

Ritesh Sanjay Mahajan

Dept of Computer Science and Engineering

Sai Vidya Institute Of Technology

Rajanukunte Bengaluru 560060

ABSTRACT

Big data processing relies today on complex middleware

stacks, comprised of high-level languages, programming mod-

els, execution engines, and storage engines. Among these,

the execution engine is often built in-house, is tightly inte-

grated or even monolithic, and makes coarse assumptions

about the hardware. This limits how the future big data

processing systems will be able to respond to technologi-

cal advances and changes in user workloads. To advance

the state-of-the-art, we propose a vision for an open big

data execution engine. We identify four key requirements

and design a modular, task-based architecture to address

them. First, to address performance requirements, we envi-

sion the use of multi-layer parallelism, which enables the effi-

cient use of heterogeneous platforms (from GPUs to clouds).

Second, to address elasticity, we propose the use of online

provisioning and allocation of cloud-based resources, which

enables economically feasible processing of many big data

tasks. Third, to address predictability, we define a perfor-

mance envelope, which enables early decisions for selecting

and sizing execution platforms. Fourth, we characterize the

interaction between our execution engine architecture and

the other layers, to enable the efficient operation of the en-

tire big data processing stack. We further identify and an-

alyze eleven challenges in realizing our vision. Ultimately,

these challenges will inspire and motivate a new generation

of execution engines for big data processing.

Keywords

Large scale big data processing, Execution engine, Predictabil-

ity, Elasticity, High-performance

1. INTRODUCTION
Driven by the steadily increasing volumes of data from many
fields of science and society, ranging from biology to astron-
omy, and from social networks to finances, big data process-
ing is one of the immediate challenges of computing. Com-
plex analysis of big data is of interest for many companies

Raghava R Koushik

Dept of Computer Science and Engineering

 Sai Vidya Institute Of Technology

 Rajanukunte Bengaluru 560060

and fields, being an important source of both (increased)
revenue and scientific discovery [1, 2]. Timely analysis is as
important, making big data applications a new field of high-
performance computing (HPC) [3]. Although many big data
processing stacks already exist, they are monolithic, highly
integrated stacks. This lack of flexibility makes the reaction
time to changes in workloads and/or platforms unacceptably
high, especially for common users. To tackle this problem,
this work describes our vision for a big data processing stack
that is not monolithic.

Many of the companies that drive the data analytics busi-
ness are small and medium enterprises (SMEs), which fo-
cus mainly on the design and development of new models
and analysis tools. They typically1 process average-sized
datasets—100s of GBs to TBs of data—but cover a broader
range of algorithms and domains [5]. This dynamic mix of
data and computation makes it difficult to estimate the num-
ber and type of permanent resources to cover the request,
making dedicated supercomputers and/or clusters unfeasi-
ble, both time- and money-wise.

In contrast to dedicated infrastructure, on-demand access
to compute resources is much more attractive for these dy-
namic enterprises, allowing control over the type and num-
ber of resources to be used .Cloud computing has emerged
in the past few years as an IT paradigm in which the infras-
tructure, the platform, and even the software used by IT
operations are outsourced services; Infrastructure as a Ser-
vice (IaaS) clouds can lease compute and storage resources
to their users. Services can be used flexibly (i.e., when and
only for how long they are needed), and leased for prices
charged in small increments according to the actual usage.
Amazon, Microsoft, Google, and SalesForce are only four
examples out of more than one hundred commercial cloud
providers.

Commercial IaaS clouds offer a wide diversity of (virtual-

A View on Big Data Processing

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACCT-2015 Conference Proceedings

Volume 3, Issue 14

Special Issue - 2015

1

ized) resources, including CPUs of multiple generations and

number of cores, GPUs, and even more exotic architectures.
Combining these resources leads to an unprecedented mix of
parallelism (at multiple-layers) and heterogeneity, which
need to be addressed at both the application and the exe-

cution engine level .Moreover, systems that lease re-

sources from clouds hold the promise of efficiency by being
elastic, that is, by varying in scale over time. Therefore, for
big data processing systems to achieve good performance,
addressing multiple existing layers of parallelism (i.e., from
very fine to very coarse-grained) and dynamic scaling (i.e.,
on-demand increase of resources) are essential.

