radices can also be attempted.

  

 

 

Fig. 5.

 

RTL diagram 
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