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Abstract  
 

BACKGROUND - The accurate prediction of where 

faults are likely to occur in code can help test effort, 

reduce costs, and improve the quality of software.  

Predicting fault – prone software component is an 

economically important activity and so has received a 

good deal of attention. OBJECTIVE: We proposed and 

evaluate a systematic analysis of software framework 

for software fault prediction that supports (1) unbiased 

(2) Comprehensive cooperation between competing 

prediction system. METHOD: The framework is 

comprised of (1) Design evaluation (2) Fault prediction 

components.  The design evaluation analyzes the 

prediction performance of compacting learning designs 

for given historical data sets. The fault prediction 

builds models according to the evaluated learning 

design and predicts software faults with new data 

according to the constructed model. RESULTS : The 

result shows that we should choose different learning 

designs for different data sets, that small details in 

conducting how evolution are conducted can 

completely reverse findings and last, that our proposed 

frame work is more effective and less prone to bais then 

previous approaches. CONCLUSTIONS-Failure to 

properly or fully evaluate a learning design can be 

misleading; however, these problems may be overcome 

by our proposed framework. 

 

1. Introduction  
   Software fault prediction has been an important 

research topic in the software engineering filed for 

more than 32 years.  Our analysis investigate how 

model performance in affected by the context in which 

the model was developed, the independent variables 

used in the model, and the technique on which the 

model was build. 

Fault prediction modelling is an important area of reach 

and the subject of many previous studies these studies 

typically produce fault prediction models which allow 

software engineers to focus development activities on 

fault-prone code, thereby improving software quality 

and making better use of resources. 

The current fault prediction work focuses on (1) 

estimating the number of faults remaining in software 

systems. (2) Discovering faults association and (3) 

classifying the fault- prone of software component. The 

first type of work employs statically approaches, 

Capture- Recapture(CR) model and detection profile 

methods(DPM) to estimate the number of faults 

remaining in software systems with inspection data and 

process quality data.  The prediction result can be used 

as an important measure for the software developer and 

can be used to control the software process and grange 

the likely delivered quality of the a software system. 

The second type of work borrows association rule 

mining algorithms from the data mining community of 

revel software fault associations which can be used for 

these purposes.  First, finding as many related faults as 

possible to the detected faults and consequently make 

more effective correction to the software.  This may be 

useful as it permits more directed testing and more 

effective use of limited testing resource.  Second, 

helping evaluate reviewers results deriving our 

inspection.  Thus , a recommendation might be that his 

/her work should be re-inspected for completeness.  

Third, assisting managers in improving the software 

process through analysis of the reasons why some 

faults frequently occur together.  If the analysis leads to 

the identification of a process problem managers can 

device corrective action. The third type of work 

classifies software components as fault-prone and non- 

fault-proneby means of metric based classification.  

Being able to predict which component s are more 

likely to be fault-prone supports better targeted testing 

resources and therefore improved efficiency. 
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2. Related Works  

Much research on detection of fault prone software 

modules has been carried out so far.  Previous studies 

can be categorized by data sets, metrics and 

classification of techniques.  Software metrics related 

to program attribute such as lines of code, complexity 

frequency of modification, coherency, coupling, and so 

on are used in most of previous studies.  In those 

studies, such metrics are considered as explanatory 

variables and fault proneness are considered as 

objective variables.  Then mathematical models are 

constructed from those metrics.  The selection of 

metrics varies according to studies. For example, 

studies such as used NASA MDP collection metrics.  

The object oriented metrics are used in.  Some studies 

used metrics based on metrics collection tools. 

Menzies, Greenwald, and Frank (MGF) published a 

study in this journal in 2007 in which they compared 

the performance of two machine learning techniques 

(Rule Induction and Naive Bayes) to predict software 

components containing faults. To do this, they used the 

NASA MDP repository, which, at the time of their 

research, contained 10separate data sets. Traditionally, 

many researchers have explored issues like the relative 

merits of McCabe’s cyclomatic complexity, Halstead’s 

software science measures, and lines of code counts for 

building fault predictors. However, MGF claim that 

“such debates are irrelevant since how the attributes are 

used to build predictors is much more important than 

which particular attributes are used” and “the choice of 

learning method is far more important than which 

subset of the available data is used for learning.”  

We argue that although how is more important than 

which,3 the choice of which attribute subset is used for 

learning is not only circumscribed by the attribute 

subset itself and available data, but also by attribute 

selectors, learning algorithms, and data preprocessors. 