Currently, big data processing relies on users implementing
their applications in a high level programming model, mak-

ing implicit choices about the execution model to be used,
often hindering efficient resource usage. For example, when
using a MapReduce-like model, users implicitly assume a
specific way of dividing the application into homogeneous
tasks of predefined sizes, which are then mapped, sched-

uled, and executed according to a programming model pol-

icy. System elasticity or hardware heterogeneity and multi-

grain parallelism cannot be taken into account easily: in-

stead, a new programming model would have to be chosen,
and the development process restarted.

Achieving high performance is an important goal for SMEs.

Although SMEs may also value cost and other non-functional

attributes of their applications, these attributes may often

be seen as a trade-off in relationship with performance. For

example, an SME may aim to obtain the result of data pro-

cessing within a deadline, for a certain cost limit; this is

essentially a problem of high performance computing when

the deadlines are tight (e.g., when working for a contractor,

as many SMEs do) and when the cost model is simple (e.g.,

the per-hour charge of many commercial IaaS clouds). An

another example, an SME may strive for a measure of effi-

ciency expressed as the maximum amount of processing for

a given budget; again, this problem requires achieving high

performance.

We argue that, for SMEs, meeting the high performance re-

quirements of a large diversity of big data workloads can be

efficient only when the heterogeneity and layered parallelism

of modern computational systems (from GPUs to clouds), is

leveraged. Instead of addressing these quick-paced changes

in the resources mix we are currently using for each program-

ming/execution model, we envision a novel execution engine

that allows for a flexible match between the application and

the computational resources, without being directly bound

to a programming model. In this article, we focus on the de-

sign of this generic execution model, emphasizing its design

requirements

and restrictions, and discussing the main chal-

lenges to be addressed for its performance and compatibility

with the rest of the big data processing stack. Towards our

vision, we identify and expose the potential bottlenecks in

the design and prototype process of such a generic engine,

allowing the community to contribute to their solving.

Our main contribution is therefore threefold: (1) We pro-

pose a vision for an open, non-monolithic big data process-

ing architecture, suitable for SMEs. (2) We identify the key

requirements for designing such an architecture. (3) We enu-

merate the first key challenges (below fifteen of them) that

can and should be solved for this vision to become (closer

to) reality.

The remainder of this article is structured as follows. Sec-

tion 2 introduces the state-of-the-art in big data processing
stacks. Section 3 presents the design requirements and the
architecture of our execution engine, while Section 4 lists the
most important challenges to be solved when implementing it.
Section 5 concludes the article with a summary of our

findings and contributions.

2. BACKGROUND

In this section we introduce the general architecture of a big
data processing system and discuss the state-of-the-art, for
which we

identify high-level problems.

2.1 Big Data Processing Stack

Big data processing applications make use of increasingly
more complex ecosystems of middleware. Figure 1 depicts

the big data ecosystem, where systems-of-systems are all

similarly structured into a four-layer big-data processing

stack. This ecosystem is based on a variety of open-source

middleware, both commercial and freeware, of increasing

maturity but with widely different features and performance

characteristics. We discuss each of the four layers, in turn.

The High-Level Language allows non-expert programmers
to

express complex queries and general data-processing pro-

grams in a data manipulation language. A variety of lan-

guages exist, many derived from the SQL92 standard (e.g.,

Pig Latin) or domain-specific (e.g., Spark

for

multi-pass algorithms, especially common in machine learn-

ing). These languages are supported in the big data ecosys-

tem by compiling tools that

convert from these languages to

specific programming models.

The Programming Model is currently the central layer of the

big data stack. Although a variety of programming mod-

els exist, several, for example MapReduce, have started to

become more commonly used. Similarly to the case of gen-

eral programming languages, it is common for the choice

for a particular programming model to be made based on

perceived popularity, rather than features and proven per-

formance; for example, the use of

the MapReduce program-

ming model for graph processing has been shown to lead

to very poor performance in practice, when compared with

other data processing stacks, yet it is still widely used. Tools

can compile programs expressed in the programming model

to programs that can be executed on the available resources

by an execution engine.

