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ABSTRACT 

Big   data   processing   relies   today   on   complex   middleware  

stacks, comprised of high-level languages, programming mod- 

els, execution engines, and storage engines.   Among these,  

the execution engine is often built in-house, is tightly inte- 

grated or even monolithic,   and makes coarse assumptions 

about the hardware.   This limits how the future big data 

processing systems   will   be   able   to   respond   to   technologi- 

cal advances and changes in user workloads.     To advance  

the   state-of-the-art,   we   propose   a   vision   for   an   open   big  

data execution engine.   We identify four key requirements  

and design a modular,   task-based architecture to address  

them. First, to address performance requirements, we envi- 

sion the use of multi-layer parallelism, which enables the effi- 

cient use of heterogeneous platforms (from GPUs to clouds).  

Second, to address elasticity, we propose the use of online  

provisioning and allocation of cloud-based resources, which  

enables economically feasible processing of many big data  

tasks.   Third, to address predictability, we define a perfor- 

mance envelope, which enables early decisions for selecting  

and sizing execution platforms. Fourth, we characterize the  

interaction between our execution engine architecture and  

the other layers, to enable the efficient operation of the en- 

tire big data processing stack.   We further identify and an- 

alyze eleven challenges in realizing our vision.   Ultimately,  

these challenges will inspire and motivate a new generation  

of execution engines for big data processing. 

Keywords 

Large scale big data processing, Execution engine, Predictabil- 

ity, Elasticity, High-performance 

1.    INTRODUCTION 
Driven by the steadily increasing volumes of data from many  
fields of science and society, ranging from biology to astron- 
omy, and from social networks to finances, big data process- 
ing is one of the immediate challenges of computing.   Com- 
plex analysis of big data is of interest for many companies 

 

 

Raghava R  Koushik

 

Dept of Computer Science and Engineering

 

          Sai Vidya Institute Of Technology

 

           Rajanukunte Bengaluru 560060

 

 

         

 
 
 

and fields,   being an important source of both (increased) 
revenue and scientific discovery [1, 2].   Timely analysis is as  
important, making big data applications a new field of high- 
performance computing (HPC) [3]. Although many big data  
processing stacks already exist, they are monolithic, highly  
integrated stacks. This lack of flexibility makes the reaction  
time to changes in workloads and/or platforms unacceptably  
high, especially for common users.   To tackle this problem,  
this work describes our vision for a big data processing stack  
that is not monolithic. 

Many of the companies that drive the data analytics busi- 
ness are small and medium enterprises (SMEs), which fo- 
cus mainly on the design and development of new models 
and   analysis   tools.    They   typically1    process   average-sized 
datasets—100s of GBs to TBs of data—but cover a broader 
range of algorithms and domains [5]. This dynamic mix of 
data and computation makes it difficult to estimate the num- 
ber and type of permanent resources to cover the request, 
making dedicated supercomputers and/or clusters unfeasi- 
ble, both time- and money-wise. 

In contrast to dedicated infrastructure,   on-demand access  
to compute resources is much more attractive for these dy- 
namic enterprises, allowing control over the type and num- 
ber of resources to be used .Cloud computing has emerged  
in the past few years as an IT paradigm in which the infras- 
tructure,   the platform,   and even the software used by IT  
operations are outsourced services; Infrastructure as a Ser- 
vice (IaaS) clouds can lease compute and storage resources  
to their users.   Services can be used flexibly (i.e., when and  
only for how long they are needed),   and leased for prices  
charged in small increments according to the actual usage.  
Amazon,   Microsoft,   Google,   and SalesForce are only four  
examples out of more than one hundred commercial cloud  
providers. 

