
  

 

 

A Testing-Effort on Software Reliability Estimation 

Model 
Rahul Chaudhary

 
, Darothi Sarkar  

 Department of Computer Science, Amity University, Noida, Uttar Pradesh, India 

  

 
    Abstract- The software reliability growth models have 

become prominent in use. Although we know that the use of 

such model is delaying the SDLC (software development life 

cycle) i.e. during testing because these models requires failure 

time data in order to determine the models parameters. At a 

time we have more than one model such as Basic Execution 

Time model which can apply to SDLC in beginning, as its 

parameters can be directly depends on software characteristics 

although it only implies uniform execution of program 

instruction i.e. program without loops and branches. We have 

another model Extended Execution Time model  that consider 

this non uniformity of program, which is related to measurable 

characteristics of software product, and this help to identify 

which model is best to apply for Reliability estimation 

according to degree of uniformity i.e. Uniform execution- 

Basic Execution Time Model, Non-uniform execution- Musa 

okomoto logarithmic model, Our work is to perform EET 

Model (Extended Execution Time) for software reliability 

estimation with testing side by side i.e. implementation of 

Functional Testing (part of Black Box Testing (Structural 

testing)) with Representative Testing in parallel over the result 

of EET model. 

This helps us as follows: 

Applying functional testing together with Representative 

testing after or parallel to EET model help us to detect and 

remove the concrete faults and develop concretely reliable 

software Structural Testing Methods have been 

underestimated due to less deterministic results [1] although it 

supports automated constraint solving capacity and on another 

hand Representative Testing [3] that allow reliability 

estimation modeling, to give the desired quantification or 

determination. If we use both testing in parallel or conjunction 

then results from Structural Testing can help us to update the 

reliability estimates from EET model that are conventionally 

connected with Representative testing. Here we use order- 

statistics to merge the observed failure rates of faults, nothing 

to attention that how those faults were identified [3].  

    Index Terms- Basic Execution Time model (BET model), 

Extended Execution Time Model (EET Model), fault 

detection,  faults spraying, Functional Testing (Structural 

testing)), imperfect ordering, non-uniform execution, perfect 

ordering, Representative testing, Sorted activity profile, test 

case, uniform execution. 

I. INTRODUCTION 

ositively towards the development of reliable software we 

use various reliability growth models these various models 

estimate the appearance of failure occurrence during 

testing, and removal of these faults helps in improvement of 

reliability. These various models which are used are analytical 

in nature; generally have one or more variable whose values 

are unknown. Hence for the application of this model, one 

must first estimate values of unknown parameters. The only 

software reliability model that has usefully in predicting 

reliability prior the availability of all data (that are required to 

estimate reliability) from the test – the Musa‟s Basic 

Execution Time model [MIO]. Parameters of this model can 

be similar to such measurable software product and process 

characteristics as faults- density, number of newly developed 

source instructions, the number of machine instruction and 

speed of the machine on which the product runs. Same as BET 

(Basic Execution Time) model, EET model accept two 

parameter as in BET model and the third parameter is „ a ‟, 

evolved related to a measure of uniformity of instruction 

execution. Where “ a ” is defined as using Table1 [2]: The 

change in the table 1 is in upper limit which is reduced to 4, 

because each program complexity increases rapidly with little 

change. I.e. When „ a  =0‟ all instructions are executed 

uniformly, at that time EET model identical to BET model and 

for large value of “ a ” parameter show very non- uniformity 

in execution of instruction then, [MIO] the logarithmic model 

is best applied i.e. for non- uniform execution in case of 

moderately uniform condition, we refer to apply logarithmic 

model as we are certain on that the, there is obviously degree 

of non- uniformity.  

    The focus of EET model is its capability to estimate the 

parameter before the collection of failure data. Two parameter 

can be predicted in precisely the same manner as for BET 

model as parameter related to program execution hence the” 

a ” parameter can be derived from instruction “execution 

profile” data. 

EET model over comes one problem faced by users in 

deciding whether to use the BET model or the logarithmic 

model. The “ a ” parameter is decided for program using 

UNIX “profile facility”.  