The Execution Engine provides the automatic, reliable, effi-

cient use of computational resources to execute the jobs de-

rived from programs expressed in a particular programming

model; although more general execution engines may appear

soon, the current generation offers native support only for

one programming model. Numerous execution engines ex-

ist; for the MapReduce programming model, Hadoop and its

newer incarnation YARN are open-source, free-to-use execu-

tion engines. Depending on the characteristics and quality-

of-service requirements of the application, the execution en-

gine may require close interaction with a storage engine.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACCT-2015 Conference Proceedings

Volume 3, Issue 14

Special Issue - 2015

2

 High-level Language

FLUME BigQuery SQL Meteor JAQL Hive Pig Sawzall scope DryadlInQ

programe model

PACT Map Reduce model pregel data flow

execution engine
+*'

Flume Dremel Tera Azure
Engine service data
Engine

Tree Engine

S3 GFS Tera
Azure

data Data
Store Store

Nephele holoop Hadoop/ Griaph
Yarn

HDFS Voldemort

Plus Zookeeper ,CDN ,etc.

MPI/ Dryad
Erlang

storage

engine'

L cosmosFS
F
S

Figure 1: A view into the ecosystem of Big Data processing.

The Storage Engine provides hardware/software storage for
big data applications. It typically provides a common file-
system or key-value interface for storing data. The Hadoop
Distributed File System is a commonly used
storage engine in the MapReduce stack.

These fours layers are not the only ones appearing in a big
data processing stack. Necessarily, a resource substrate pro-
vides the actual resources (physical or virtualized). An-
other layer contains very diverse middleware, to provide
state management services (e.g., Zookeeper), content man-
agement, etc.

2.2 Problem: The Monolithic Approach

Despite the high diversity in the big data ecosystem, the
state-of-the-art in stack deployments is based on monolithic,
highly integrated stacks. Current programming models, which
may be the first to be fixed in a decision to install a new data
processing unit, include and implicitly hide all the details
regarding execution. Annotations could help, but a diverse
set of useful annotations and a comprehensive analysis of
the usefulness of existing annotations do not currently ex-
ist. The execution engine is typically deployed on a fixed
set of resources, can sometimes execute no more than a few
big data processing jobs concurrently, and can rarely coex-
ist with other execution engines in the same environment.
The storage engine exhibits similar issues to the execution
engine, although for large volumes data, instead of for rela-
tively small volumes of data and large amounts of computa-
tion per deployed compute unit.

The monolithic approach has democratized big data pro-
cessing, but at the expense of significant waste of compute
and storage capability. Understanding the performance of a
big data application, from the information exposed to the
programmer, is severely hindered by the aspects abstracted
away, such as the mapping and scheduling of applications to
resources, provisioning of needed resources (and their re-
lease), and the actual execution of the application.

To address these high-level problems that are inherent in
current big data stacks, we propose in the following section
a generic architecture that promises to address them at the
level of the execution engine. Our focus on the execution
engine is motivated by the variety of resources managed at
this level, including in particular heterogeneous compute el-
ements.

3.A GENERIC ARCHITECTURE FOR MANY-TASKS BIG

DATA PROCESSING
In this section we discuss the requirements and the design
of a generic execution engine for a many-tasks big data pro-
cessing.

3.1 Requirements

We envision big data processing stacks that exploit afford-
able computational capacity, flexible in scale and composi-
tion. Such a set of machines, either leased for short peri-
ods of time from a commercial IaaS cloud or even common
computers clustered together, is likely to be equipped with
multi-core processors and GPU-like accelerators of different
capabilities. Therefore, heterogeneity and a large variety of
parallelism and performance capability must be expected.

For such computational infrastructures, much poorer in com-
munication capacity and latency than high-end dedicated
supercomputers, intensive data communication between com-
putation tasks will greatly reduce performance. To avoid
this bottleneck, data processing applications should be par-
titioned into bags of many loosely-coupled or even indepen-
dent tasks. Providing these tasks to the execution engine
allows it to take into account both the available resources
and the performance requirements to provide an efficient,
high-performance execution of the workload.

To design a generic architecture for a performance-aware
execution engine with access to different kinds of computa-
tional resources, we identify four driving requirements:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACCT-2015 Conference Proceedings

Volume 3, Issue 14

Special Issue - 2015

3

an inter-operated system. Thirdly, by considering both the
tasks and the resources in the “ Prediction and classification”
component, this architecture makes provisions for advanced
prediction and classification mechanisms, and in particular
for mechanisms supporting true resource heterogeneity (that
is, from GPUs to clouds). Because applications can behave
very differently on CPUs and GPUs, adequate mechanisms
can offer important opportunities for improvement. By clas-
sifying tasks, this component also makes provisions for self-
tuning mechanisms, relieving the na¨’ive user from one of the
burdensome tasks but without necessarily sacrificing per-
formance. Fourthly, the provisioning mechanism can ex-
tend the functionality of popular Execution Engines, such as
Hadoop’s, with the ability to use an elastic set of resources;
for example, it could enable the resource substrate to in-
crease with resources leased from commercial IaaS clouds
only when needed and for as long needed. These transient

resources offer new opportunities for efficient execution
mechanisms.