 
Commercial IaaS clouds offer a wide diversity of   (virtual- 
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ized) resources, including CPUs of multiple generations and
 

number of cores, GPUs, and even more exotic architectures. 
Combining these resources leads to an unprecedented mix of 
parallelism  (at multiple-layers) and heterogeneity, which 
need to be addressed at both the application and the exe-

 

cution engine level .Moreover, systems that lease re-
 

sources from clouds hold the promise of efficiency by being 
elastic, that is, by varying in scale over time. Therefore, for 
big data processing systems to achieve good performance, 
addressing multiple existing layers of parallelism (i.e., from 
very fine to very coarse-grained) and dynamic scaling (i.e., 
on-demand increase of resources) are essential.

 

Currently, big data processing relies on users implementing 
their applications in a high level programming model, mak-

 

ing implicit choices about the execution model to be used, 
often hindering efficient resource usage. For example, when 
using   a   MapReduce-like model,   users   implicitly   assume   a 
specific way of dividing the application into homogeneous 
tasks   of   predefined   sizes,   which   are   then   mapped,   sched-

 

uled, and executed according to a programming model pol-
 

icy. System elasticity or hardware heterogeneity and multi-
 

grain parallelism cannot be taken into account easily:   in-
 

stead, a new programming model would have to be chosen, 
and the development process restarted.

 

Achieving high performance is an important goal for SMEs. 
 

Although SMEs may also value cost and other non-functional 
 

attributes of their applications, these attributes may often 
 

be seen as a trade-off in relationship with performance. For 
 

example, an SME may aim to obtain the result of data pro-
 

cessing within a deadline,   for a certain cost limit;   this is 
 

essentially a problem of high performance computing when 
 

the deadlines are tight (e.g., when working for a contractor, 
 

as many SMEs do) and when the cost model is simple (e.g., 
 

the per-hour charge of many commercial IaaS clouds).   An 
 

another example, an SME may strive for a measure of effi-
 

ciency expressed as the maximum amount of processing for 
 

a given budget; again, this problem requires achieving high 
 

performance.
 

We argue that, for SMEs, meeting the high performance re-
 

quirements of a large diversity of big data workloads can be 
 

efficient only when the heterogeneity and layered parallelism 
 

of modern computational systems (from GPUs to clouds), is 
 

leveraged.   Instead of addressing these quick-paced changes 
 

in the resources mix we are currently using for each program-
 

ming/execution model, we envision a novel execution engine 
 

that allows for a flexible match between the application and 
 

the computational resources, without being directly bound 
 

to a programming model. In this article, we focus on the de-
 

sign of this generic execution model, emphasizing its design 
 

requirements
 
and restrictions, and discussing the main chal-

 

lenges to be addressed for its performance and compatibility 
 

with the rest of the big data processing stack. Towards our 
 

vision, we identify and expose the potential bottlenecks in 
 

the design and prototype process of such a generic engine, 
 

allowing the community to contribute to their solving.
 

Our main contribution is therefore threefold: (1) We pro-
 

pose a vision for an open, non-monolithic big data process-
 

ing architecture, suitable for SMEs. (2) We identify the key
 

requirements for designing such an architecture.   (3) We enu-
 

 
 
 

merate the first key challenges (below fifteen of them) that
 

can and should be solved for this vision to become (closer
 

to) reality.
 

 

The remainder of this article is structured as follows.   Sec-
 

tion 2 introduces the state-of-the-art in big data processing 
stacks.   Section 3 presents the design requirements and the 
architecture of our execution engine, while Section 4 lists the 
most important challenges to be solved when implementing it. 
Section 5    concludes the article with a summary of our

 

findings and contributions.
 

2.    BACKGROUND
 

In this section we introduce the general architecture of a big 
data processing system and discuss the state-of-the-art, for 
which we

 
identify high-level problems.

 

2.1   Big Data Processing Stack
 

Big data processing applications make use of increasingly 
more complex ecosystems of middleware.   Figure 1   depicts

 

the   big   data   ecosystem,   where   systems-of-systems   are   all 
 

similarly   structured   into   a   four-layer   big-data   processing 
 

stack.   This ecosystem is based on a variety of open-source 
 

middleware,   both   commercial   and   freeware,   of   increasing 
 

maturity but with widely different features and performance 
 

characteristics. We discuss each of the four layers, in turn.
 

