
A Systematic Approach to Extract Knowledge Types

in API Reference Documentation: A Survey

K.Srilakshmi
Department of Information Technology

Sree Vidyanikethan Engineering College

Tirupati, India

O.Obulesu

Department of Information Technology

Sree Vidyanikethan Engineering College

Tirupati, India

 katari.srilakshmi@gmail.com oobulesu681@gmail.com

Abstract - Developing computer programs with an

Application Program Interface (API) is an important part in

software Engineering. The API Reference Documentation is a

key role in this process. The problem for developers is to select

the optimized API reference documentation to implement

programs quickly. By using suitable API reference

documentation, removes the low value content in the web. By

using knowledge types we improve the quality of the Reference

documentation during the product development. The Reference

documentation is also plays a crucial role in how developers

learn and use an API, and developers have high expectations

about the information they should find therein. Most

technology platforms expose APIs provide a documentation

system with a uniform structure and look and-feel for

presenting and organizing the API documentation. The main

idea of this paper is to extract knowledge types in API

Reference Documentation and to study the gap between

information seekers & information providers.

Keywords: API Documentation, Content Analysis, Java,

Knowledge Types, .NET, Textual Mining.

I. INTRODUCTION

oftware Engineering is the study of engineering to the

design, development, and maintenance of software.

Software engineering approach with the connotations of

predictability, precision, mitigated risk and professionalism.

The reference documentation is a type of document that

outlines past procedures, actions or strategies as they relate

to a particular activity. Application programming interfaces

(APIs) access the reuse of libraries and frameworks in

software development.

An important and challenging programming activity is

using Application Programming Interfaces (APIs),

frameworks, toolkits and libraries. Programmers

implementing new functionality need to determine which

APIs to use and how to combine them. Programmers

reading or modifying code need to understand how existing

code that calls APIs works, what assumptions the code

makes, and how to change or add to the code without

breaking these assumptions.

 We define API reference documentation as a set

of documents indexed by API element name, where each

document specifically provides information about an

element (class, method, etc.). Reference documentation is a

necessary and significant part of a framework. Most

technology platforms exposing APIs provide a

documentation system with a uniform structure and look

and-feel for presenting and organizing the API

documentation. Phase 1 addressed the first research question

using a combination of grounded and analytical methods to

derive taxonomy of knowledge types. In Phase 2, we used

the taxonomy as a coding guide and had 17 trained coders

review a random sample of documentation units to assess

whether each unit contained knowledge of the different

types in our taxonomy. Each knowledge type became a

variable that had to be rated with the value True (if it is

present in the unit) or False (if not). Application

Programming Interfaces (APIs) are a means of code reuse.

They provide an interface to features and functionality in

existing frameworks and libraries, such as the Java Standard

Edition libraries or the .NET framework. Reusing APIs

saves time and mitigates the risk of defects in implementing

an equivalent feature from scratch. Using large APIs,

however, is often challenging to many programmers. This

challenge can be attributed to factors like interdependencies

between multiple APIs, obscure API naming convention,

low cohesion of an API, or lack of information on how to

use them efficiently. Providing extensive documentation for

the APIs can help programmers understand the APIs better.

Documentation is thus an important constituent of APIs in

particular and software projects in general. There exist

different types of software documentation, such as reference

documentation, code comments, tutorials, and white papers.

Each of these types of documentation serves a specific

purpose. For instance, API reference documentation, such as

Javadoc, provides information specific to individual API

elements, whereas a tutorial, such as the Java Tutorial,

provides information used to accomplish an end-to-end task.

We use the expression rating a unit to mean rating all

variables for the unit. In this phase each documentation unit

was independently rated by two randomly assigned coders.

The result was a database of ratings which also contained

disagreements for some variables in some documentation

units (e.g., for the documentation unit of method m coder 1

rated the presence of knowledge type T as True and coder 2

coded it as False). In Phase 3, we systematically analyzed

the disagreements to 1) evaluate the work of the coders, 2)

evaluate the quality of the guide, and 3) design a scheme to

resolve disagreements. This analysis allowed us to answer

our second research question. After applying the data

cleaning scheme, each rated variable in a unit was

reconciled into a single value: True or False.