Our architecture addresses the requirements as follows:

• High Performance requirements (addressed in Section 4.2)
Figure 2: A generic architecture for many -task big-
data applications.

1. High Performance : the robust exploitation of the in-
herent multi-layered parallelism of today’s heteroge-
neous computational infrastructures must be leveraged
this requirement also enables higher-level
trade-offs that may appear in the operation of an SME,
such as performance-cost or performance-accuracy.

2. Elasticity : the elastic (up- and down-scaling) yet ef-
ficient provisioning and allocation of resources for a
variety of workloads must be enabled.

3. Predictability : the performance envelope of a given
computational capacity, subject to different data sets,
algorithms, and processing stacks, should be
estimated.

4. Compatibility : the integration of the execution engine
with the high level programming model and the storage
system must be provided.

3.2 Architecture
To address the four major requirements formulated earlier,
we have designed a generic big-data processing architecture
depicted in Figure 2. Responding to requirements, our archi-
tecture assumes that data-processing applications can fulfill
the many-task paradigm: the architecture is designed to ex-
ecute many tasks with high throughput.

We will further focus on the Execution Engine, built with
four distinctive features. Firstly, this architecture decou-
ples the execution engine from the input constraints pro-
vided by the programming model (that is, tasks) and by
the resource substrate (that is, actual compute resources).
Secondly, by clearly exposing to the user, from the Exe-
cution Engine, a set of components and their interconnec-
tions, this architecture enables the design, tuning, and im-
plementation of each component, either in isolation or as

are fulfilled through the individual behavior and through
the interplay of several components, primarily Map-
ping and Scheduling, Provisioning, and Execution.

• Elasticity requirements (Section 4.2) are fulfilled through
the individual behavior and through the interplay of
Provisioning and Execution.

• Predictability requirements (Section 4.3) are fulfilled
through the individual behavior of Prediction and Clas-
sification, which takes decisions based on the available
resources and tasks to classify the tasks in terms of
resources.

• Compatibility requirements (Section 4.4) are addressed
by the interfaces offered by the Execution Engine: the
back-end of the programming model and the resource
specification.

4. OPEN CHALLENGES

In this section we discuss an open list of challenges that come
with the architecture proposed in Section 3. We see each of
this challenges as surmountable in the next decade.

4.1 Performance challenges

4.1.1 Parallel architectures and algorithms
Although a predominant consumer of computational resources,
big data processing is still in its early phases when it comes
to algorithms. Application-driven, the field proposes many
new algorithms, many currently as early prototypes. This
empirical, trial-and-error approach leads to a large sequen-
tial code base, still increasing at fast pace. With the high
parallelism required by all novel HPC architectures, this
code base currently goes through a process of systematic
and efficient, yet also cumbersome and application-specific
parallelization.

We argue that this a-priori process of sequential algorithm
development is redundant. As all big data processing is to
be done on parallel architectures, we believe the community
should focus instead on designing and implementing novel

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACCT-2015 Conference Proceedings

Volume 3, Issue 14

Special Issue - 2015

4

and efficient parallel algorithms, from the beginning. Ef-
fort should be put in classifying and characterizing big data
applications , simplifying paralleization and perfor-
mance analysis. Moreover, analysis and prediction models
are needed to understand the performance potential these al-
gorithms show for each class of parallel architectures. These
models should be designed, tuned, and validated early in the
algorithm development stages, when feedback and changes are
easier to address.

The process of designing and implementing new algorithms
is also facilitated by the advances in compiler technology,
but there are caveats. First, although techniques such as
autovectorization have improved significantly in the last few
years, they may still be limited to only a few application
classes. Second, parallelizing compilers tend to be very con-
servative with the transformations they apply, and therefore
very sensitive with respect to the input code. To tackle this
sensitivity, programmers may end up developing solutions
to trigger the right compiler behavior, thus targeting the
compiler’s idiosyncrasies rather then implementing efficient
parallel solutions for the required problem. Third, compilers
typically focus on improving the performance of the compu-
tation, while big data processing applications should prob-
ably focus more on addressing the irregular memory access
patterns in large data structures. Overall, although compil-
ers will continue to improve towards simplifying some of the
tasks needed for application parallelization, we believe that
the high demand for parallelism and performance requires
approaches with higher throughput. We argue that the most
efficient such approach must still focus first on building new
algorithms for massive parallel and distributed processing
on big data.