NHPP model as it incorporates both model depending on 

value of the parameter “ a ”. Measure of “uniformity” done by 

finding linear execution frequency [1- section2] and measure 

Table 1 
a    Types of execution 

>4  very non uniform, characterized by many infrequently 

extended path associated with branches and loops with many 

iterations. 

.2,  4 moderately uniform. 

< .2 nearly uniform, few infrequently executed path 

associated with branches, few loops with few iterations 

associated with each loop. 

 

P 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T



  

 

 

of “non- uniformity” by activity profile and sorted activity 

profile [1-section 5]. Hence various models simulates failures 

occurrences during testing and whose removal result growth in 

reliability is already defined, now applying functional testing 

together with Representative testing help us to detect and 

remove the concrete faults and develop concretely reliable 

software. In functional/ structural testing test cases are created 

using functional specification [6] or program requirement. 

Example when – I option used in CMD line of UNIX sorting 

program it causes sort to ignore characteristics outside ASCII 

Range. Hence we to point that different individual are able to 

construct different test sets for testing a single program in 

hand.  Thus, it is also likely that the designed test sets will 

cause to detect different tests sequences which are further used 

in designing to variations of functional testing used to 

elaborate more to reliability test. All this testing done with 

representative testing which gives the required quantification 

and when it is merged with structural testing, this combination 

is shifting the observed random variable from inter failure 

time to a detailed analysis of debugged faults. Representative 

testing helps to find most commonly occurring faults, first 

hence time to detect new faults that are generated due to new 

innovations increases over time. Hence merge of these two 

testing methods i.e. structural and representative testing may 

do well because 

 Structural testing- considered as defensive approach against 

potential uncertainly [3- section 1], in the operational profile 

and catalyses the faults detection states in detection of testing 

process. 

 Representative testing- can give quantified measures of 

progress being made using order statistics to combine the 

observed failure of faults. Section 3 explains the summary of 

EET model, section 4 explains the parallel implementation of 

testing paradigms, and section 5 is conclusion. 

II. RELIABILITY AND TESTING 

Reliability is a famous concept that has been celebrated for 

years as a necessary attribute of a product or a person. Its 

beginning was in 1816, far before than any one guess. The 

word “reliability” was first given by Samuel Taylor Coleridge 

who was a poet. In statistics, reliability is the consistency of a 

set of parameters, which are used to satisfy a test. Reliability is 

inversely related to unknown error. In Psychology, reliability 

refers to the consistency of a symptom. A test is considered 

reliable if we get the same result in every pass of test. For 

example, if a test is created to measure introversion, then the 

time the test is heading to a subject, the results should be 

approximately the same every time.  

Testing is a necessary and critical part of the software 

development process, on which the reliability and quality of 

the product completely depend. Testing is not bounded to the 

finding of “bugs” in the software, but also boost up confidence 

in its proper working and with the selection of functional and 

nonfunctional properties. Testing related activities measure the 

complete progress of process and may consume an enough 

effort required for producing software. 

A. Challenges in reliability estimation: (1) how can we 

effectively use the architectural specifications of a 

component to construct an efficient reliability estimation 

model? And (2) how do we deal with the uncertainties 

that stay in this model due to the absence of operational 

profile? 

B. Estimating and analyzing software reliability: during 

testing is a branch with over 30 years of past experience. 

Many reliability models have been given: Software 

Reliability Growth Models i.e. SRGMs which are used to 

estimate software reliability using statistical approaches 

[6, 8, 9, and 10]. The common theme across all of these 

approaches, however, is their possibilities to 

implementation-level artifacts, and reliability estimation 

during testing. At architectural level, existing reliability 

estimation approaches consider only the structure of the 

system in hand. The exceptions are [7, 11, 12, and 13]. 

However, none of them approaches consider the effect of 

a component‟s internal behavior on its reliability.  

III.  SUMMARY OF EET MODEL 

EET modal summarized as follow first divide the system into 

parts (cells) of equal size, although it should be focused that 

there is uniform execution of the instruction in each cell. The 

failure caused by fault occurrence can be modeled with the 

help of BET model[1- section 2] , considering a unique 

functional form to show the amount of time spent in each cell 

that allow the bet models for all the cell to be merged to give a 

compound model for the software in whole. Consider our 

division consists of m cells. Let ie represent the execution time 

utilized for instruction in a cell i and  )(eF ii are the total 

failure that occurs in execution of instruction in cells i .Now 

 )(eF ii is random variable whose distribution [1- section 2] 

)(

i
!