 

The  High-Level  Language  allows  non-expert  programmers 
to 

 

express  complex  queries  and  general  data-processing  pro-
 

grams in a data manipulation language.   A variety of lan-
 

guages exist, many derived from the SQL92 standard (e.g., 
 

Pig Latin ) or domain-specific (e.g.,   Spark 
 
for

 

multi-pass algorithms, especially common in machine learn-
 

ing). These languages are supported in the big data ecosys-
 

tem by compiling tools that
 
convert from these languages to 

specific programming models.
 

The Programming Model is currently the central layer of the 
 

big data stack.   Although a variety of programming mod-
 

els exist, several, for example MapReduce, have started to 
 

become more commonly used.   Similarly to the case of gen-
 

eral programming languages,   it is   common for the choice 
 

for a particular programming model to be made based on 
 

perceived popularity, rather than features and proven per-
 

formance; for example, the use of
 
the MapReduce program-

 

ming model for graph processing has been shown to lead 
 

to very poor performance in practice, when compared with 
 

other data processing stacks, yet it is still widely used. Tools 
 

can compile programs expressed in the programming model 
 

to programs that can be executed on the available resources 
 

by an execution engine.
 

The Execution Engine provides the automatic, reliable, effi-
 

cient use of computational resources to execute the jobs de-
 

rived from programs expressed in a particular programming 
 

model; although more general execution engines may appear 
 

soon, the current generation offers native support only for 
 

one programming model.   Numerous execution engines ex-
 

ist; for the MapReduce programming model, Hadoop and its 
 

newer incarnation YARN are open-source, free-to-use execu-
 

tion engines. Depending on the characteristics and quality-
 

of-service requirements of the application, the execution en-
 

gine may require close interaction with a storage engine. 
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Figure 1:   A view into the ecosystem of Big Data processing. 
 

The Storage Engine provides hardware/software storage for 
big data applications.   It typically provides a common file- 
system or key-value interface for storing data. The Hadoop 
Distributed File System is a commonly used 
storage engine in the MapReduce stack. 
 
These fours layers are not the only ones appearing in a big 
data processing stack. Necessarily, a resource substrate pro- 
vides   the   actual   resources (physical   or   virtualized).     An- 
other   layer   contains   very   diverse   middleware,   to   provide 
state management services (e.g., Zookeeper), content man- 
agement, etc. 

2.2   Problem: The Monolithic Approach 

Despite the high diversity in the big data ecosystem,    the  
state-of-the-art in stack deployments is based on monolithic,  
highly integrated stacks. Current programming models, which  
may be the first to be fixed in a decision to install a new data  
processing unit, include and implicitly hide all the details  
regarding execution.    Annotations could help, but a diverse  
set of useful annotations and a comprehensive analysis of  
the usefulness of existing annotations do not currently ex- 
ist.   The execution engine is typically deployed on a fixed  
set of resources, can sometimes execute no more than a few  
big data processing jobs concurrently, and can rarely coex- 
ist with other execution engines in the same environment.  
The storage engine exhibits similar issues to the execution  
engine, although for large volumes data, instead of for rela- 
tively small volumes of data and large amounts of computa- 
tion per deployed compute unit. 
 
The   monolithic   approach   has   democratized   big   data   pro- 
cessing, but at the expense of significant waste of compute 
and storage capability.   Understanding the performance of a 
big data application, from the information exposed to the 
programmer, is severely hindered by the aspects abstracted 
away, such as the mapping and scheduling of applications to 
resources, provisioning of needed resources (and their re- 
lease), and the actual execution of the application. 

 

To address these high-level problems that are inherent in 
current big data stacks, we propose in the following section  
a generic architecture that promises to address them at the  
level of the execution engine.   Our focus on the execution 
engine is motivated by the variety of resources managed at  
this level, including in particular heterogeneous compute el- 
ements. 