4.1.2 Heterogeneous platforms

Using the developments of Top500 2 in the last five years
as trend forecasters, heterogeneous, massive parallelism for
commodity (and cloud) machines is likely to continue, given
that many types of applications are able to prove them effec-
tive for data-intensive, irregular applications. To use
these platforms effectively, programmers need to address two
important issues: application and data decomposition. We
argue that solving these problems is essential for increas-
ing platform utilization and thus leveraging more perfor-
mance

We note that this approach is facilitated by the many task
programming model we have adopted, but still requires anal-
ysis and tools for mapping and scheduling suitable tasks to
suitable processes. Using the results of the performance eval-
uation/prediction, these tools can improve overall efficiency,
ultimately improving overall workload performance.

4.1.3 Programmablity by portability
The heterogeneous and dynamic nature of the computa-
tional infrastructure we are considering poses significant pro-
grammability challenges: tasks have to be able to run effi-
ciently on different types of archtiectures, from distributed
nodes to many-core CPUs and GPUs. Ideally, they should
also be ready to address new, exotic architectures that might

Selection
P1 P2 P1

Time

Figure 3: Selected policy over the lifetime of a sys -
tem with changing workload modes.

be incorporated in the near future (e.g., fused processors or
domain-specific processors).

Developing all these different versions of software is a huge
programmability challenge. As new workloads are being de-
signed and developed for new types of big data analysis, this
challenge needs to be addressed in a systematic way. There-
fore, defining and using portable programming models is the
key to solve this challenge efficiently. Portable versions of all
tasks are necessary to address both the elasticity and hetero-
geneity of the computational infrastructure. Implementing
them in languages like OpenCL or OpenACC will provide
a first level of functional portability, but more research is
required to achieve acceptable levels of performance porta-
bility.

4.2 Elasticity challenges

4.2.1 Performance and cost awareness under elasticity
In an elastic system, provisioning and allocation mechanisms
should ensure that system can elastically increase its set
of resources when overloaded and elastically decrease them
when underloaded. Elastic operations should not impact
the performance observed by or the cost incurred on system
users—performance and cost awareness, respectively. For
example, elastic MapReduce systems should not lose perfor-
mance when resizing, in particular when sharing resources
with other users. Recent work (i.e., and references within) has
proposed designs to facilitate the on-demand de-
ployment of elastic MapReduce clusters in multi-cluster sys-
tems. However, extending these designs for general data pro-
cessing is non-trivial: programming models such as dataflow
(e.g., graph-processing Pregel, as implemented by Giraph)
have different task coupling and resource usage patterns,
possibly leading to different optimal performance and cost
awareness approaches.

4.2.2 Portfolio Scheduling

The schedulers of data processing systems may under-perform
when the operational characteristics for which they were de-
signed change: under unexpected workload arrivals, evolving
workload characteristics of single or multiple users, new plat-
form architectures, etc. Developing new scheduling policies
and mechanisms to address the change involves various risks

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACCT-2015 Conference Proceedings

Volume 3, Issue 14

Special Issue - 2015

5

and may only provide a temporary solution. To alleviate this
problem, we have introduced in previous work
a general scheduling approach for data center environments,
portfolio scheduling, under which a scheduling policy is se-
lected periodically from set of policies (a portfolio). For an
intuition to this process, consider a synthetic workload that
alternates two arrival patterns (Figure 3). For this favor-
able case, the portfolio scheduler adapts by selecting the
appropriate scheduling policy. We have shown that port-
folio schedulers generally outperform their constituent poli-
cies for compute-intensive many-task workloads. However,
the data-intensive workloads and workloads with inter-job
dependencies we consider in this work pose additional chal-
lenges, including different models of resource occupation and
sharing, scheduling with dependencies, scheduling data and
computation etc., all in a variable-sized set of resources.