)(
 =n}= )F(e Prob{ ii ei

n

i e
n

e 
  2.1 

 

)( ii e - means value of  )(eF ii
 

ie     - Execution time for machine instruction in cell i . 

Since execution of instruction is uniform  

In each cell, then according to BET model iie
 given as 

)( ii e  =  )1( ii

i

e

o ew


    2.2 

 
iow - Faults in cell i at time 

0it  

i  - The rate of failure for each fault in 
thi  cell. 

Recursively both parameter 
iow  and i  can further be 

allocated in terms of software characteristics of cell i  [1- 

section 2] 

iow =
iIDS      2.3 

i =

iIM

R
K     2.4 

Where 

iIS - Source instruction cell i  

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T



  

 

 

iIM - Machine instruction in cell i  

D  - Fault density 

Let  e = 


m

i

ie
1

(i.e. Total execution time of instructions in 

cells of software components) and express 
ie  as ei . The 

factor 
i  is proportion of time spent in thi  cell. Since the cell 

i give a partition of the software component [1-section 2]. 




m

i

i

1

 =1 

Let  F(e) = 


m

i

ii eF
1

)( using the super position property of 

Poisson probability distributions, the distribution of  F(e) is 

also derived same i.e. as Poisson random variable with mean 





m

i

iii

m

i

ii eee
11

)()()(   2.5 

Now equation 2.5 is for any of the software partition and for 

any execution time distribution in partition of each cell. 

Consider a single distribution of time utilized in each cell for 

the division. Division of software component in to m  equal 

cells, in such a way that there each cell contains equal number 

of machine instruction. Hence 

iIM =
m

M I     2.6 

Without generality loss, sorting the partition according to time 

spent in each cell. It is a Sorted Activity Profile [2- section 2]. 

Let time proportion spent in cell i  be 
a

i
m

i

c 









1
    2.7 

Since   


m

i

i

1

 =1, then the constant(c) can be evaluated as: 

a

m

i
c 








  

mm

i
mc

m

i

a
1

1












   2.8 

Equation 2.8 is identified as the numeric approximation of the 

integral 
1

0

dxxa , where 10  x is partitioned into m  cells 

of size 
m

1  and the area under curve 
ax  is probabilistic by the 

sum of individual cell area. Hence equation 2.8 written as  

1

1

0


  a

m
dxxmc a       2.9 

Thus, equation 2.7 written as – 

mm

i
a

a

i

1
)1( 








    2.10 

i , play vital role in formation of Sorted Activity Profile of 

the software component. Note, a1).x+(a  is continuous 

analog of  a
m11).+(a , and similarly dx continuous 

analogue of
m

1 . 

Consider the density of fault D is equal is equal for each cell 

the 
iIS  i.e. source instructions and the 

iIM i.e. machine 

instructions are uniformly distributed over the cells, the fault 

number 
iow  in cell i can be given by 

 

iow =
m

w

m

S
D oI

    2.11 

Where 
ow =

IDS , total software component fault. The fault 

exposure ratios i are same to each cell i , the per fault 

intensity i  [1] [sec-4] can be given as 

 m

m

M

R

I

i 
      2.12 

Where 

IM

R
    

Indicates per fault failure intensity of total software 

component, in case where execution is uniform. Thus  







m

i

eo iie
m

w
e

1

1)(
   2.13 

m
ewe

m

i

e

o
ii

1
1)(

1







  














 













m
ewe

m

i

e
m

i
a

o

a

i 1
11)(

1

)1(

  2.14 

Hence equation 2.14 summation is just integral approximation 









 


dxee

exa a
i

1

0

)1(
)(

  

)(e , can be expressed as: 









 


dxewe

exa

o

a
i

1

0

)1(
1)(



  2.15 

Equation 2.15 can further compressed as  

  

 ),(1)( laHwe o     2.16 

ealdxelaH
alx

.).1(,),(

1

0

 
  2.17 

Now equation 2.17 is for sorted activity profile (SAP) that can 

be draw with function ax . Execution time 0e , correspond 

to 0l which on placing in equation 2.17 give 1)0,( aH , 

hence equation 2.16 after substitution of above value becomes

0)0(  . 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T



  

 

 

Similarly, when e  reaches , then equation 2.17 gives

0),( aH , so then equation 2.16 becomes ow)(
 

and the failure intensity 

),
1

.(..)( l
a

a
Hwe o


 

  2.18 

Hence, the above result not depend on “ a ” i.e. factor of 

uniformity, hence model reduced to BET model, properties of 

),( laH  are summarized in appendix A. 

