International Journal of Engineering Research & Technology (IJERT)
NCRTS 14 Conference Proceedings
ISSN: 2278-0181

A Systematic Approach to Extract Knowledge Types
In APl Reference Documentation: A Survey

K.Srilakshmi
Department of Information Technology
Sree Vidyanikethan Engineering College
Tirupati, India
katari.srilakshmi@gmail.com

Abstract - Developing computer programs with an
Application Program Interface (API) is an important part in
software Engineering. The APl Reference Documentation is a
key role in this process. The problem for developers is to select
the optimized API reference documentation to implement
programs quickly. By wusing suitable API reference
documentation, removes the low value content in the web. By
using knowledge types we improve the quality of the Reference
documentation during the product development. The Reference
documentation is also plays a crucial role in how developers
learn and use an API, and developers have high expectations
about the information they should find therein. Most
technology platforms expose APIs provide a documentation
system with a uniform structure and look and-feel for
presenting and organizing the APl documentation. The main
idea of this paper is to extract knowledge types in API
Reference Documentation and to study the gap between
information seekers & information providers.

Keywords: APl Documentation, Content Analysis, Java,
Knowledge Types, .NET, Textual Mining.

l. INTRODUCTION

oftware Engineering is the study of engineering to the

design, development, and maintenance of software.

Software engineering approach with the connotations of
predictability, precision, mitigated risk and professionalism.
The reference documentation is a type of document that
outlines past procedures, actions or strategies as they relate
to a particular activity. Application programming interfaces
(APIs) access the reuse of libraries and frameworks in
software development.

An important and challenging programming activity is
using Application Programming Interfaces (APIs),
frameworks, toolkits and libraries. Programmers
implementing new functionality need to determine which
APIs to use and how to combine them. Programmers
reading or modifying code need to understand how existing
code that calls APIs works, what assumptions the code
makes, and how to change or add to the code without
breaking these assumptions.

We define API reference documentation as a set
of documents indexed by API element name, where each
document specifically provides information about an
element (class, method, etc.). Reference documentation is a
necessary and significant part of a framework. Most
technology platforms exposing APIs provide a

www.ijert.org

O.Obulesu
Department of Information Technology
Sree Vidyanikethan Engineering College
Tirupati, India
oobulesu681@gmail.com

documentation system with a uniform structure and look
and-feel for presenting and organizing the API
documentation. Phase 1 addressed the first research question
using a combination of grounded and analytical methods to
derive taxonomy of knowledge types. In Phase 2, we used
the taxonomy as a coding guide and had 17 trained coders
review a random sample of documentation units to assess
whether each unit contained knowledge of the different
types in our taxonomy. Each knowledge type became a
variable that had to be rated with the value True (if it is
present in the unit) or False (if not). Application
Programming Interfaces (APIs) are a means of code reuse.
They provide an interface to features and functionality in
existing frameworks and libraries, such as the Java Standard
Edition libraries or the .NET framework. Reusing APIs
saves time and mitigates the risk of defects in implementing
an equivalent feature from scratch. Using large APIs,
however, is often challenging to many programmers. This
challenge can be attributed to factors like interdependencies
between multiple APIs, obscure APl naming convention,
low cohesion of an API, or lack of information on how to
use them efficiently. Providing extensive documentation for
the APIs can help programmers understand the APIs better.
Documentation is thus an important constituent of APIs in
particular and software projects in general. There exist
different types of software documentation, such as reference
documentation, code comments, tutorials, and white papers.
Each of these types of documentation serves a specific
purpose. For instance, API reference documentation, such as
Javadoc, provides information specific to individual API
elements, whereas a tutorial, such as the Java Tutorial,
provides information used to accomplish an end-to-end task.

We use the expression rating a unit to mean rating all
variables for the unit. In this phase each documentation unit
was independently rated by two randomly assigned coders.
The result was a database of ratings which also contained
disagreements for some variables in some documentation
units (e.g., for the documentation unit of method m coder 1
rated the presence of knowledge type T as True and coder 2
coded it as False). In Phase 3, we systematically analyzed
the disagreements to 1) evaluate the work of the coders, 2)
evaluate the quality of the guide, and 3) design a scheme to
resolve disagreements. This analysis allowed us to answer
our second research question. After applying the data
cleaning scheme, each rated variable in a unit was
reconciled into a single value: True or False.