3.A GENERIC ARCHITECTURE FOR MANY-TASKS BIG 

DATA PROCESSING 
In this section we discuss the requirements and the design  
of a generic execution engine for a many-tasks big data pro- 
cessing. 

3.1   Requirements 

We envision big data processing stacks that exploit afford- 
able computational capacity, flexible in scale and composi- 
tion.   Such a set of machines, either leased for short peri- 
ods of time from a commercial IaaS cloud or even common  
computers clustered together, is likely to be equipped with  
multi-core processors and GPU-like accelerators of different 
capabilities. Therefore, heterogeneity and a large variety of 
parallelism and performance capability must be expected. 

For such computational infrastructures, much poorer in com- 
munication capacity and latency than high-end dedicated  
supercomputers, intensive data communication between com- 
putation tasks will greatly reduce performance.   To avoid  
this bottleneck, data processing applications should be par- 
titioned into bags of many loosely-coupled or even indepen- 
dent tasks.   Providing these tasks to the execution engine  
allows it to take into account both the available resources  
and the performance requirements to provide an efficient, 
high-performance execution of the workload. 

 
To   design   a   generic   architecture   for   a   performance-aware 
execution engine with access to different kinds of computa- 
tional resources, we identify four driving requirements:  
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an  inter-operated  system.    Thirdly,  by  considering  both  the  
tasks and the resources in the “  Prediction and classification”  
component,  this  architecture  makes  provisions  for  advanced  
prediction  and  classification  mechanisms,  and  in  particular  
for  mechanisms  supporting  true  resource  heterogeneity  (that  
is, from GPUs to clouds).    Because applications can behave  
very  differently  on  CPUs  and GPUs,  adequate mechanisms  
can  offer  important  opportunities  for  improvement.  By  clas- 
sifying tasks,  this component  also makes provisions for  self- 
tuning mechanisms, relieving the na¨’ive user from one of the  
burdensome   tasks   but   without   necessarily   sacrificing   per- 
formance.     Fourthly,   the   provisioning   mechanism   can   ex- 
tend the functionality  of  popular  Execution  Engines,  such as  
Hadoop’s, with the ability to use an elastic set of resources;  
for example,    it could enable the resource substrate to in- 
crease  with  resources  leased  from  commercial  IaaS  clouds  
only when needed and for as long needed.    These transient  

resources offer  new  opportunities for  efficient  execution 
mechanisms. 

Our architecture addresses the requirements as follows: 

•  High Performance requirements (addressed in Section 4.2) 
Figure 2:   A generic architecture for many -task big- 
data applications. 

 

1.   High Performance :   the robust exploitation of the in- 
herent  multi-layered  parallelism  of  today’s  heteroge- 
neous computational infrastructures must be leveraged 
this requirement also enables higher-level 
trade-offs that may appear in the operation of an SME, 
such as performance-cost or performance-accuracy. 

2.   Elasticity :   the elastic (up- and down-scaling) yet ef- 
ficient provisioning and allocation of   resources for   a 
variety of workloads must be enabled. 

3.  Predictability :  the  performance  envelope  of  a  given 
computational capacity, subject to different data sets, 
algorithms, and processing stacks, should be 
estimated. 

4.   Compatibility : the integration of the execution engine 
with the high level programming model and the storage 
system must be provided. 

 

3.2   Architecture 
To address the four major requirements formulated earlier, 
we have designed a generic big-data processing architecture 
depicted in Figure 2. Responding to requirements, our archi- 
tecture assumes that data-processing applications can fulfill 
the many-task paradigm: the architecture is designed to ex- 
ecute many tasks with high throughput. 

We will further focus on the Execution Engine, built with 
four   distinctive features.     Firstly,   this   architecture decou- 
ples the execution engine from the input constraints pro- 
vided by the programming model (that is,   tasks) and by 
the resource substrate (that is, actual compute resources). 
Secondly,   by   clearly   exposing   to   the   user,   from   the   Exe- 
cution Engine, a set of components and their interconnec- 
tions, this architecture enables the design, tuning, and im- 
plementation of each component,   either in isolation or as 

are fulfilled through the individual behavior and through 
the interplay of several components,   primarily Map- 
ping and Scheduling, Provisioning, and Execution. 