Now, suppose a in equation 2.17 and 2.16 then 

execution of instruction is very non uniform. If l  depend on 

a  and reaches , however let a with )1( a  

remaining constant. This show   would have to approach 0, 

due to which ow   approach 0. Unless ow  approaches 

.Take a limit such a way )1( a =
2  and 

1 ow  remain constant. From equation 2.18 for failure 

intensity becomes  

),1()( 21 eHe      2.19 

e

e
e

e

2

1

21
)(







  

Integrating last two equations, we get  






e x

dx
x

e
e

2

02

1 1
)(






   2.20 

)()( 2

2

1 eoe 



   

Properties of )(xo  function are summarized in Appendix A. 

Now equation 2.19 & 2.20 shares many same properties of 

Logarithmic NHPP model described in reference [MIO].This 

lead to EET model to Logarithmic NHPP model. 

The cumulative failure number and failure intensity may be 

expressed as 

)1log()( 2

2

1  ee 



   2.21 

1
)(

2

1




t
e




     2.22 

Due to asymptotic behavior of both models, cumulative 

number of failure and failure intensity as e  

)log()( 2

2

1 ee 



   

e
e

2

1)(



 

 
Similarly, for small e , the EET model cumulative number o 

failure can be  









 ...

!3.3!2.2
)(

32

2

1 ll
le




 , 

This is much same as Logarithmic NHPP expansion for small 

e  for the cumulative number of failure 









 ...

32
)(

32

2

1 ll
le




  

In this section, we can reach very near to find the reliable 

software as by finding equations that can be implemented to 

draw sorted activity profile and cumulative failure versus time 

graphs. 

IV. PARALLEL IMPLEMENTATION OF TESTING 

PARADIGAM  

    Here comes the most crucial step for your research 

publication. Ensure the drafted journal is critically reviewed 

by  

This section is described in two parts 

3.1) Step to implement functional testing 

3.2) Representative testing 

3.1) Step to implement functional testing: 

All part is assumed to be conducted over the UNIX sorting 

program [2] or variations obtained by adding faults. We have 

Notations 

',ee   [Execution, exposure] time   

   Per-fault hazard rate 

ie   Time of failure i  

FiE  Reliability estimates for functional testing (

2,1i ) 

RF   Fault reduction factor 

The two functional testing usage causes explained in 

introduction. 

Hence we use two different specification sequences and also 

there combinations for functional testing. Testing that we use 

is referred as functional_test_1 & functional_test_2 below 

given discussion as follow: these two testing performed on 

data collected [summarized in appendix-B], failure data 

gathered with the help of two different sets of functional test 

data from appendix-B.  

These failure data were used with EET model to compute 

reliability estimates. Reliability, estimates that were obtained- 

After K failures. 

The execution time (e-units), and by comparing performance 

of different method of testing. 

Select K=10 and e=12.3, as they were the smallest value at 

which .RF   > 0. Exposure time -> total execution time 

expanded after the software brought to its operational 

environment. 

The above explanation is further used to draw graph between 

reliability and exposure time for the function_test_1, 

function_test_2, also for the block testing and random testing. 

 

3.2) Representative Testing (as explained in introduction)  

3.2.1) Perfect Ordering 

Let start with the consideration that is common to most of 

reliability models, that are used during the testing, faults 

detected in non-increasing order by operational failure rate.  

I.e. our debugging and testing process remove the most 

common faults first. The relation between total set of faults 

and observed faults, which is then given by: 

kimimkiki   1,.1.1   3.2.1 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T



  

 

 

i =operational failure rate. 

And then after K faults the program failure rate is  







km

i

ik m
1

  

We have to follow little hood model [9] and we use to take the 

effect of fault ordering as more visibly by explicit use of order 

statics. 