It is well known that there is an intrinsic relationship 

between a learning method and an attribute selection 

method. For example, Hall and Holmes concluded that 

the forward selection (FS) search was well suited to 

Naive Bayes but the backward elimination (BE) search 

is more suitable for C4.5. Cardie  found using a 

decision tree to select attributes helped the nearest 

neighbor algorithm to reduce its prediction error. Kubat 

et al. used a decision tree filtering attributes for use 

with a Naive Bayesian classifier and obtained a similar 

result. However, Kibler and Aha  reported more mixed 

results on two medical classification tasks. Therefore, 

before building prediction models, we  should choose 

the combination of all three of learning algorithm, data 

preprocessing, and attribute selection method, not 

merely one or two of them.  

We also argue that MGF’s attribute selection approach 

is problematic and yielded a bias in the evaluation 

results, despite the use of a M x  N-way cross-

evaluation method. One reason is that they ranked 

attributes on the entire data set, including both the 

training and test data, though the class labels of the test 

data should have been unknown to the predictor. That 

is, they violated the intention of the holdout strategy. 

The potential result is that they overestimate the 

performance of their learning model and thereby report 

a potentially misleading result.  These seemingly minor 

issues motivate the development of our general-purpose 

fault prediction framework described in this paper. 

However, we will show the large impact they can have 

and how researchers may be completely misled.  

 

Our proposed framework consists of two parts: design 

evaluation and fault prediction. The design evaluation 

focuses on evaluating the performance of a learning 

design, while the fault prediction focuses on building a 

final predictor using historical data according to the 

learning design and after which the predictor is used to 

predict the fault-prone components of a new (or 

unseen) software system. 

 

A learning design is comprised of: 

1. a data preprocessor, 

2. an attribute selector, 

3. a learning algorithm. 

So, to summarize, the main difference between our 

framework and that of MGF lies in the following: 1) 

We choose the entire learning design, not just one out 

of the learning algorithm, attribute selector, or data 

preprocessor;2) we use the appropriate data to evaluate 

the performance of a design. That is, we build a 

predictive model according to a design with only 

“historical” data and validate the model on the 

independent “new” data. We go on to demonstrate why 

this has very practical implications. 
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3. Proposed Software Framework 

 

3. 1 Overview of Software Framework 

 Generally, before building fault prediction model(s) 

and using them for prediction purposes, we  first need 

to decide which learning design should be used to 

construct the model. Thus, the predictive performance 

of the learning design(s) should be determined, 

especially for future data. However, this step is often 

neglected and so the resultant prediction model may not 

be trustworthy. Consequently, we propose a new 

software fault prediction framework that provides 

guidance to address these potential shortcomings. The 

framework consists of two components: 1) design 

evaluation and 2) fault prediction. Fig. 1 contains the 

details. At the design evaluation stage, the 

performances of the different learning designs are 

evaluated with historical data to determine whether a 

certain learning design performs sufficiently well for 

prediction purposes or to select the best from a set of 

competing designs. From Fig. 1, we can see that the 

historical data are divided into two parts: a training set 

for building learners with the given learning designs, 

and a test set for evaluating the performances of the 

learners. It is very important that the test data are not 

used in any way to build the learners. This is a 

necessary condition to assess the generalization ability 

of a learner that is built according to a learning design 

and to further determine whether or not to apply the 

learning design or select one best design from the given 

designs. At the fault prediction stage, according to the 

performance report of the first stage, a learning design 

is selected and used to build a prediction model and 

predict software fault. From Fig. 1, we observe that all 

of the historical data are used to build the predictor 

here. This is very different from the first stage; it is 

very useful for improving the generalization ability of 

the predictor. After the predictor is built, it can be used 

to predict the fault-proneness of new software 

components.MGF proposed a baseline experiment and 

reported the performance of the Naive Bayes data 

miner with log-filtering as well as attribute selection, 

which performed the design evaluation but with 

inappropriate data. This is because they used both the 

training (which can be viewed as historical data) and 

test (which can be viewed as new data) data to rank 

attributes, while the labels of the new data are 

unavailable when choosing attributes in practice. 
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Fig 1. Proposed Software fault prediction Framework 

 