•  Elasticity requirements (Section 4.2) are fulfilled through 
the individual behavior and through the interplay of 
Provisioning and Execution. 

•  Predictability  requirements   (Section   4.3)   are  fulfilled 
through the individual behavior of Prediction and Clas- 
sification, which takes decisions based on the available 
resources and tasks to classify the tasks in terms of 
resources. 

•  Compatibility requirements (Section 4.4) are addressed 
by the interfaces offered by the Execution Engine: the 
back-end of the programming model and the resource 
specification. 

4.    OPEN CHALLENGES
 

In this section we discuss an open list of challenges that come 
with the architecture proposed in Section 3. We see each of 
this challenges as surmountable in the next decade. 

4.1   Performance challenges 

4.1.1   Parallel architectures and algorithms 
Although a predominant consumer of computational resources,  
big data processing is still in its early phases when it comes  
to algorithms.   Application-driven, the field proposes many  
new algorithms, many currently as early prototypes.   This  
empirical, trial-and-error approach leads to a large sequen- 
tial code base, still increasing at fast pace.   With the high  
parallelism  required  by  all  novel  HPC  architectures,  this  
code  base  currently  goes  through  a  process  of  systematic  
and efficient, yet also cumbersome and application-specific  
parallelization. 

 
We argue that this a-priori process of sequential algorithm  
development is redundant.   As all big data processing is to  
be done on parallel architectures, we believe the community  
should focus instead on designing and implementing novel  
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and   efficient   parallel   algorithms,   from   the   beginning.     Ef- 
fort should be put in classifying and characterizing big data  
applications ,  simplifying paralleization and perfor- 
mance analysis.    Moreover, analysis and prediction models 
are needed to understand the performance potential these al- 
gorithms show for each class of parallel architectures. These 
models should be designed, tuned, and validated early in the 
algorithm development stages, when feedback and changes are 
easier to address. 

The process of designing and implementing new algorithms  
is also facilitated by the advances in compiler technology,  
but there are caveats.   First, although techniques such as  
autovectorization have improved significantly in the last few 
years,   they may still be limited to only a few application 
classes. Second, parallelizing compilers tend to be very con- 
servative with the transformations they apply, and therefore  
very sensitive with respect to the input code. To tackle this  
sensitivity, programmers may end up developing solutions 
to trigger the right compiler behavior,   thus targeting the  
compiler’s idiosyncrasies rather then implementing efficient  
parallel solutions for the required problem. Third, compilers  
typically focus on improving the performance of the compu- 
tation, while big data processing applications should prob- 
ably focus more on addressing the irregular memory access  
patterns in large data structures. Overall, although compil- 
ers will continue to improve towards simplifying some of the  
tasks needed for application parallelization, we believe that  
the high demand for parallelism and performance requires  
approaches with higher throughput. We argue that the most  
efficient such approach must still focus first on building new  
algorithms for massive parallel and distributed processing  
on big data. 

 

4.1.2   Heterogeneous platforms 

Using the developments of Top500   2     in the last five years  
as trend forecasters, heterogeneous, massive parallelism for  
commodity (and cloud) machines is likely to continue, given  
that many types of applications are able to prove them effec- 
tive for data-intensive, irregular applications.   To use  
these platforms effectively, programmers need to address two  
important issues:   application and data decomposition.    We  
argue that solving these problems is essential for increas- 
ing   platform   utilization   and   thus   leveraging   more   perfor- 
mance  

We note that this approach is facilitated by the many task 
programming model we have adopted, but still requires anal- 
ysis and tools for mapping and scheduling suitable tasks to 
suitable processes. Using the results of the performance eval- 
uation/prediction, these tools can improve overall efficiency, 
ultimately improving overall workload performance. 