Although we don‟t know value of    for faults that have not 

yet been detected, but we try to compute their expected 

estimate. 





0

.. )(.)(  dfE mrmr
 

Using density function [4] 









km

j

mjk dfE
1 0

. )(.)(    3.2.2 

This is resulting estimation for k . 

3.2.2) imperfect ordering 

Here is assumption that decreasing order of failure rate is only 

an approximation detected by representative testing. For any 

two faults, there must be a certain probability that less 

common fault happened to found firstly. A perusal of data that 

publish sets such as [5] reveals although failure rate range may 

indeed several order span of magnitude, hence the expected 

decrease in failure rate from one to the next fault is quiet small 

when compare to overall program failure rate, i.e. some fault 

which are out of order are found in any particular test history. 

We would think that order of this sort odd deviation or fault 

detection will be comparatively small. I.e. a fault is not to be 

found more than a few positions out of expected order. Thus 

if, we were to sort fault into non increasing order by failure 

rate, the reconstruction of resulting sequence is almost happen 

expected order of fault detection. We modeled by assuming 

that 

kimimkiki   1,.1.1  , is a much weak 

condition that the equation 3.2.1 although equation still hold 

as an estimate of s . 

V. CONCLUSION 

    We have given reliability growth model which allow 

quantification of the effect of applying directed tested method 

over the EET model. By shifting directly observed inter failure 

time quantity to the individual faults failure rate. This model 

allows all test plans (that are the combination of representative 

and directed (functional) testing methods and contribute) to 

attain a common goal of reliability, although doing the EET 

model with parallel implementation of representative testing 

and directed (functional) testing is great idea. This is also a 

way to explore more in reliability estimation. Implementation 

of this is done future trends since it combines the advantages 

of both EET model and testing techniques, thereby providing 

optimal solution of reliability estimation. According to Recent 

researches, by the end of 2013 there will be many new 

methods are evolved in reliability estimation field by using 

this paper.  

.  

APPENDIX A 

Properties of ),( laH  

This appendix drives and summarized properties of function

),( laH . The definition of ),( laH is 




1

0

),( dxelaH
alx    A.1 

Note, that 1)0,( aH  and 0),( aH with a little 

change of variable (exchange 
alx  with x ) during integral in 

(A, 1), the following alternate expression for ),( laH can be 

obtained. 






1

0

1
1

1

1
),( dxxe

al

laH ax

a

  A.2 

),
1

(
1

),(
1

l
a

al

laH

a

  

Where ),
1

( l
a

  is the incomplete gamma function [AB 

page number 260]. 

If the exponent function in (eqn-A.1) is integrated step by 

step and expanded in its power series, the following power 

series expansion for ),( laH results. 




 




0 !)1(

)(
),(

m

m

mma

l
laH    A.3 

0;  al  

For specific value of a, ),( laH reduces to simple 

functions: 

 

ll edxelaH   
1

0

),(    A.4 

l

e
dxelaH

l
l


 

 
1

),(

1

0

   A.5 

For integer values of 
a

1  (e.g. k
a


1
), equation A.2 can be 

repeatedly integrated by parts to obtain 

 
k

k

ll

l

lEeek ))((!
l),

k

1
H(






   A.6 

Where )(lE k
 are partial sums of the power series for the 

exponential function i.e. 










1

0

0 0)(,
!

)(
)(

k

m

m

k lE
m

l
lE   A.7 

Differentiating the power series expansion (A.3) for 

),( laH step by step, the result obtained is:- 













0

1

)!1)(1(

)(),(

m

m

mma

l

dl

ladH  

Using the relation 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T



  

 

 












 1

1
)1()1()1(

a

a
mama   A.9 

An asymptotic expansion for l)H(a,  valid for large values 

of positive l can be obtained by first rewriting (A.2) as 

















 






l

1
1

1

11
),( dxxe

a
al

laH ax

a

  A.10 

Integrating by parts in the integral in (A.10) results in 



























 ...
)(

)21)(1(

)(

11

1
11

),(

32

1

al

aa

al

a

al
e

a
l

laH

l

a  A.11 

We define the function 
)(lo

as  






l xl

dx
x

e
dxxHlo

00

1
),1()(   A.12 

This function appears in the limiting version of the EET 

model where >a- . Integrating the power series expansion 

for the exponential function results in 

 

...
!3.3!2.2

)(
32 xx

xlo    A.13 

Following a similar approach as was done in deriving A.11, 

the following asymptotic expression for  









  ...