3.2 Design Evaluation 

The design evaluation is a fundamental part of the 

software fault prediction framework. At this stage, 

different earning designs are evaluated by building and 

evaluating learners with them. The first problem of 

design evaluation is how to divide historical data into 

training and test data. As mentioned above, the test data 

should be independent of the learner construction. This 

is a necessary precondition to evaluate the performance 

of a learner for new data. Cross-validation is usually 

used to estimate how accurately a predictive model will 

perform in practice. One round of cross validation 

involves partitioning a data set into complementary 

subsets, performing the analysis on one subset, and 

validating the analysis on the other subset. To reduce 

variability, multiple rounds of cross-validation are 
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performed using different partitions, and the validation 

results are averaged over the rounds. In our framework, 

an M x N-way cross-validation is used for estimating 

the performance of each predictive model, that is, each 

data set is first divided into N bins, and after that a 

predictor is learned on (N-1) bins, and then tested on 

the remaining bin. This is repeated for the N folds so 

that each bin is used for training and testing while 

minimizing the sampling bias. To overcome any 

ordering effect and to achieve reliable statistics, each 

holdout experiment is also repeated M times and in 

each repetition the data sets are randomized. So overall, 

M x  N models are built in all during the period of 

evaluation; thus M x N results are obtained on each 

data set about the performance of the each learning 

design. After the training-test splitting is done each 

round, both the training data and learning design(s) are 

used to build a learner. A learning design consists of a 

data preprocessing method, an attribute selection 

method, and a learning algorithm. The detailed learner 

construction procedure is as follows: 

1. Data preprocessing. This is an important art 

of building a practical learner. In this step, the 

training data are preprocessed, such as 

removing outliers, handling missing values, 

and discretizing or transforming numeric 

attributes. In our experiment, we use a log-

filtering preprocessor which replaces all 

numeric’s n with their logarithms ln(n), such 

as used in MGF. 

2. Attribute selection. The data sets may not have 

originally been intended for fault prediction; 

thus, even if all of the attributes are useful for 

its original task, not all may be helpful for 

fault prediction. Therefore, attribute selection 

has to be performed on the training data. 

Attribute selection methods can be categorized 

as either filters or wrappers. It should be noted 

that both “filter” and “wrapper” methods only 

operate on the training data. A “filter” uses 

general characteristics of the data to evaluate 

attributes and operates independently of any 

learning algorithm. In contrast, a “wrapper” 

method exists as a wrapper around the 

learning algorithm searching for a good subset 

using the learning algorithm itself as part of 

the function evaluating attribute subsets. 

Wrappers generally give better results than 

filters but are more computationally intensive. 

In our proposed framework, the “wrapper” 

attribute selection method is employed. To 

make the most use of the data, we use an M x 

N-way cross-validation to evaluate the 

performance of different attribute subsets. 

3. Learner construction: Once attribute selection 

is finished, the preprocessed training data are 

reduced to the best attribute subset. Then, the 

reduced training data and the learning 

algorithm are used to build the learner. Before 

the learner is tested, the original test data are 

preprocessed in the same way and the 

dimensionality is reduced to the same best 

subset of attributes. After comparing the 

predicted value and the actual value of the test 

data, the performance of one pass of validation 

is obtained. As mentioned previously, the final 

“evaluation” performance can be obtained as 

the mean and variance values across the M x 

N passes of such validation.  

 

Pseudo code 

This is the detailed design evaluation process is 

described with the pseudo code which consists of 

function Learning and function AttrSelect.  The 

function Learning is used to build a learner with a 

given learning design, and the function AttrSelect 

performs attribute selection with a learning algorithm. 

 

Function Learning(data, design) 

Input :data - the data on which the learner is  

built; 

design - the learning design. 

Output:learner - the final learner built on data  

 withdesign; 

 bestAttrs - the best attribute subset  

selected bythe attribute selector of design 

1 m=10; /*number of repetitions for  
attributeselection * / 

2 n= 10;/* number of folds for attribute 

selection*/ 

3 d= Preprocessing(data; design.preprocessor); 

4 bestAttrs=AttrSelect(d, design. Algorithm, 

Design.attrSelector, m, n); 

5 d’= selectbestAttrsfrom d; 

6 learner=BuildClassifier(d’,design.algorithm); 

/* build a classifier on d’ with the learning 

algorithm of design */ 

 

 

 

3.3 Fault Prediction 

The fault prediction part of our framework is 

straightforward; it consists of predictor construction 

and fault prediction. 
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During the period of the predictor construction: 

 

1. A learning design is chosen according to the 

Performance Report. 

2. A predictor is built with the selected learning 

design and the whole historical data. While 

evaluating a learning design, a learner is built 

with the training data and tested on the test 

data. Its final performance is the mean over all 

rounds. This reveals that the evaluation indeed 

covers all the data. However, a single round of 

cross-validation uses only one part of the data. 

Therefore, as we use all of the historical data 

to build the predictor, it is expected that the 

constructed predictor has stronger 

generalization ability. 