 

4.1.3   Programmablity by portability 
The   heterogeneous   and   dynamic   nature   of   the   computa- 
tional infrastructure we are considering poses significant pro- 
grammability challenges:   tasks have to be able to run effi- 
ciently on different types of archtiectures, from distributed  
nodes to many-core CPUs and GPUs.   Ideally, they should  
also be ready to address new, exotic architectures that might 

Selection 
P1 P2 P1 

 
 
 
 

Time 
 
 

Figure 3:   Selected policy over the lifetime of a sys - 
tem with changing workload modes. 

 

be incorporated in the near future (e.g., fused processors or 
domain-specific processors). 

 
Developing all these different versions of software is a huge  
programmability challenge. As new workloads are being de- 
signed and developed for new types of big data analysis, this  
challenge needs to be addressed in a systematic way. There- 
fore, defining and using portable programming models is the  
key to solve this challenge efficiently. Portable versions of all  
tasks are necessary to address both the elasticity and hetero- 
geneity of the computational infrastructure.   Implementing  
them in languages like OpenCL or OpenACC will provide  
a first level of functional portability, but more research is  
required to achieve acceptable levels of performance porta- 
bility. 

4.2   Elasticity challenges 

4.2.1   Performance and cost awareness under elasticity 
In an elastic system, provisioning and allocation mechanisms  
should   ensure   that   system   can   elastically   increase   its   set  
of resources when overloaded and elastically decrease them  
when   underloaded.     Elastic   operations   should   not   impact  
the performance observed by or the cost incurred on system  
users—performance and cost awareness,   respectively.     For  
example, elastic MapReduce systems should not lose perfor- 
mance when resizing, in particular when sharing resources  
with  other   users.    Recent   work   (i.e., and  references within) has 
proposed designs to facilitate the on-demand de- 
ployment of elastic MapReduce clusters in multi-cluster sys- 
tems. However, extending these designs for general data pro- 
cessing is non-trivial: programming models such as dataflow  
(e.g., graph-processing Pregel, as implemented by Giraph)  
have   different   task   coupling   and   resource   usage   patterns,  
possibly leading to different optimal performance and cost  
awareness approaches. 

4.2.2   Portfolio Scheduling 

The schedulers of data processing systems may under-perform  
when the operational characteristics for which they were de- 
signed change: under unexpected workload arrivals, evolving  
workload characteristics of single or multiple users, new plat- 
form architectures, etc.    Developing new scheduling policies  
and mechanisms to address the change involves various risks  
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and may only provide a temporary solution. To alleviate this 
problem, we have introduced in previous work  
a general scheduling approach for data center environments,  
portfolio scheduling, under which a scheduling policy is se- 
lected periodically from set of policies (a portfolio).   For an  
intuition to this process, consider a synthetic workload that  
alternates two arrival patterns (Figure 3).   For this favor- 
able   case,   the   portfolio   scheduler   adapts   by   selecting   the  
appropriate scheduling policy.   We have shown that port- 
folio schedulers generally outperform their constituent poli- 
cies for compute-intensive many-task workloads.   However,  
the data-intensive workloads and workloads with inter-job  
dependencies we consider in this work pose additional chal- 
lenges, including different models of resource occupation and  
sharing, scheduling with dependencies, scheduling data and  
computation etc., all in a variable-sized set of resources. 

 

4.2.3   Social awareness 

The idea that social links between the users and between  
the providers of resources in a (data) processing system may  
influence the operation of the system dates from the early  
1960s; for example, shared infrastructure generated off-line,  
socially guaranteed agreements between users, regarding eq- 
uitable usage hours. However, recent studies have identified  
new forms of social influence on resource usage and sharing.  
The use of data by large groups of scientists has been shown  
to exhibit filecules, that is, sharing patterns for socially close  
participants.     Similarly,   the   use   of   computational   re-sources 
in grids can be partially explained through social  
patterns A mid-2000s trend of sharing resources  
based on socially guaranteed contracts led to many resources  
being gifted, volunteered, or shared. An important challenge  
is building mechanisms that exploit these social elements to  
improve resource usage and sharing.   The challenge due to  
data sharing are non-trivial: data replication and transfers,  
incentives to manage foreign data, privacy-preserving pro- 
cessing of sensitive data; early studies  have not yet  
addressed many of them. 