4.2.3 Social awareness

The idea that social links between the users and between
the providers of resources in a (data) processing system may
influence the operation of the system dates from the early
1960s; for example, shared infrastructure generated off-line,
socially guaranteed agreements between users, regarding eq-
uitable usage hours. However, recent studies have identified
new forms of social influence on resource usage and sharing.
The use of data by large groups of scientists has been shown
to exhibit filecules, that is, sharing patterns for socially close
participants. Similarly, the use of computational re-sources
in grids can be partially explained through social
patterns A mid-2000s trend of sharing resources
based on socially guaranteed contracts led to many resources
being gifted, volunteered, or shared. An important challenge
is building mechanisms that exploit these social elements to
improve resource usage and sharing. The challenge due to
data sharing are non-trivial: data replication and transfers,
incentives to manage foreign data, privacy-preserving pro-
cessing of sensitive data; early studies have not yet
addressed many of them.

4.3 Predictability challenges
For elastic systems, dynamic scheduling and dynamic re-
source provisioning are mandatory. However, in order to
avoid overprovisioning and further resource wastage, under-
standing the performance of different workloads on different
types of platforms is mandatory. The key research challenge
here is to define a reliable methodology to predict a per-
formance envelope of a (tasks,dataset,platform) tuple. We
believe three important steps must be taken to advance the
state-of-the-art in this direction: modeling, matchmaking,
and benchmarking.

4.3.1 Modeling
We find an important challenge in creating realistic perfor-
mance envelopes for all major data processing stacks. We see
this as an important challenge, which should extend the
characterization of big data applications towards more general
models, where the performance envelope is a function of
application (algorithm), dataset, data processing stack, and
the (transient) resource substrate. To address this challenge,
both workload modeling and platform mod-
eling are necessary. Given the complexity of the analysis
algorithms, as well as the large scale and heterogeneity of

the platforms we use, none of these two challenges is getting
any easier.

However, three important choices should make these chal-
lenges feasible by limiting the search space. First, we limit
the modeling to data analytics applications, as we believe
these algorithms will share a common set of characteristics
that can be exploited to simplify modeling (e.g., they are
all data-intensive, traversal-based, low-computation). Sec-
ond, we include the dataset as part of the modeled work-
load, which should lower the abstraction level of the model.
Third, and final, we recommend high-level symbolic plat-
form models, calibrated using (micro-)benchmarking on real
hardware.

4.3.2 Matchmaking
When talking about models, matchmaking (or fitting) typ-
ically involves a combination of the workload and platform
models that allows one reason about the expected perfor-
mance. This prediction is very useful for dynamic schedul-
ing, resource allocation, and especially resource prediction.
Systematic and accurate matchmaking will avoid side effects
such as overprovisioning and/or resource wastage.

We belive that, despite the complexity of the platform and
workload models we expect to see, this matchmaking can be
tackled if multiple levels of complexity and accuracy can be
defined and accepted. As full modeling is likely to be too
detailed (and time-consuming) for the purpose of dynamic
scheduling and/or provisioning, it is the faster, higher level
solutions that will be preferred for on-line scheduling, and
the more accurate, detailed ones will be used for perfor-
mance analysis and thorough prediciton.

4.3.3 Benchmarking
In this context, benchmarking is required to calibrate and/or
validate the workload and platform models. We recognize
the significant lack of benchmarking strategies and suites in
the filed of big data: although many early benchmarks have
appeared for big data processing, many of them fo-
cused on the MapReduce programming model, and are lim-
ited with respect to the data flow diversity: data dependen-
cies intra-query and intra-/inter-job, and large variations in
the amount of the data transferred between tasks in the pro-
cessing workflow.

For big data processing, we identify as a major challenge the
formulation of realistic, cost- and time-effective, fair bench-
marking suites Similarly to the approach taken by
TPC, such benchmarks should focus on broad application
domains, such as graph-processing or time-based an-
alytics

We note that the benchmarking results can be used for de-
signing or calibrating realistic, yet tunable models of work-
loads with important contributions in modeling and
generation of large datasets and abstract workload
modeling (e.g., statistical analysis on multi-workload data
archives.

4.4 Compatibility / Interfacing Challenges
By decoupling the execution engine, we have been able to
dive into its components and analyze the improvements that

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACCT-2015 Conference Proceedings

Volume 3, Issue 14

Special Issue - 2015

6

can be made for performance gain. However, the same
” extraction” of this engine from the monolithic stucture
of the data processing stack has posed an additonal
challenge: clear specifications for interfacing with the rest
of the ar-
chitecture are now needed. We focus here on two of these
specifications: the ” north” interface, which relates to the
task-based application specification, and the ” south ”
inter-
face, which relates to the storage system.

