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Abstract—We develop a thermo-acoustic model of a
gas turbine combustor where acoustic perturbations are
generated by an external loud speaker. Our analysis shows
how the electro-mechanical dynamics of a speaker effects
on the overall thermo-acoustic dynamics of a combustor.
A numerical example is included to illustrate our results.
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I. INTRODUCTION

Gas turbine combustor are prone to combustion in-
stability where the dynamics of combustion and that of
thermo-acoustic field have a positive feedback (synergy
effect) with each other to result in a large magnitude of
pressure and velocity perturbations [1].

For a theoretical investigation of a possible occurrence
of combustion instability it is essential to develop pre-
cise dynamic models of both combustor thermo-acoustic
and combustion process. The thermo-acoustic part is
commonly approximated with one-dimensional acoustics
and this approximation allows an analytical model with
relatively ease.

In contrast, however, the dynamic properties of a com-
bustion process is so complicated and highly nonlinear
that in many cases experimental approach are preferred.
For an experimental identification of the combustion
dynamics, a loud speaker is widely employed to gener-
ated a user-controllable acoustic perturbations and thus
to obtain a frequency response of combustion flame in
terms of heat rate perturbation with respect to a velocity
perturbation, i.e., the so-called flame transfer function.

The use of a loud speaker however effects the thermo-
acoustic property of a combustor system without a

speaker since the speaker serves as a new boundary
condition, which leaves us an important question ; how
the speaker dynamics will modify the thermo-acoustics of
combustor ?. This is a key motivation of our development
presented in this paper.

Our thermo-acoustic model for a combustor also al-
lows us to indirectly and experimentally validate the
soundness of our acoustic model in the process of
obtaining a flame transfer function.

II. ACOUSTIC MODEL

A. Speaker Model

A speaker can be seen as a RL (resistor-inductance)
circuit whose dynamics can be described as

V = Ri+ L
di

dt
+ kb

dξ

dt
(1)

where t denotes time, R and L are electrical resistance
and inductance, i(t) is current, V (t) is a driving voltage,
kb is the coefficient of the counter-electromotive force
and ξ denotes the position of speaker diaphragm (cone)
which is assumed to have a simple one-dimensional
motion.

The mechanical force generated by the speaker coil is
f = kf i for a constant kf and it drives a mechanical
vibration system

f = kf i = mξ̈ + bξ̇ + kξ +Aep
′(x, t)|x=0

ξ̇(t) = u′(x, t)|x=0

(2)

where x denotes the one-dimensional coordinate of an
acoustic element attached to the speaker such that x = 0
correspond to ξ = 0, Ae denotes the effective area of
the speaker cone, constants m, b, k are mechanical pa-
rameters of the speaker. In addition p′(x, t) and u′(x, t)
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are the perturbations of pressure and velocity. See an
illustration in Fig. 1.

Using Laplace transformation we rewrite (1)-(2) as

V (s) = (Ls+R)I(s) + kbu
′(0, t)

kfI(s) =

(
ms+

k

s
+ b

)
u′(0, s) +Aep

′(0, s)
(3)

and an elimination of the term I(s) in those two equal-
ities gives

V (s) =
[
1/Gp 1/Gu

] [p′(0, s)
ν ′(0, s)

]
, ν := ρcu′ (4)

Gp(s) :=
kf

(Ls+R)Ae

Gu(s) :=
ρckfs

kbkfs+ (Ls+R)(ms2 + bs+ k)

(5)

and ρ , u denote the mean density, velocity and c denotes
the sound speed.

B. A Simple Duct Model

x = 0 x = x1

u

b

k Ae

ξ(t) p′(x, t)

u′(x, t)

R2

speaker duct

m

Fig. 1: Duct driven by a speaker

The wave propagation over the interval [0, x1] is given

ν ′(x1, t)

[
p′(x1, t)

]
= P x1

0

[
p′(0, t)
ν ′(0, t)

]
(6)

P x1

0 =
1

2

[
e−τ

+s + eτ
−s e−τ

+s − eτ−s

e−τ
+s − eτ−s e−τ

+s + eτ
−s

]
, (7)

τ± := x1/(c± u) where c denotes the sound speed.
The boundary condition at x1 specified with a reflec-

tion coefficient R, the ratio of incident and reflected
waves at x = x1, can be written as[

−1 +R2 1 +R2

] [p′(x1, t)
ν ′(x1, t)

]
= 0. (8)

In addition, a combination of (4) and (6) gives[
Gu Gp

]
(P x1

0 )−1
[
p′(x1, t)
ν ′(x1, t)

]
= GuGpV. (9)

From this equation and (8), one can find the following
relation between ν ′(s) and V (s) ;

p′(x1, s)

V (s)
= −1

2
· 1 +H(s)e−δs

1−H(s)R2e−δs
Gu(s)Gp(s) (10)

ν ′(x1, s)

V (s)
=

1

2
· 1−H(s)e−δs

1−H(s)R2e−δs
Gu(s)Gp(s) (11)

where δ = τ+ + τ− and H(s) is given in (15). The
transfer function (16) will be used later.

