
A vital analysis on Integrating Security in

Embedded Systems

Vivek Purohit
Electronics and communication

B Tech Final Year

Shrinathji Institute of Technology and Engineering

Nathdwara, Rajsamand

vivekpurohit@hotmail.com

Garima Kothari
 Electronics and communication

Assistant Professor

Shrinathji Institute of Technology and Engineering

Nathdwara, Rajsamand

kothari.garima@gmail.com

Abstract—In this new era, incorporating security in embedded

system had become a major concern. Therefore, there is a need

to design and develop such techniques, so that it can

countermeasure for attacks. In this paper various security

requirements, attack techniques and countermeasures for such

attacks have been surveyed and reviewed.

Index Terms—embedded systems, security, virus, software,

attacks.

 Station Switching.

I. INTRODUCTION

In this modern world, use of embedded systems in various

applications has implacable importance of secure and fault

tolerant system. Therefore, it is necessary for embedded

devices to secure delicate information, ensuring availability

and providing secure communication system. Reliability is

directly related with security in embedded systems thus a

system which is not secured is also an unreliable system.

Basically security emerged as an issue related to networks

and cryptography and embedded system designers consider it

as an additional feature. Growing number of security laws has

dictated that compromise on security can lead to disastrous

consequences. Embedded systems are a mixture of Software

and Hardware. So, in order to make a secure and reliable

system, it is necessary that both components are made secure.

.

II. SECURITY REQUIREMENTS IN EMBEDDED

SYSTEMS

The main feature of embedded system for which it is mainly

deployed for is to access and process sensitive data and to

provide vital functionality. For instance, let us assume that an

embedded system has been implanted in a heart patient to

monitor heartbeat, blood pressure and sugar level of that

person. When it finds any deviation in blood pressure or sugar

level, it transmits an alarm signal to doctor and when it found

that heart beat is beyond a certain limit, it generates a mild

shock to save life of that person. In this example, it is very

obvious that system should be available twenty four hours a

day and seven days a week. It is also important that when

communicating with doctor, it should ensure privacy of

patient. In general, an embedded system must ensure

dependability, confidentiality, integrity and availability to

consider as secure system. The basic security requirements of

an embedded system are as follows:

Confidentiality- In order to ensure that sensitive information

is protected against intended or accidental disclosure.

Integrity- In order to ensure that sensitive information is

protected against intended or accidental corruption of data.

Availability-To make the device available to protect against

intended or accidental actions that can cause automated

information data to be unavailable to user when needed.

Dependability- Embedded systems often reside in Machines

deploying embedded systems are expected to run continuously

for years without any errors/faults and in some cases they are

also require to recover by themselves if there is an error. Thus

an embedded system should be dependable. Dependability is

combination of:

 Fault-Avoidance-Developing a mechanism to avoid

fault situation to occur. This is completed in

designing

phase.

 Fault-Tolerance- System should be required to work

in normal condition even when a fault situation

arises. This is completed through redundancy.

 Fault-Removal- During verification phase, it is

ensured that system is error free.

III. CHALLENGES IN SECURE SOFTWARE

DEVELOPMENT

There are many factors which can influence the sensitivity and

availability of system administrative controls, physical

barriers, being few of them, Whereas integrity of the computer

system depends on the degree to which vulnerabilities have

been eliminated from the system. With the requirements,

discussed earlier, embedded system are also required to face

threats like denial of service attacks, system tempering etc.

which becomes more complex in presence of advanced

techniques for breaking security, such as power analysis and

fault analysis. Although Software solutions are sufficient to

meet with with the computational demands of security

processing in embedded system but they are more prone to

security vulnerabilities. There are three main factors which

make development of secure software a challenge i.e.

Complexity, Extensibility and Connectivity. Let us examine

each of these issues in brief. Complexity- Although Basics

remain same but technology changes every two days, With

this, software’s are becoming more and more advanced. With

each new line of code, new bugs and security risks are

introduced in software. The complexity exacarbate when

172

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCETECE`14 Conference Proceedings

ISSN: 2278-0181

unsafe programming languages (e.g., C or C++) are used,

which are not able to protect against simple kind of attacks,

such as buffer overflows.