4.3   Predictability challenges 
For   elastic   systems,   dynamic   scheduling   and   dynamic   re- 
source provisioning are mandatory.     However,   in order to 
avoid overprovisioning and further resource wastage, under- 
standing the performance of different workloads on different 
types of platforms is mandatory. The key research challenge 
here is to define a reliable methodology to predict a per- 
formance envelope of a (tasks,dataset,platform) tuple.   We 
believe three important steps must be taken to advance the 
state-of-the-art in this direction:   modeling, matchmaking, 
and benchmarking. 

 

4.3.1   Modeling 
We find an important challenge in creating realistic perfor- 
mance envelopes for all major data processing stacks.   We see   
this   as   an   important   challenge,   which   should   extend the 
characterization of big data applications  towards more general 
models, where the performance envelope is a function of 
application (algorithm), dataset, data processing stack,   and 
the (transient) resource substrate.   To address this challenge, 
both workload modeling and platform mod- 
eling are necessary.   Given the complexity of the analysis  
algorithms, as well as the large scale and heterogeneity of 

 
 
 

the platforms we use, none of these two challenges is getting 
any easier. 

 
However, three important choices should make these chal- 
lenges feasible by limiting the search space.   First, we limit  
the modeling to data analytics applications, as we believe  
these algorithms will share a common set of characteristics  
that can be exploited to simplify modeling (e.g., they are 
all data-intensive, traversal-based, low-computation).   Sec- 
ond, we include the dataset as part of the modeled work- 
load, which should lower the abstraction level of the model.  
Third,   and final,   we recommend high-level symbolic plat- 
form models, calibrated using (micro-)benchmarking on real  
hardware. 

4.3.2   Matchmaking 
When talking about models, matchmaking (or fitting) typ- 
ically involves a combination of the workload and platform 
models that allows one reason about the expected perfor- 
mance.   This prediction is very useful for dynamic schedul- 
ing, resource allocation, and especially resource prediction. 
Systematic and accurate matchmaking will avoid side effects 
such as overprovisioning and/or resource wastage. 

 
We belive that, despite the complexity of the platform and 
workload models we expect to see, this matchmaking can be 
tackled if multiple levels of complexity and accuracy can be 
defined and accepted.   As full modeling is likely to be too 
detailed (and time-consuming) for the purpose of dynamic 
scheduling and/or provisioning, it is the faster, higher level 
solutions that will be preferred for on-line scheduling, and 
the   more   accurate,   detailed   ones   will   be   used   for   perfor- 
mance analysis and thorough prediciton. 

4.3.3   Benchmarking 
In this context, benchmarking is required to calibrate and/or  
validate the workload and platform models.   We recognize  
the significant lack of benchmarking strategies and suites in  
the filed of big data: although many early benchmarks have  
appeared for big data processing, many of them fo- 
cused on the MapReduce programming model, and are lim- 
ited with respect to the data flow diversity: data dependen- 
cies intra-query and intra-/inter-job, and large variations in  
the amount of the data transferred between tasks in the pro- 
cessing workflow. 

 
For big data processing, we identify as a major challenge the 
formulation of realistic, cost- and time-effective, fair bench- 
marking   suites Similarly   to   the   approach   taken   by 
TPC, such benchmarks should focus on broad application 
domains, such as graph-processing  or time-based an- 
alytics  

We note that the benchmarking results can be used for de- 
signing or calibrating realistic, yet tunable models of work- 
loads with   important   contributions   in   modeling   and 
generation of large datasets and abstract workload 
modeling (e.g., statistical analysis on multi-workload data 
archives. 

