International Journal of Engineering Research & Technology (IJERT)
NCETECE 14 Conference Proceedings
ISSN: 2278-0181

A vital analysis on Integrating Security In
Embedded Systems

Vivek Purohit
Electronics and communication
B Tech Final Year
Shrinathji Institute of Technology and Engineering
Nathdwara, Rajsamand
vivekpurohit@hotmail.com

Abstract—In this new era, incorporating security in embedded
system had become a major concern. Therefore, there is a need
to design and develop such techniques, so that it can
countermeasure for attacks. In this paper various security
requirements, attack techniques and countermeasures for such
attacks have been surveyed and reviewed.

Index Terms—embedded systems, security, virus, software,
attacks.
Station Switching.

I. INTRODUCTION

In this modern world, use of embedded systems in various
applications has implacable importance of secure and fault

tolerant system. Therefore, it is necessary for embedded
devices to secure delicate information, ensuring availability
and providing secure communication system. Reliability is
directly related with security in embedded systems thus a
system which is not secured is also an unreliable system.
Basically security emerged as an issue related to networks
and cryptography and embedded system designers consider it
as an additional feature. Growing number of security laws has
dictated that compromise on security can lead to disastrous
consequences. Embedded systems are a mixture of Software
and Hardware. So, in order to make a secure and reliable
system, it is necessary that both components are made secure.

I1. SECURITY REQUIREMENTS IN EMBEDDED
SYSTEMS

The main feature of embedded system for which it is mainly
deployed for is to access and process sensitive data and to
provide vital functionality. For instance, let us assume that an
embedded system has been implanted in a heart patient to
monitor heartbeat, blood pressure and sugar level of that
person. When it finds any deviation in blood pressure or sugar
level, it transmits an alarm signal to doctor and when it found
that heart beat is beyond a certain limit, it generates a mild
shock to save life of that person. In this example, it is very
obvious that system should be available twenty four hours a
day and seven days a week. It is also important that when
communicating with doctor, it should ensure privacy of
patient. In general, an embedded system must ensure
dependability, confidentiality, integrity and availability to
consider as secure system. The basic security requirements of
an embedded system are as follows:

Garima Kothari
Electronics and communication
Assistant Professor
Shrinathji Institute of Technology and Engineering
Nathdwara, Rajsamand
kothari.garima@gmail.com

Confidentiality- In order to ensure that sensitive information
is protected against intended or accidental disclosure.
Integrity- In order to ensure that sensitive information is
protected against intended or accidental corruption of data.
Availability-To make the device available to protect against
intended or accidental actions that can cause automated
information data to be unavailable to user when needed.
Dependability- Embedded systems often reside in Machines
deploying embedded systems are expected to run continuously
for years without any errors/faults and in some cases they are
also require to recover by themselves if there is an error. Thus
an‘embedded system should be dependable. Dependability is
combination of:

o Fault-Avoidance-Developing a mechanism to avoid
fault situation to occur. This is completed in
designing
phase.

e Fault-Tolerance- System should be required to work
in normal condition even when a fault situation
arises. This is completed through redundancy.

o Fault-Removal- During verification phase, it is
ensured that system is error free.

I11. CHALLENGES IN SECURE SOFTWARE
DEVELOPMENT

There are many factors which can influence the sensitivity and
availability of system administrative controls, physical
barriers, being few of them, Whereas integrity of the computer
system depends on the degree to which vulnerabilities have
been eliminated from the system. With the requirements,
discussed earlier, embedded system are also required to face
threats like denial of service attacks, system tempering etc.
which becomes more complex in presence of advanced
techniques for breaking security, such as power analysis and
fault analysis. Although Software solutions are sufficient to
meet with with the computational demands of security
processing in embedded system but they are more prone to
security vulnerabilities. There are three main factors which
make development of secure software a challenge i.e.
Complexity, Extensibility and Connectivity. Let us examine
each of these issues in brief. Complexity- Although Basics
remain same but technology changes every two days, With
this, software’s are becoming more and more advanced. With
each new line of code, new bugs and security risks are
introduced in software. The complexity exacarbate when

www.ijert.org

172



unsafe programming languages (e.g., C or C++) are used,
which are not able to protect against simple kind of attacks,
such as buffer overflows.