Note that the pole of the above transfer function are
composed of two parts ; poles of the electro-mechanical
transfer functions GuGp in (5) and acoustic poles which
are the roots of the next equation

1−H(s)R2e
−δs = 0. (12)

Let us suppose the speaker is removed and the left
reflection coefficient of the duct at x = 0 is R1. In this
case it is easy to show that the corresponding acoustic
poles are given as roots of

1−R1R2e
−δs = 0. (13)

A comparison of this fact and (12) suggests that the
duct with a speaker in Fig. 1 can be seen as a simple duct
along with a frequency-dependent reflection coefficient
R1 = H(s).

Note that if
b� ρcAe, (14)

then we have H(s) ≈ 1.

H(s) :=
Lms3 + [(b− ρcAe)L+Rm] s2 + [Lk + (b− ρcAe)R+ kbkf ] s+Rk

Lms3 + [(b+ ρcAe)L+Rm] s2 + [Lk + (b+ ρcAe)R+ kbkf ] s+Rk
(15)

K(s) :=
2kfs

Lms3 + [(b+ ρcAe)L+Rm] s2 + [kL+ (b+ ρcAe)R+ kbkf ] s+Rk
(16)
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C. Thermo-acoustic Combustor Model

Making use of the previous speaker model, here we
develop a thermo-acoustic model for a combustor as
illustrated in Fig. 2.

x = 0 x = x1

u1 R2

speaker nozzle u2

x = x2

combustor

q̇′(t)

u′
1(x1−, t)

Fig. 2: Acoustic Model of Combustor

Acoustic waves propagate from x1+, just after an area
expansion which is the same as the location of a thin
flame, to the outlet x3 as

ν ′

[
p′
]
x2

= P x2
x1

[
p′

ν ′

]
x1+

(17)

P x2
x1

:= 1
2

[
e−τ

+
2 + eτ

−
2 e−τ

+
2 − eτ

−
2

e−τ
+
2 − eτ

−
2 e−τ

+
2 + eτ

−
2

]
, (18)

τ±2 := (x2 − x1)/(c2 ± u2) (19)

where c2 denotes the sound speed after a flame.
In addition, the right boundary condition at x2 can be

written as [
−1 +R2 1 +R2

] [p′
ν ′

]
x2

= 0 (20)

A combination of (20) and (17) gives[
−1 +R2 1 +R2

]
P x2
x1

[
p′

ν ′

]
x1+

= 0. (21)

By replacing x1 in (9) with x1−, just before an area
expansion or flame location, we have[

Gu Gp
]
(P x1

0 )−1
[
p′

ν ′

]
x1−

= GuGpV (22)

where {c, u, ρ, τ, δ} in the previous section should be
rewritten as {c1, u1, ρ1, τ1, δ1}.

The mass, energy and momentum relations across an
area expansion and a flame give the following relation

ν ′

[
p′
]
x+
1

=

[
1 ξ1M1

(1−α2)γ
αβ M1

1
αβ

][
p′

ν ′

]
x−
1

+

[
ξ2M1

1

](
γ − 1

αβc1

)
q̇′(t) (23)

where q̇(t) denotes the combustion heat source in the
unit of [Joule/m2] and two constant ξ1, ξ2 depend on
particular acoustic model of the area expansion at x1 [2],
[3]. In this paper, following [2], we have

ξ1 :=
2(β − 1) + 1− α2

β2
, ξ2 := −

α

β
(24)

where α, β denotes the ratio of sound speed and area
before and after the area expansion or flame.

By multiplying the matrix in the left hand side of (22)
to (23), one can obtain

0 =
[
−1 +R2 1 +R2

]
P x2
x1[

1 ξ1M1
(1−α2)γ
αβ M1

1
αβ

][
p′

ν ′

]
x−
1

+
[
−1 +R2 1 +R2

]
P x2
x1

[
ξ2M1

γ−1
αβc1

γ−1
αβc1

]
q̇′(t). (25)

This equation and (22) constitute two simultaneous
equations between the waves (p′, ν ′)x1− and two sources
V (s) and q̇′(s).