!2!1!0
5172.0)log()(

32 lll
ello z  

 

APPENDIX B 

Failure data collection 

Experiment conducted to obtain failure data using 3 testing 

methods i.e. random testing, block testing and functional 

testing, all parts of this experiment have been implemented 

using Unix sorting program or variants of this program 

obtained by spraying faults. 

For random testing, we come with different seeds to get 29 

different sequences of failure data
~~

.29,...,3,2,1, ii sis  is 

obtained by executing sorting on a total of iT test cases. 

Testing stop after all 9 faults in sorting were removed. 

Notations: 

291,,...,,
~~

2.

~~

~ 








ittts
iki

iii  

~

ik  Total failure required before all the 9 faults revealed 

from sort 
^

s  Sequence of average failure interval, which help to 

obtain estimation of reliability 

if  Fault ]9,1[, ii  

Rearrange the sequence such that 
2921 ... kkk  to 

Obtain the sequence 
2921 ,...,, sss  then,  

^

s
=







 ^^

2

^

1 ~,...,,
ik

ttt , 



















 



29
29

1i

ikgilbk  

kjltt
l

i

ijj ,...,2,1,
1

^









 



 

);|max( jkml m   

All failure data obtained while testing are used to calculate 

reliability estimates from the EET model and described in 

Section 2. Parameter in EET model were estimated with the 

help of failure data, if debugging is imperfect, implies that 

even in case on which program failed, testing is continued 

without repairing the fault.9 faults were sprayed in to the Unix 

sorting program ,the fault type are a sample from commonly 

occurred faults that are entitled by other researchers. The 

sorting program itself is about 1000 lines of executable c-

language code. The failure data was generated is by executing 

the below given sequences of steps. 

1: Ten faulty versions were conducted on sorting as follow 

Sort-0: sorting having all 9 faults 

Sort-1: sorting contains faults f2,…,f9 

Sort-I: (2<=i<=8): sorting having faults f1 , … , fi-1, fi+1, 

… ,f9 

Sort-9: sorting having f1,…,f8 faults 

 

2: Repeat this step for each of 3 testing methods until every 

fault is not found. 

[Initialize] faults-detected to 0 

[test-case construction] construct a test case C, this is 

manual work for functional & block testing, and by 

program in case of random testing. In any case, output 

correctness is checked automatically by an oracle. 

[Program execution] determine if test case C causes at least 

one fault to remove. Execute sorting and sort 0 against C. if 

result of sort 0 is correct then C is success with respect to 

UNIX sorting program. Repeat step 2b. If the output of sort 

0 is not correct then a failure has occurred. Note the total 

execution time b/w previous & this failure. 

[Fault removal] imperfect debugging procedure is used. 

Execute sort 1 to sort 9 on C constructed in step 2b as the 

output of all sort i is reviewed sequentially, starting with 

i=1. The first correct sort ]9,1[, ii  implies that if  is the 

fault which is responsible for the failure. In this case if  is 

the fault which is responsible for the failure. In this case if  

is considered removed. Replaced sort 0 by sorts i, increment 

faults-founded by 1 and go to step 2e. If none result from all 

9 sort is correct then assume that the fault is not removed 

and repeat from step 2b. 

[Check for termination of the experiment] if faults founded 

< 9, then repeat from step 2b; otherwise this procedure 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T



  

 

 

terminates for one testing method 

Step 2d implements prefect debugging by analyzing the 

outputs of all variants of the sort program since sort 0 

having all 9 faults correct behavior of this program says that 

test case C cannot remove any of these faults. However, if 

sort 0 not work or fails then we need to select which fault, 

or a combination results in failure. 

To do so, we execute the other remaining 9 versions of sort. If 

exactly 1 sort out of 9 sorts generates correct output on Test 

case C, we say that \ 

The fault that caused sort to failure is if . 

The fault selected & corrected. 