4.4   Compatibility / Interfacing Challenges 
By decoupling the execution engine, we have been able to  
dive into its components and analyze the improvements that  
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can  be  made  for  performance  gain.    However,  the  same 
”  extraction”   of this engine from the monolithic stucture  
of  the  data  processing  stack  has  posed  an  additonal  
challenge: clear specifications for interfacing with the rest  
of  the  ar- 
chitecture are now needed.   We focus here on two of these  
specifications:  the   ”  north”  interface,  which  relates  to  the  
task-based  application  specification,  and  the  ”  south ” 
inter- 
face, which relates to the storage system. 

 

4.4.1   Interfacing with the application 

Our model assumes that the application is eventually speci- 
fied as a large collection of tasks. Ideally, they should be in- 
dependent. The more dependent (i.e., tightly coupled) they  
are, the most difficult it becomes to specify their interaction. 

Essentially,   this   interface   requires   matching   the   back-end of 
the high level programming model with the front-end of the 
execution engine.   To insure this match is done by con- 
struction (i.e., to avoid yet another intermediate layer for 
transposition), more fundamental research is requried into  
task specification, characterization, and classification.   Ul- 
timately, this will also affect the design of high level pro- 
gramming models, but this remains beyond the scope of this  
work. 

 

4.4.2   Storage management 

For an application to be described as a collection of tasks, 
the entire workload (i.e., algorithm and data) needs to be 
decomposed. While the  ”  migration”   of the computation  
de- 
pending on the available resources is the responsibility of the 
execution engine, the similar migration of the data requires 
interacting with the storage system. 

We believe there is much research to be put into optimiz- 
ing this interaction for two reasons: (1) in elastic and dy- 
namic systems, such migrations happen very often, and (2)  
the expected heterogeneity of the platforms will force mi- 
gration between different storage spaces, depending on the  
source and destination. They key challenges to address here  
are understanding the types of data migration and charac- 
terizing the performance penalty each type infers.     Based  
on this classification, data migration rules can be enforced  
on the interface between the execution and storage engines,  
thus limiting the negative performance impact due to too  
often/too expensive migrations. 

5.    CONCLUSION 
Big data processing has been increasing in popularity for 
the past five years.   Smart and efficient data analytics be- 
come important revenue sources for many small and medium 
enterprises (SMEs), which have the expertise for interest- 
ing analysis, but no resources to fund expensive infrastruc- 
ture. We belive that despite relying on commodity hardware  
and/or cloud services, high performance remains achievable  
for these common scenarios, but it is currently hindered by  
the monolithic nature of existing big data processing solu- 
tions. 
 
Thus,   we proposed our vision of an open architecture for 
big data processing,   focusing on its execution engine,   the 
component with the highest performance impact. Our con- 
tributions are threefold: (1) describing a vision for an open, 

 
 
 

non-monolithic big data processing architecture, (2) identi- 
fying its main design requirements, and (3) enumerating the 
most important eleven challenges that need to be addressed to 
transform this vision into a feasible solution. 

Our own work addresses some of these challenges in more 
detail. For example, for the performance challenges, we are 
actively involved in designing and evaluating portable par- 
allel programming models for multi- and many-core archi- 
tectures as well as in addressing the impact of het- 
erogeneity on performance We are also working on the   
problem   of   predictability -   especially   on   its   modeling 
and benchmarking components - in our work on large scale  
graph processing on multiple platforms Finally, our  
work on scheduling in large scale distributed environments  
and clouds is addressing the elasticity challenges  

All our research efforts in this directions are, of course, only  
the tip of the iceberg, proving that solutions do exist for im- 
proving the state-of-the-art, but much more needs to be done  
to fully materialize our vision of an open big data processing  
architecture,   with a flexible,   performance-aware execution  
engine that will allow regular users (SMEs) to efficiently use  
the resources available to them (off-the-shelf or from a cloud,  
homogeneous or heterogeneous) to run their analytics. 
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