In particular, regarding {V, q̇′} as two driving inputs
and u′(x1−) = ν(x1−)/ρ1c as a velocity output, the
corresponding MISO (multi-input single-output) transfer
function representations can be written as

u′(x1−, s) = Gs(s)V (s) +Gf (s)q̇(s) (26)

where the speaker transfer function Gs(s) and the heat
transfer function Gq(s) are given

Gs(s) :=
Ns(s)

D(s)
, Gq(s) :=

Nq(s)

D(s)
(27)
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where

Ns(s) := K(s)ψ1(1− ψ2R2e
−δ2s)e−δ1s (28)

Nf (s) := −
γ − 1

ρc2
ψ3(1−H(s)e−δ1s)

(1 + ψ4R2e
−δ2s) (29)

D(s) := 1− ψ6R2e
−δ2s

+ ψ7H(s)(1− ψ5R2e
−δ2s)e−δ1s, (30)

δi := τ+i + τ−i (i = 1, 2), K(s) in (16) and

ψ1 :=
αβ + (α2 − 1)γM1

αβ + 1 + (α2γ − αβξ1 − γ)M1

ψ2 :=
αβ − (α2 − 1)γM1

αβ + (α2 − 1)γM1

ψ3 :=
1− ξ2M1

αβ + 1 + (α2γ − αβξ1 − γ)M1

ψ4 :=
1 + ξ2M1

1− ξ2M1

ψ5 :=
αβ + 1− (α2γ − αβξ1 − γ)M1

αβ − 1 + (α2γ + αβξ1 − γ)M1

ψ6 :=
αβ − 1− (α2γ + αβξ1 − γ)M1

αβ + 1 + (α2γ − αβξ1 − γ)M1

ψ7 :=
αβ − 1 + (α2γ + αβξ1 − γ)M1

αβ + 1 + (α2γ − αβξ1 − γ)M1

(31)

It is a common situation where αβ � 1 and M1 ≈ 0.
In this case we have ψi = 0 for all i = 1, · · · , 7 except
ψ3 ≈ 1/αβ and thus obtain simple representations ;

Ns(s) = K(s)(1−R2e
−δ2s)e−δ1s,

Nf (s) = −
γ − 1

ρc2
(1−H(s)e−δ1s)(1 +R2e

−δ2s),

D(s) = (1 +H(s)e−δ1s)(1−R2e
−δ2s).

(32)

D. A Numerical Example

We computed various transfer function appeared in our
developments with speaker and combustor parameters
summarised in Table I.

Two Bode plots of the transfer function H(s) and
K(s) shown in Fig. 3-4 shows minimal and maximal
peaks, respectively, which seems to come from the
mechanical speaker resonance frequency

fs :=
1

2π

√
k

m
= 35.59 (Hz). (33)

γ = 1.38 α = 6 u1 = 60 c1 = 345
ρ1 = 1.177 ρ2 = 0.0327 L1 = 0.6 L2 = 1.5
L = 0.02 R = 4 m = 0.01 b = 0.6
k = 500 Ae = A1 kb = 1 kf = 0.5
β = 10 A1 = 0.005 A2 = 0.05 R2 = −1

TABLE I: Parameters for the example

This resonance frequency clearly effects on the Bolde
plots of the speaker transfer function Gs(s) in Fig. 6 and
Gf (s) in Fig. 5.

The second peak near 157 (Hz) in Fig. 6 and Fig. 5
seems to be an acoustic resonance frequency of the
nozzle part (0, x1). In fact, the sudden area expansion
and the flame at x1 result in an acoustic impedance jump
and thus acoustic waves in either nozzle or combustor
are largely reflected at x1 [4] (p. 151). This gives rise
to a standing wave inside the nozzle whose resonance
frequency is given

fq :=
1 + 2k

2δ1
, k = 0, 1, · · · (34)

and the smallest frequency fr ≈ 140 (Hz) with k = 0 is
close to the observed peak frequency.
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Fig. 3: Bode plot of H(s)

III. CONCLUSION

We developed a thermo-acoustic model of a gas tur-
bine combustor under the condition that the nozzle inlet
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Fig. 4: Bode plot of K(s)
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Fig. 5: Bode plot of Gs(s)

is acoustically driven by a loud speaker. Our model was
given as a transfer function representation in which an
electrical voltage for speaker and a heat perturbation are
two inputs and the velocity perturbation at the flame
location is a single output. A numerical case study sug-
gested a possibility that the thermo-acoustic properties of
the combustor can be effected by the resonance dynamics
of the speaker. It is left as a further work to validate our
model with real-world combustor systems.
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Fig. 6: Bode plot of Gq(s)
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