Extensibility- Even platforms developed like .Net and Java
are mainly to provide extensibility. Embedded system now
can get updates or extensions from internet for example new
cell phones by Sony Ericsson accept BIOS update through
internet. Unfortunately, this nature of extensible systems
makes it hard for software to prevent wvulnerabilities from
slipping in as an unwanted extension.

Connectivity- Nowadays modern embedded systems are
coming with built in connectivity with internet. Because of
this internet connectivity This internet connectivity a small
problem can propagate and result in substantial security
breaches, which also means that any attacker does not require
a physical access to embedded system to launch attack and
exploit vulnerable software.

IV. ATTACKS ON EMBEDDED SYSTEMS

Basically attacks on embedded systems can be classified in
three categories i.e. software attacks, physical attacks and side
channel attacks. Software attacks having largest share in total
number of attacks on embedded systems and thus it are very
difficult to protect against such attacks. Here we will discuss
on software attacks and countermeasure against these attacks.

Embedded System Attacks

g

Trojan
Horse

Buffer
overflow

dropping

Power
Analysis

Timing
Analysis

Fault
Injection

Figure 1 Embedded System attacks

Micro
Probbing

Physical Attacks- Embedded system are divided in two
categories:

1. System on circuit board

2. System-on-chip

On circuit board embedded systems, attacks can be launched
by probe to eavesdrop on inter-component communications.
Whereas when launching attack on system-on-chip, micro-
probing techniques are required. Physical attacks are relatively

! !

International Journal of Engineering Research & Technology (IJERT)
NCETECE 14 Conference Proceedings
ISSN: 2278-0181

difficult because they require expensive infrastructure and
very complex techniques are used. Microcontroller is the most
important part of any embedded system as it controls all the
operation of embedded system. The attacks on the
microcontroller can be possible via JTAG, it is necessary to
disable access to the microcontroller’s internals via JTAG
before fielding the finished product
Side Channel Attacks- Side channel attacks depends on
observing system properties e.g. time, power consumption
while system is performing computations e.g. cryptographic
operations. In certain embedded systems timing information
can lead secret key, though timing information can give very
little information but it has found that with proper study of
timing sequence entire secret key can be found. Besides this
power consumption can also lead to the entire secret key, well
equipped labs have the equipment that can measure the
changes in the power consumption with about 1% accuracy
and are very less expensive. To avoid timing attacks one can
add random timing delays to various operations, similarly we
can overcome power consumption attacks by adding random
noise or by proper shielding of the equipment but it can lead
to increased cost of the equipment.
Software Attacks- Software attacks are the most common
attacks in embedded systems. When compared with physical
and side channel attacks, software attacks are very cheap and
does not requires any big infrastructures thus making it an
challenge for embedded system design. These attacks could
further divided in three categories 1. Virus attacks 2. Buffer
Overflow and 3. Exploiting Software Vulnerabilities.

1. Virus, Worm and Trojan- These attacks are
executed through malicious agents like
Virus, worm, Trojan.
Vulnerability Exploitation- A vulnerability allows
the attacker to gain direct access to the end-system,
while an exposure is an entry point that an attacker
may indirectly exploit to gain access. The latest list
of vulnerability as published by CERT is as follows:

Table 1: List of vulnerabilities as published by CERT

Vulnerability Description
ID
Sonic Wall Net Extender NELaunchCtrl
VU#298521 ActiveX
control stack buffer overflow
VU#446897 CUPS buffer overflow vulnerability
Microsoft Kodak Image Viewer code
VU#180345 execution
Vulnerability
VU#342793 RSA Keon cross-site scripting vulnerabilities
VU#871673 RealPlayer playlist name stack buffer
overflow
Mozilla products vulnerable to memory
VU#559977 corruption in
the browser engine
Mozilla products vulnerable to memory
VU#755513 corruption in
the JavaScript engine

www.ijert.org 173



International Journal of Engineering Research & Technology (IJERT)
NCETECE 14 Conference Proceedings
ISSN: 2278-0181

3. Buffer Overflow- Buffer overflow is the inability of
the buffer to store the information, which results in
adding more information to a buffer than it was
designed to hold. An intruder may exploit this
vulnerability to take over a system. This situation
arises when buffer is used with poor boundary
checks. Buffer bounds may be violated due to
incorrect loop bounds, format string attacks, etc.
Buffer overflow effects can include overwriting stack
memory, heaps, and function pointers.