200

International Journal of Engineering Research & Technology (IJERT)
NCRTS 14 Conference Proceedings
ISSN: 2278-0181

The main objectives of this paper are:

A systematic identification of knowledge types in
reference documentation.

To study the gap between information seekers and
information providers to provide qualitative
documentation units that present unusual combinations
of features in the web.

To improve the quality of software project development
via good reference documentation.

To improve the quality of research works in the
industry.

Il. RELATED WORK

In 1977, JR. Landis proposed a measurement of
agreement for categorical data[6], it explains the
measurement of agreement are used to assess the
reproducibility of a new assay or instrument, the
acceptability of a new or generic process, methodology or
method comparison. Also identified the several different
alternatives to Cohen’s kappa and weighted kappa
coefficients. It focused mainly on the investigate whether
there are others forms of matrix functions that can be
applied to the multivariate kappa.

In 1993, James D. Herbssleb and Eiji kuwana
introduced preserving knowledge in design projects: what
designers need to know, it describes the design of
technology support and new procedural methods for
software design. And also identified data analysis method
and research for design tools and methods are discussed [4].

In 1999, Douglas Kramer proposed API

documentation from source code comments: a case study of
Javadoc to explain the process we went through to
determine the goals, principles, audience, content and style
for writing comments in source code for the Java platform at
the Java Software division of Sun Microsystems [5]. This
includes how the documentation comments evolved to
become the home of the Java platform API specification,
and the guidelines we developed to make it practical for this
document to reside in the same files as the source code.
In 2007, Strauss, Anselm L.; Corbin, Juliet M. proposed
Basics of Qualitative Research: Techniques and Procedures
for Developing Grounded Theory [1] explains the different
techniques and procedures. And also explained theoretical
sampling is data gathering driven by concepts derived from
the evolving theory and based on the concept of making
comparisons.

Again in 2007, Brian Ellis, Jeffrey Stylos, and Brad
Myers introduced The Factory Pattern in APl Design: A
Usability Evaluation usability of software APIs is an
important and infrequently researched topic. This explained
the future research should explore the similarities and
differences between class clusters and factories from the
API developer’s point of view as well [3]. Also explains the
relative ease of debugging objects created using factories as
opposed to constructors.

In 2008, Jonathan Sillito proposed Asking and
Answering Questions during a Programming Change Task,
is known about the specific kinds of questions programmers
ask when evolving a code base. This also explains the

www.ijert.org

catalog of 44 types of questions programmers ask and a
categorization of those questions into four categories based
on the kind and scope of information needed to answer a
question, and a description of important context for the
process of answering questions, and a description of support
that is missing from current programming tools[12].

Again in 2008, Jeffrey Stylos, Brad A. Myers
proposed The Implications of Method Placement on API
Learnability [13] explained to better understand what makes
Application Programming Interfaces (APIs) hard to use and
how to improve them. Here Javadoc could also be changed
to make appropriate starting classes easier to find. And also
used different prototype alternative designs to the flat
alphabetical class list.

In 2009, Martin P. Robillard introduced What Makes APIs
Hard to Learn? Answers from Developers [9] explains the
study of obstacles that professional Microsoft developers
faced when learning to use APIs uncovered challenges and
resulting implications for API users and designers.

In 2010, Barthelemy Dagenais and Martin P. Robillard
proposed Creating and Evolving Developer Documentation:
Understanding the Decisions of Open Source Contributors
[2] identified the decisions that contributors make, the
factors influencing these decisions and the consequences for
the project. Also we would like to report our results on the
other decisions made by open source contributors and
pursue our analysis of the documentation needs of users.

In. 2011, Chris Parnin, Christoph Treude proposed
Measuring APl Documentation on the Web, developer
forums and Q&A websites are changing the way software is
documented [10]. Introduced the method of one particular
API |jQuery | are documented on the Web. And also we
need to understand what can be done to help developers find
documentation more effectively and how tool support can
help those creating documentation using social media.

Again in 2011, Lin Shi, Hao Zhong, Tao Xie, and Mingshu
Li proposed An Empirical Study on Evolution of API
Documentation with the evolution of an API library, its
documentation also evolves [11].