If none of all version of sorts i, generate correct output. Then 

it is obvious that failure is caused due to combination of all 9 

faults and not by only one fault. In this case no fault is 

corrected. 

All experiment were conducted on a sun-sparc-machine ([2] 

section 4) and method used is one of perfect debugging 

assumption. But it is not found yet that how imperfect 

debugging actually work in real environment ([2] section 3). 

ACKNOWLEDGMENT 

The authors are very thankful to their respected Ms. Darothi 

Sarkar, faculty, computer science department, Amity 

University, Noida, Uttar Pradesh, Authors also pay their 

regards to Dr. Abhay Bansal, professor & Head of ASET, 

Amity University,Noida, Uttar Pradesh for giving their moral 

support and help to carry out this research work.  

 

REFERENCES 

[1] An “extended execution time” software reliability model; 
W.W.Everett;AT&T Bell Laboratories Holmdel, New Jersey;1992 
IEEE 

[2] Effect of Testing Technique on Software Reliability Estimates 
Obtained Using A Time-Domain Model;IEEE; 1995 march  

[3] A Reliability Model Combining Representative and Directed 
Testing;Brian Mitchell and Steaven J.Zeil;Old Dominio 
University;Deptt. Of Computer Science Norfolk,VA 23529-0162 

[4] DAVID, H.A. Order Statistics, Second ed.Jhone Wiley and Sons, 
1981. 

[5] W.E. Howden,”Functional Testing”,IEEE Trans.Software 
Engineering, vol SE-6, 1980 MAR, pp 162-169. 

[6]  Goel A.L., Okumoto K., Time-Dependent Error-Detection Rate 
Models for Software Reliability and Other Performance Measures, 
IEEE Trans. on Reliability, 28(3):206–211, 1979. 

[7]  Goseva-Popstojanova K. et al., Comparison of ArchitectureBased  
Software Reliability Models, in ISSRE 2001, pp. 22-31. 

[8] Jelinski, Z. and Moranda, P. B., Software Reliability Research, 
Statistical Computer  Performance Evaluation, edited by W. 

Freigerger, Academic Press, 1972.  

[9]  Littlewood, B.A., and Verrall, J.L., A Bayesian Reliability 

Growth Model for Computer Software, Applied Statistics, Volume 
22, pp. 332-346, 1973. 

[10]  Musa J.D., and Okumoto K., Logarithmic Poisson Execution 

[11]  Reussner R., Schmidt H., Poernomo I., Reliability prediction for 
component-based software architectures, In Journal of Systems 
and Software, 66(3), Elsevier Science Inc, 2003. 

[12]  Wang W., Wu Y., Chen M., An architecture-based software 
reliability model, in Proc. of Pacific Rim International Symposium 
on Dependable Computing, 1999. 

[13]  Yacoub S.M., Cukic B., Ammar H.H., Scenario-Based Reliability 
Analysis of Component-Based Software, in 10th Int’l Symposium 
on Software  Reliability Engr., Boca Raton, Nov. 1999. 

[AB] Abramowitz, Milton and Irene A. stegun; Handbook of 
Mathematical Functions; National Bureau of Standards Applied 
mathematics Series-55; june 1964 

[MIO]Musa J. D; A. Iannino, K.Okumoto; Software Reliability-
measurment, prediction, Application; McGraw Hill; 1987. 

AUTHORS 

First Author –Rahul Chaudhary,  pursuing master of 

technology (1st year), from computer science department, 

Amity University, Noida, Uttar Pradesh, and  done there 

Bachelor of technology  degree from IAMR college of 

engineering, Meerut, Uttar Pradesh, His area of interest 

includes Software engineering and Reliability, Email id: 

rahulch369@yahoo.in 

 

Second Author– Darothi Sarkar, M.Tech, faculty, computer 

science department, Amity University, Noida, Uttar 

Pradesh, Email id: dsarkar@amity.edu. 

 

Correspondence Author –Rahul Chaudhary,  pursuing 

master of technology (1st year), from computer science 

department, Amity University, Noida, Uttar Pradesh, and  

done there Bachelor of Technology  degree from IAMR 

college of Engineering, Meerut, Uttar Pradesh, His area of 

interest includes Software engineering and Reliability, 

Email id: rahulch369@yahoo.in. 

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T