S

200

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCRTS`14 Conference Proceedings

ISSN: 2278-0181

The main objectives of this paper are:

i A systematic identification of knowledge types in

reference documentation.

ii To study the gap between information seekers and

information providers to provide qualitative

documentation units that present unusual combinations

of features in the web.

iii To improve the quality of software project development

via good reference documentation.

iv To improve the quality of research works in the

industry.

II. RELATED WORK

 In 1977, J.R. Landis proposed a measurement of

agreement for categorical data[6], it explains the

measurement of agreement are used to assess the

reproducibility of a new assay or instrument, the

acceptability of a new or generic process, methodology or

method comparison. Also identified the several different

alternatives to Cohen’s kappa and weighted kappa

coefficients. It focused mainly on the investigate whether

there are others forms of matrix functions that can be

applied to the multivariate kappa.

 In 1993, James D. Herbssleb and Eiji kuwana

introduced preserving knowledge in design projects: what

designers need to know, it describes the design of

technology support and new procedural methods for

software design. And also identified data analysis method

and research for design tools and methods are discussed [4].

 In 1999, Douglas Kramer proposed API

documentation from source code comments: a case study of

Javadoc to explain the process we went through to

determine the goals, principles, audience, content and style

for writing comments in source code for the Java platform at

the Java Software division of Sun Microsystems [5]. This

includes how the documentation comments evolved to

become the home of the Java platform API specification,

and the guidelines we developed to make it practical for this

document to reside in the same files as the source code.

In 2007, Strauss, Anselm L.; Corbin, Juliet M. proposed

Basics of Qualitative Research: Techniques and Procedures

for Developing Grounded Theory [1] explains the different

techniques and procedures. And also explained theoretical

sampling is data gathering driven by concepts derived from

the evolving theory and based on the concept of making

comparisons.

 Again in 2007, Brian Ellis, Jeffrey Stylos, and Brad

Myers introduced The Factory Pattern in API Design: A

Usability Evaluation usability of software APIs is an

important and infrequently researched topic. This explained

the future research should explore the similarities and

differences between class clusters and factories from the

API developer’s point of view as well [3]. Also explains the

relative ease of debugging objects created using factories as

opposed to constructors.

 In 2008, Jonathan Sillito proposed Asking and

Answering Questions during a Programming Change Task,

is known about the specific kinds of questions programmers

ask when evolving a code base. This also explains the

catalog of 44 types of questions programmers ask and a

categorization of those questions into four categories based

on the kind and scope of information needed to answer a

question, and a description of important context for the

process of answering questions, and a description of support

that is missing from current programming tools[12].

 Again in 2008, Jeffrey Stylos, Brad A. Myers

proposed The Implications of Method Placement on API

Learnability [13] explained to better understand what makes

Application Programming Interfaces (APIs) hard to use and

how to improve them. Here Javadoc could also be changed

to make appropriate starting classes easier to find. And also

used different prototype alternative designs to the flat

alphabetical class list.

 In 2009, Martin P. Robillard introduced What Makes APIs

Hard to Learn? Answers from Developers [9] explains the

study of obstacles that professional Microsoft developers

faced when learning to use APIs uncovered challenges and

resulting implications for API users and designers.

In 2010, Barthelemy Dagenais and Martin P. Robillard

proposed Creating and Evolving Developer Documentation:

Understanding the Decisions of Open Source Contributors

[2] identified the decisions that contributors make, the

factors influencing these decisions and the consequences for

the project. Also we would like to report our results on the

other decisions made by open source contributors and

pursue our analysis of the documentation needs of users.

In 2011, Chris Parnin, Christoph Treude proposed

Measuring API Documentation on the Web, developer

forums and Q&A websites are changing the way software is

documented [10]. Introduced the method of one particular

API |jQuery | are documented on the Web. And also we

need to understand what can be done to help developers find

documentation more effectively and how tool support can

help those creating documentation using social media.