In 2012, Martin Monperrus, Michael Eichberg, Elif Tekes,
Mira Mezini proposed what should developers be aware of?
An empirical study on the directives of APl documentation,
are exposed to developers in order to reuse software
libraries. And also identified work related software tools [7].
Again in 2012, Dennis Pagano and Walid Maalej proposed
How do open source communities’ blog? [8] They report on
an exploratory study, which aims at understanding how
software communities use blogs compared to conventional
development infrastructures. They introduced two research
methods hypothesis-driven and a content analysis line.
Hypothesis-driven research enables us to explore the role of
social media and allows for a need-driven integration of
these media into development processes and tools. A content
analysis research enables a more in-depth analysis of the
knowledge shared in blogs, giving more reliable results on
the roles, efficiency, and the quality of blogs and blogging.

201

International Journal of Engineering Research & Technology (IJERT)
NCRTS'14 Conference Proceedings
ISSN: 2278-0181

I11. CONTENT ANALYSIS METHODOLOGY

4, Results
analysis

1. Taxonomy
development

2, Sampling and
coding

3. Reliability
Coding
results

analysis
Random

: Analysis of Analysis of co-
sampling disagreements occurrences

| L

Grounded

— Coding guide
research

Comparison of
\ prapnrtionsj

Catalog of
questions

. L 4
Analytical Sample with Sources of Length
structuring structural info noise analysis

Knowledge Coder Disagreement
types training reconciliation

Reliability Peer coding
gssessment

Fig. 1. The overview of process methodology

Patterns
of knowledge

Clean
data

The objective is to produce a taxonomy that would be:

1. Reliable, in that different people consistently come
to the same conclusion about the knowledge types
contained in a documentation unit.

2. Meaningful, listing knowledge types relevant to the
practice of software development.

3. Fined-grained, providing more than just a few high-
level categories.

The outcome of this process was a detailed taxonomy of
knowledge types usable as a coding guide for the quantitative
analysis of the content of APl documentation. Our research is
based on content analysis, a methodology for studying the
content of recorded human communications. The most
challenging part of this research project consisted of describing
the different knowledge types commonly found in API
reference documentation. Many authors have discussed the
different types of knowledge used in various software
engineering contexts, and in some cases provided empirically
grounded taxonomies. Unfortunately, a careful review of
previous work showed that existing taxonomies are neither
directly applicable to APl documentation nor sufficiently
detailed to be directly used as knowledge types definitions for
our purpose. We thus elaborated a taxonomy of knowledge
types for API reference documentation through an iterative
refinement process.

IV. PROPOSED METHODOLOGY

Knowledge
Tvpe
Identification

Taxonomy
development

-

Sampling and L

Amnalytical
Structuring

coding
_/

;

Reliability
Amnalysis

Testing and
Reliability

Assessimernt

Results Analysis

Fig. 2. A Systematic research process

A. Knowledge Type Identification

In the first step, we used a grounded approach to elicit a
preliminary list of knowledge types present in API reference
documentation. Each author independently selected sentences
from the reference documentation of two different open-source
systems: Http Components and Jena. These systems were
selected for their mature and extensive reference
documentation. To select sentences, we employed a process
inspired by theoretical sampling. This involves refining and
adjusting the sampling procedure as data is collected.

B. Analytical Structuring

A limitation of the grounded approach is that it does not
guarantee that all knowledge types will be uncovered. In a
second step, we refined our catalog with a detailed review of
the literature and, through analytical reasoning, expanded all
variation points for a question template.

As a part of this process, we assessed the reliability of our
catalog by independently coding individual sentences in
randomly selected sets of API elements in open-source APIs
others that those distributed as part of the JDK 6.0 and .NET
4.0.5 The goal of this evaluation was to determine if any
obvious questions had been left out, and assess the ease of
associating sentences with questions that model knowledge

types
C. Testing and Reliability Assessment

In the last step, we tested the reliability of our taxonomy
by iteratively coding various random samples of 50 units,
studying the disagreements, and making improvements based
on the findings. As a part of this process, we added an
increasing number of clarifications to the coding guide about
how to code different variables. The samples consisted of
documentation units which were to be coded for about 12
variables that represent to what degree knowledge of different
types was present.

www.ijert.org

202

V. CONCLUSION

We found that Functionality knowledge is pervasive and
Structure is common, while other types, such as Concepts
and Purpose, are much rarer. We also found that Non
information, a deviant type of knowledge representing low-
value content, is prevalent in the documentation of methods
and fields of the JDK and .NET APIs. Comparisons of
patterns of knowledge types in different populations
revealed many significant differences on, for example, how
classes are documented versus methods, how knowledge
types tend to co-occur, and how these patterns take different
forms in different technology platforms. Collections of
knowledge patterns applicable to a cohesive subset of API
documentation unit can be seen as a form of documentation
style.