Extensibility- Even platforms developed like .Net and Java

are mainly to provide extensibility. Embedded system now

can get updates or extensions from internet for example new

cell phones by Sony Ericsson accept BIOS update through

internet. Unfortunately, this nature of extensible systems

makes it hard for software to prevent vulnerabilities from

slipping in as an unwanted extension.

Connectivity- Nowadays modern embedded systems are

coming with built in connectivity with internet. Because of

this internet connectivity This internet connectivity a small

problem can propagate and result in substantial security

breaches, which also means that any attacker does not require

a physical access to embedded system to launch attack and

exploit vulnerable software.

IV. ATTACKS ON EMBEDDED SYSTEMS

Basically attacks on embedded systems can be classified in

three categories i.e. software attacks, physical attacks and side

channel attacks. Software attacks having largest share in total

number of attacks on embedded systems and thus it are very

difficult to protect against such attacks. Here we will discuss

on software attacks and countermeasure against these attacks.

 Figure 1 Embedded System attacks

Physical Attacks- Embedded system are divided in two

categories:

1. System on circuit board

2. System-on-chip

On circuit board embedded systems, attacks can be launched

by probe to eavesdrop on inter-component communications.

Whereas when launching attack on system-on-chip, micro-

probing techniques are required. Physical attacks are relatively

difficult because they require expensive infrastructure and

very complex techniques are used. Microcontroller is the most

important part of any embedded system as it controls all the

operation of embedded system. The attacks on the

microcontroller can be possible via JTAG, it is necessary to

disable access to the microcontroller’s internals via JTAG

before fielding the finished product

Side Channel Attacks- Side channel attacks depends on

observing system properties e.g. time, power consumption

while system is performing computations e.g. cryptographic

operations. In certain embedded systems timing information

can lead secret key, though timing information can give very

little information but it has found that with proper study of

timing sequence entire secret key can be found. Besides this

power consumption can also lead to the entire secret key, well

equipped labs have the equipment that can measure the

changes in the power consumption with about 1% accuracy

and are very less expensive. To avoid timing attacks one can

add random timing delays to various operations, similarly we

can overcome power consumption attacks by adding random

noise or by proper shielding of the equipment but it can lead

to increased cost of the equipment.

Software Attacks- Software attacks are the most common

attacks in embedded systems. When compared with physical

and side channel attacks, software attacks are very cheap and

does not requires any big infrastructures thus making it an

challenge for embedded system design. These attacks could

further divided in three categories 1. Virus attacks 2. Buffer

Overflow and 3. Exploiting Software Vulnerabilities.

1. Virus, Worm and Trojan- These attacks are

executed through malicious agents like

Virus, worm, Trojan.

2. Vulnerability Exploitation- A vulnerability allows

the attacker to gain direct access to the end-system,

while an exposure is an entry point that an attacker

may indirectly exploit to gain access. The latest list

of vulnerability as published by CERT is as follows:

 Table 1: List of vulnerabilities as published by CERT

Vulnerability

 ID

Description

VU#298521
Sonic Wall Net Extender NELaunchCtrl

ActiveX

control stack buffer overflow

VU#446897 CUPS buffer overflow vulnerability

VU#180345
Microsoft Kodak Image Viewer code

execution

Vulnerability

VU#342793 RSA Keon cross-site scripting vulnerabilities

VU#871673
RealPlayer playlist name stack buffer

overflow

VU#559977
Mozilla products vulnerable to memory

corruption in
the browser engine

VU#755513
Mozilla products vulnerable to memory

corruption in

the JavaScript engine

Embedded System Attacks

Integrity attack Privacy Attacks Availability

attacks

Fault

Injection

Timing

Analysis

Power

Analysis

Buffer

overflow

Trojan

Horse

virus
dropping

Micro

Probbing

173

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCETECE`14 Conference Proceedings

ISSN: 2278-0181

3. Buffer Overflow- Buffer overflow is the inability of

the buffer to store the information, which results in

adding more information to a buffer than it was

designed to hold. An intruder may exploit this

vulnerability to take over a system. This situation

arises when buffer is used with poor boundary

checks. Buffer bounds may be violated due to

incorrect loop bounds, format string attacks, etc.