Again in 2011, Lin Shi, Hao Zhong, Tao Xie, and Mingshu

Li proposed An Empirical Study on Evolution of API

Documentation with the evolution of an API library, its

documentation also evolves [11].

In 2012, Martin Monperrus, Michael Eichberg, Elif Tekes,

Mira Mezini proposed what should developers be aware of?

An empirical study on the directives of API documentation,

are exposed to developers in order to reuse software

libraries. And also identified work related software tools [7].

Again in 2012, Dennis Pagano and Walid Maalej proposed

How do open source communities’ blog? [8] They report on

an exploratory study, which aims at understanding how

software communities use blogs compared to conventional

development infrastructures. They introduced two research

methods hypothesis-driven and a content analysis line.

Hypothesis-driven research enables us to explore the role of

social media and allows for a need-driven integration of

these media into development processes and tools. A content

analysis research enables a more in-depth analysis of the

knowledge shared in blogs, giving more reliable results on

the roles, efficiency, and the quality of blogs and blogging.

201

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCRTS`14 Conference Proceedings

ISSN: 2278-0181

III. CONTENT ANALYSIS METHODOLOGY

Fig. 1. The overview of process methodology

The objective is to produce a taxonomy that would be:

1. Reliable, in that different people consistently come

 to the same conclusion about the knowledge types

 contained in a documentation unit.

2. Meaningful, listing knowledge types relevant to the

 practice of software development.

3. Fined-grained, providing more than just a few high-

 level categories.

 The outcome of this process was a detailed taxonomy of

knowledge types usable as a coding guide for the quantitative

analysis of the content of API documentation. Our research is

based on content analysis, a methodology for studying the

content of recorded human communications. The most

challenging part of this research project consisted of describing

the different knowledge types commonly found in API

reference documentation. Many authors have discussed the

different types of knowledge used in various software

engineering contexts, and in some cases provided empirically

grounded taxonomies. Unfortunately, a careful review of

previous work showed that existing taxonomies are neither

directly applicable to API documentation nor sufficiently

detailed to be directly used as knowledge types definitions for

our purpose. We thus elaborated a taxonomy of knowledge

types for API reference documentation through an iterative

refinement process.

IV. PROPOSED METHODOLOGY

Fig. 2. A Systematic research process

A. Knowledge Type Identification

In the first step, we used a grounded approach to elicit a

preliminary list of knowledge types present in API reference

documentation. Each author independently selected sentences

from the reference documentation of two different open-source

systems: Http Components and Jena. These systems were

selected for their mature and extensive reference

documentation. To select sentences, we employed a process

inspired by theoretical sampling. This involves refining and

adjusting the sampling procedure as data is collected.

B. Analytical Structuring

A limitation of the grounded approach is that it does not

guarantee that all knowledge types will be uncovered. In a

second step, we refined our catalog with a detailed review of

the literature and, through analytical reasoning, expanded all

variation points for a question template.

As a part of this process, we assessed the reliability of our

catalog by independently coding individual sentences in

randomly selected sets of API elements in open-source APIs

others that those distributed as part of the JDK 6.0 and .NET

4.0.5 The goal of this evaluation was to determine if any

obvious questions had been left out, and assess the ease of

associating sentences with questions that model knowledge

types

C. Testing and Reliability Assessment

In the last step, we tested the reliability of our taxonomy

by iteratively coding various random samples of 50 units,

studying the disagreements, and making improvements based

on the findings. As a part of this process, we added an

increasing number of clarifications to the coding guide about

how to code different variables. The samples consisted of

documentation units which were to be coded for about 12

variables that represent to what degree knowledge of different

types was present.

202

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCRTS`14 Conference Proceedings

ISSN: 2278-0181

V. CONCLUSION

We found that Functionality knowledge is pervasive and

Structure is common, while other types, such as Concepts

and Purpose, are much rarer. We also found that Non

information, a deviant type of knowledge representing low-

value content, is prevalent in the documentation of methods

and fields of the JDK and .NET APIs. Comparisons of

patterns of knowledge types in different populations

revealed many significant differences on, for example, how

classes are documented versus methods, how knowledge

types tend to co-occur, and how these patterns take different

forms in different technology platforms. Collections of

knowledge patterns applicable to a cohesive subset of API

documentation unit can be seen as a form of documentation

style.