The findings can inform software development

practice in four different ways. First, they allow practitioners
to evaluate the content of their APl documentation in
relation to well-defined knowledge types. Second, they can
guide the development of documentation templates that are
adapted to the knowledge commonly associated with
different API elements types. Third, our taxonomy provides
a vocabulary that can facilitate discussions about the content
of APl documentation. Finally, they document the extent of
low-value content in documentation which we hope will
serve as a motivation for curtailing this practice.
The study also motivates additional research in at least three
areas. First, our taxonomy provides a foundation for the
automated classification of knowledge types in API
documentation. Second, our results help in studying the gap
between the knowledge provided by different types of
documents and the information needs of developers. Finally,
classifying documentation according to knowledge types
supports quantitative analyses linking patterns of knowledge
with more subjective quality features.

www.ijert.org

10.

11.

12.

13.

14.

International Journal of Engineering Research & Technology (IJERT)
NCRTS 14 Conference Proceedings
ISSN: 2278-0181

REFERENCES

J. Corbin and A. Strauss, Basics of Qualitative Research:
Techniques and Procedures for Developing
Grounded Theory, third ed. Sage Publications, 2007.

B. Dagenais and M.P. Robillard, “Creating and Evolving
Developer Documentation: Understanding the Decisions of Open
Source Contributors,” Proc. 18th ACM SIGSOFT Int’l
Symp.Foundations of Software Eng., pp. 127-136, Nov. 2010.

B. Ellis, J. Stylos, and B. Myers, “The Factory Pattern in API
Design: A Usability Evaluation,” Proc. 29th

ACM/IEEE Int’l Conf.Software Eng., pp. 302-312, May 2007.
J.D. Herbsleb and E. Kuwana, “Preserving Knowledge in Design
Projects: What Designers Need to Know,” Proc. Joint
INTERACT ’93 and CHI '93 Conf. Human Factors in
Computing Systems, pp. 7- 14, 1993.

D. Kramer, “API Documentation from Source Code Comments:
A Case Study of Javadoc,” Proc. Conf. ACM Special Interest
Group for Design of Comm., pp. 147-153, 1999.

J.R. Landis and G.G. Koch, “The Measurement of Observer
Agreement for Categorical Data,” Biometrics,
vol. 33, no. 1, pp. 159-174, Mar. 1977.

M. Monperrus, M. Eichberg, E. Tekes, and M. Mezini,

“What Should Developers Be Aware of? An

Empirical Study on the Directives of APl Documentation,”
Empirical Software Eng., vol. 17, no. 6, pp.703-737,
2012.
D. Pagano and W. Maalej, “How Do Open Source

Communities Blog?” Empirical Software Eng., pp. 1- 35, 2012.
M.P. Robillard, “What Makes APIs Hard to Learn? Answers
from Developers,” IEEE Software, vol. 26, no. 6, pp. 26-34,
Nov./Dec.2009.

M.P. Robillard and R. DeLine, “A Field Study of API

Learning Obstacles,” Empirical Software
pp. 703-732, 2011.

Eng., vol. 16, no. 6,

L. Shi, H. Zhong, T. Xie, and M. Li, “An Empirical ~ Study on
Evolution of Documentation,” Proc. Conf.
Fundamental Approaches to Software Eng., pp. 416-431,

2011.
J. Sillito, G.C. Murphy, and K.D. Volder, “Asking and
Answering Questions during a Programming

Change Task,” IEEE Trans.Software Eng., vol. 34, no. 4, pp.
434-451, July/Aug. 2008.
J. Stylos, B. Graf, D.K. Busse, C. Ziegler, and R.E.J. Karstens,

“A Case Study of API Re design for
Improved Usability,” Proc. Symp. Visual Languages and
Human-Centric Computing, pp.189-192, 2008.

203