Buffer overflow effects can include overwriting stack

memory, heaps, and function pointers.

V. MEASURES TO COPE UP WITH SOFTWARE ATTACKS

The first thing kept in mind while designing countermeasures

against software attacks is confidentiality and integrity of data.

The most advanced feature of these countermeasures involves

governing the accesses of various software components to

different portions of the system during different phases of

execution, through a combination of hardware and software

changes. Since an effective countermeasure must allow the

system to provide guarantees about the security of the system

starting from the powered-on state, most measures define

notions of trust or trust boundaries across the various

hardware and software resources. This allows the system to

detect violation of trust boundaries and deploys recovery

mechanisms. Thus, a trust boundary provides a convenient

foundation for the system to make efficient decisions about its

security.

Hardware Support- At hardware level security is basically

implemented by using secure co-processor module. This

processor processes confidential information. Information that

needs to be send out of the co-processor is encrypted. Many

embedded system also have secure memory areas. These

secure memory areas are accessible to trusted system

components only.

Secure Bootstrapping- Integrity check could be implemented

at boot process level. After power is switched on, system

should only be able to access the next layer if all integrity

check found

intact. This can be done by comparing the securely saved

value

with hashed value of boot process component.

Operating System (OS) Enhancements- Secure Operating

Systems provides various features like process isolation,

process attestation and secure storage. Secure storage is

ensured by using of cryptographic file systems. . To ensure

that the software for embedded system meets security

requirements, it is important that security should be

implemented on various levels.

 Code and Algorithm Level-Static analysis tool

could be used to scan code to uncover common

vulnerabilities.

 Design and Architecture Level- System must be

coherent and present a unified security architecture that takes

into account security principles.

 Requirements Level- Security requirement should

cover functional security.

 Hardware Level Security-At hardware level,

security should be implemented on Micro-Architecture Level

and at Circuit Level.

 Micro Architecture Level- Incorporating security

at hardware design of the modules which is specified at the

architecture level

 Circuit Level- Implementing security at this level

means use of techniques at transistor level and package-level

to prevent various physical-layer attacks.

VI. CONCLUSION

The evolution of industrial systems is basically based on

embedded systems. With increasing interconnection with

other industries networks or even the Internet, together with a

continuously stronger reliance on open standards such as the

TCP/IP protocol suite, creates an increased exposure of

automation systems to network-based attacks. consequently,

information system security for industrial communication

systems is growing in importance. In this paper, we have

briefly examined security requirements and challenges in

development of embedded systems. We have also examined

how an embedded system can be attacked and their counter

measures are also examined.

REFERENCES

[1] LAPRIE, J.C. Dependable computing and fault tolerance: concepts and
terminology. In Proceedings of the 15th IEEE Symposium on Fault

Tolerant Computing Systems (FTCS-15, June 1985). IEEE Computer

Society Press, Los Alamitos, CA, 2-11.

[2] Srivaths Ravi , Anand Raghunathan , Srimat Chakradhar, Tamper

Resistance Mechanisms for Secure, Embedded Systems, Proceedings

of the 17th International Conference on VLSI Design, p.605, January
05-09, 2004

[3] Common Vulnerabilities and Exposures. Available at cve.mitre.org

[4] Latest Virus Threats. Symantec Corporation. Available at

http://www.symantec.com/avcenter/vinfodb.html

[5] Virus Information. Computer Security Resource Center, National

Institute of Standards and Technology. Available at

http://csrc.nist.gov/virus/

Vulnerability notes database. CERT coordination center Available at

http://www.kb.cert.org/vuls/

[6] M. Howard and D. LeBlanc. Writing Secure Code. Microsoft Press,

2001.

174

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCETECE`14 Conference Proceedings

ISSN: 2278-0181