 The findings can inform software development

practice in four different ways. First, they allow practitioners

to evaluate the content of their API documentation in

relation to well-defined knowledge types. Second, they can

guide the development of documentation templates that are

adapted to the knowledge commonly associated with

different API elements types. Third, our taxonomy provides

a vocabulary that can facilitate discussions about the content

of API documentation. Finally, they document the extent of

low-value content in documentation which we hope will

serve as a motivation for curtailing this practice.

The study also motivates additional research in at least three

areas. First, our taxonomy provides a foundation for the

automated classification of knowledge types in API

documentation. Second, our results help in studying the gap

between the knowledge provided by different types of

documents and the information needs of developers. Finally,

classifying documentation according to knowledge types

supports quantitative analyses linking patterns of knowledge

with more subjective quality features.

REFERENCES

1. J. Corbin and A. Strauss, Basics of Qualitative Research:

Techniques and Procedures for Developing
 Grounded Theory, third ed. Sage Publications, 2007.

2. B. Dagenais and M.P. Robillard, “Creating and Evolving
Developer Documentation: Understanding the Decisions of Open

Source Contributors,” Proc. 18th ACM SIGSOFT Int’l

Symp.Foundations of Software Eng., pp. 127-136, Nov. 2010.

3. B. Ellis, J. Stylos, and B. Myers, “The Factory Pattern in API

Design: A Usability Evaluation,” Proc. 29th
ACM/IEEE Int’l Conf.Software Eng., pp. 302-312, May 2007.

4. J.D. Herbsleb and E. Kuwana, “Preserving Knowledge in Design

Projects: What Designers Need to Know,” Proc. Joint
INTERACT ’93 and CHI ’93 Conf. Human Factors in

Computing Systems, pp. 7- 14, 1993.

5. D. Kramer, “API Documentation from Source Code Comments:
A Case Study of Javadoc,” Proc. Conf. ACM Special Interest

Group for Design of Comm., pp. 147-153, 1999.

6. J.R. Landis and G.G. Koch, “The Measurement of Observer
Agreement for Categorical Data,” Biometrics,

vol. 33, no. 1, pp. 159-174, Mar. 1977.

7. M. Monperrus, M. Eichberg, E. Tekes, and M. Mezini,
“What Should Developers Be Aware of? An

Empirical Study on the Directives of API Documentation,”

Empirical Software Eng., vol. 17, no. 6, pp.703-737,
2012.

8. D. Pagano and W. Maalej, “How Do Open Source

Communities Blog?” Empirical Software Eng., pp. 1- 35, 2012.
9. M.P. Robillard, “What Makes APIs Hard to Learn? Answers

from Developers,” IEEE Software, vol. 26, no. 6, pp. 26-34,

Nov./Dec.2009.
10. M.P. Robillard and R. DeLine, “A Field Study of API

Learning Obstacles,” Empirical Software Eng., vol. 16, no. 6,

pp. 703-732, 2011.
11. L. Shi, H. Zhong, T. Xie, and M. Li, “An Empirical Study on

Evolution of Documentation,” Proc. Conf.

Fundamental Approaches to Software Eng., pp. 416-431,
2011.

12. J. Sillito, G.C. Murphy, and K.D. Volder, “Asking and

Answering Questions during a Programming
Change Task,” IEEE Trans.Software Eng., vol. 34, no. 4, pp.

434-451, July/Aug. 2008.

13. J. Stylos, B. Graf, D.K. Busse, C. Ziegler, and R.E.J. Karstens,

“A Case Study of API Re design for

14. Improved Usability,” Proc. Symp. Visual Languages and
Human-Centric Computing, pp.189-192, 2008.

203

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCRTS`14 Conference Proceedings

ISSN: 2278-0181