V. MEASURES TO COPE UP WITH SOFTWARE ATTACKS

The first thing kept in mind while designing countermeasures
against software attacks is confidentiality and integrity of data.
The most advanced feature of these countermeasures involves
governing the accesses of various software components to
different portions of the system during different phases of
execution, through a combination of hardware and software
changes. Since an effective countermeasure must allow the
system to provide guarantees about the security of the system
starting from the powered-on state, most measures define
notions of trust or trust boundaries across the various
hardware and software resources. This allows the system to
detect violation of trust boundaries and deploys recovery
mechanisms. Thus, a trust boundary provides a convenient
foundation for the system to make efficient decisions about its
security.

Hardware Support- At hardware level security is basically
implemented by using secure co-processor module. This
processor processes confidential information. Information that
needs to be send out of the co-processor is encrypted. Many
embedded system also have secure memory areas. These
secure memory areas are accessible to trusted <system
components only.

Secure Bootstrapping- Integrity check could be implemented
at boot process level. After power is switched on, system
should only be able to access the next layer if all integrity
check found

intact. This can be done by comparing the securely saved
value

with hashed value of boot process component.

Operating System (OS) Enhancements- Secure Operating
Systems provides various features like process isolation,
process attestation and secure storage. Secure storage is
ensured by using of cryptographic file systems. . To ensure
that the software for embedded system meets security
requirements, it is important that security should be
implemented on various levels.

o Code and Algorithm Level-Static analysis tool
could be used to scan code to uncover common
vulnerabilities.

o Design and Architecture Level- System must be
coherent and present a unified security architecture that takes
into account security principles.

. Requirements Level- Security requirement should
cover functional security.

. Hardware Level Security-At hardware level,
security should be implemented on Micro-Architecture Level
and at Circuit Level.

. Micro Architecture Level- Incorporating security
at hardware design of the modules which is specified at the
architecture level

. Circuit Level- Implementing security at this level
means use of techniques at transistor level and package-level
to prevent various physical-layer attacks.

V1. CONCLUSION

The evolution of industrial systems is basically based on
embedded systems. With increasing interconnection with
other industries networks or even the Internet, together with a
continuously stronger reliance on open standards such as the
TCP/IP protocol suite, creates an increased exposure of
automation systems to network-based attacks. consequently,
information system security for industrial communication
systems is growing in importance. In this paper, we have
briefly examined security requirements and challenges in
development of embedded systems. We have also examined
how an embedded system can be attacked and their counter
measures are also examined.

REFERENCES

[1] LAPRIE, J.C. Dependable computing and fault tolerance: concepts and
terminology. In Proceedings of the 15th IEEE Symposium on Fault
Tolerant Computing Systems (FTCS-15, June 1985). IEEE Computer
Society Press, Los Alamitos, CA, 2-11.

[2]. Srivaths Ravi , Anand Raghunathan , Srimat Chakradhar, Tamper
Resistance Mechanisms for Secure, Embedded Systems, Proceedings
of the 17th International Conference on VVLSI Design, p.605, January
05-09, 2004

[3] Common Vulnerabilities and Exposures. Available at cve.mitre.org

[4] Latest Virus Threats. Symantec Corporation. Available at
http://www.symantec.com/avcenter/vinfodb.html

[5] Virus Information. Computer Security Resource Center, National
Institute  of  Standards and  Technology. Available at
http://csrc.nist.gov/virus/

Vulnerability notes database. CERT coordination center Available at
http://www.kb.cert.org/vuls/

[6] M. Howard and D. LeBlanc. Writing Secure Code. Microsoft Press,
2001.

www.ijert.org

174