4.4.1 Interfacing with the application

Our model assumes that the application is eventually speci-
fied as a large collection of tasks. Ideally, they should be in-
dependent. The more dependent (i.e., tightly coupled) they
are, the most difficult it becomes to specify their interaction.

Essentially, this interface requires matching the back-end of
the high level programming model with the front-end of the
execution engine. To insure this match is done by con-
struction (i.e., to avoid yet another intermediate layer for
transposition), more fundamental research is requried into
task specification, characterization, and classification. Ul-
timately, this will also affect the design of high level pro-
gramming models, but this remains beyond the scope of this
work.

4.4.2 Storage management

For an application to be described as a collection of tasks,
the entire workload (i.e., algorithm and data) needs to be
decomposed. While the ” migration” of the computation
de-
pending on the available resources is the responsibility of the
execution engine, the similar migration of the data requires
interacting with the storage system.

We believe there is much research to be put into optimiz-
ing this interaction for two reasons: (1) in elastic and dy-
namic systems, such migrations happen very often, and (2)
the expected heterogeneity of the platforms will force mi-
gration between different storage spaces, depending on the
source and destination. They key challenges to address here
are understanding the types of data migration and charac-
terizing the performance penalty each type infers. Based
on this classification, data migration rules can be enforced
on the interface between the execution and storage engines,
thus limiting the negative performance impact due to too
often/too expensive migrations.

5. CONCLUSION
Big data processing has been increasing in popularity for
the past five years. Smart and efficient data analytics be-
come important revenue sources for many small and medium
enterprises (SMEs), which have the expertise for interest-
ing analysis, but no resources to fund expensive infrastruc-
ture. We belive that despite relying on commodity hardware
and/or cloud services, high performance remains achievable
for these common scenarios, but it is currently hindered by
the monolithic nature of existing big data processing solu-
tions.

Thus, we proposed our vision of an open architecture for
big data processing, focusing on its execution engine, the
component with the highest performance impact. Our con-
tributions are threefold: (1) describing a vision for an open,

non-monolithic big data processing architecture, (2) identi-
fying its main design requirements, and (3) enumerating the
most important eleven challenges that need to be addressed to
transform this vision into a feasible solution.

Our own work addresses some of these challenges in more
detail. For example, for the performance challenges, we are
actively involved in designing and evaluating portable par-
allel programming models for multi- and many-core archi-
tectures as well as in addressing the impact of het-
erogeneity on performance We are also working on the
problem of predictability - especially on its modeling
and benchmarking components - in our work on large scale
graph processing on multiple platforms Finally, our
work on scheduling in large scale distributed environments
and clouds is addressing the elasticity challenges

All our research efforts in this directions are, of course, only
the tip of the iceberg, proving that solutions do exist for im-
proving the state-of-the-art, but much more needs to be done
to fully materialize our vision of an open big data processing
architecture, with a flexible, performance-aware execution
engine that will allow regular users (SMEs) to efficiently use
the resources available to them (off-the-shelf or from a cloud,
homogeneous or heterogeneous) to run their analytics.

Acknowledgment

The authors are grateful for the comments of the reviewers.
This publication is supported under the guidance of
 Sreelatha mam .
dept of computer science
Sai Vidya institute of Technology
(sreelatha.pk@saividya.ac.in)

6. REFERENCES

[1] V. R. Borkar and M. J. Carey, “ Big data technologies
circa 2012,” in COMAD, 2012, pp. 12-14.

[2] R. Ramakrishnan, “ Big data in 10 years,” in IPDPS,
2013, p. 887.

[3] V. R. Borkar, M. J. Carey, and C. Li, “ Big data
platforms: what’s next?” ACM Crossroads, vol. 19,
no. 1, pp. 44-49, 2012.

[4] Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup,
C. Martella, and T. L. Willke, “ How well do
graph-processing platforms perform? an empirical

performance evaluation and analysis: Extended
report,” Delft University of Technology, Tech. Rep.

PDS-2013-004, 2013. [Online]. Available:
http://www.pds.ewi.tudelft.nl/fileadmin/pds/reports/
2013/PDS-2013-004.pdf

[5] M. Stonebraker and J. Robertson, “ Big data is
’buzzword du jour;’ cs academics ’have the best job’,”

Commun. ACM, vol. 56, no. 9, pp. 10-11, 2013.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACCT-2015 Conference Proceedings

Volume 3, Issue 14

Special Issue - 2015

7