3. After the predictor is built, new data are 

preprocessed in same way as historical data, 

then the constructed predictor can be used to 

predict software fault with preprocessed new 

data. 

 

The detailed fault prediction process is described with 

pseudo code in the following Procedure Prediction. 

 

Procedure Prediction (historicalData, newData, 

Design); 

Input: historicalData - the historical data; 

newData-thenew data; 

Design- the learning design. 

Output: Result - the predicted result for the  

newData 

1 [Predictor,bestAttrs]=Learning 

                                  (historicalData, Design); 

2 d= select bestAttrsfrom newData; 

3 Result=Predict(d,Predictor); 

/* predict the class label of d with 

Predictor  */ 

 

4. Experiments 

     We have to collect both fault-prone(FP) modules 

and non fault-prone(NFP) modules from source code 

repository for this research.  The collection of such 

modules seems easy for a software project which has a 

bug database such as an Open Source Software 

development.  However, even in such an environment, 

the revision control system and bug database system 

are usually separated and thus tracking on the fault-

prone modules needs effort.  In the development of 

software in companies, the situation becomes harder. 

4.1 Data Sets 

 We used the data taken from the public NASA 

MDP repository, which was also used by MGF and 

many others.  What’s more, the AR data from the 

PROMISE repository where also used.,  Thus there are 

17 data sets in total, 13 from NASA and the remaining 

4 from the PROMISE repository. 

         Each data set is comprised of a number of 

software modules, each containing the corresponding 

number of faults and various software static code 

attributes.  After preprocessing,  modules that contain 

one or more faults were labelled as faultive.  Besides 

LOC counts, the data sets include Halstead attributes,  

as well as McCabe complexity measures. 

 

4.2 Performance Measures 

     The receiver operating characteristic(ROC) curve is 

often used to evaluate the performance of binary 

predictors.  The following shown in Fig. 2.  The y-axis 

shows probability of detection (pd) and the y-axis 

shows probability of false alarms(pf). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.The ROC Curves. 

 

Formal definitions for pd and pf are given in(1) and (2) 

respectively.  Obviously,  higher pds and lower pfs are 

desired.  The point(pf=0,pd=1) is the ideal position 

where we recognize all faultive modules and never 

make mistakes. 
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MGF introduced a performance measure called balance 

,which is used to choose the optimal (pd, pf) pairs. The 

definition is shown in (3) from which we can see that it 

is equivalent to the normalized euclidean distance from 

the desired point (0, 1) to (pf, pd) in a ROC curve. 

Zhang and Reformat [41] argue that using (pd, pf) 

performance measures in the classification of 

imbalanced data is not practical due to low precisions. 

By contrast, MGF argue that precision has an unstable 

nature and can bemisleading to determine the better 

predictor. We also think that predictors with high pd 

have practical usage even when their pf is also high. 

Nevertheless, such a predictor could still be helpful for 

software testing, especially in mission critical and 

safety critical systems, where the cost of many false 

positives (wrongly identifying a software component as 

fault-prone) is far less than that of false negatives. 

However, we would like to note that balance should be 

used carefully for determining the best among a set of 

predictors. Since it is a distance measure, predictors 

with different (pf, pd) values can have the same balance 

value. Nevertheless, this doesn’t necessarily show that 

all predictors 

with the same balance value have the same practical 

usage. Usually, domain specific requirement may lead 

us to choose a predictor with a high pd rank, although it 

may also have a high pf rank. 

 

5. Experiment Design 

Two experiments are designed in the experiment. One 

is to compare our framework with that of MGF, the 

second is intended to demonstrate our framework in 

practice and explore whether we should choose a 

particular learning design or not. 

5.1FrameworkComparison 

    The experimental process is described as follows: 

1. We divided each data set into two parts: One 

is used as historical data and the other is 

viewed as new data. To make most use of the 

data, we performed 10-pass simulation. In 

each pass, we took 90 percent of the data as 

historical data, the remaining 10 percent as 

new data. 

2. We replicated MGF’s work with the historical 

data. First, all of the historical data were 

preprocessed in the same way by a log-

filtering preprocessor. Then, an iterative 

attribute subset selection as used in MGF’s 

study was performed. In the subset selection 

method, the i= 1; 2; . . . , Nth top-ranked 

attribute(s) were evaluated step by step. Each 

subset was evaluated by a 10 x 10-way cross-

validation with the Naive Bayes algorithm; the 

averaged balance after 100 holdout 

experiments was used to estimate the 

performance. The process of attribute subset 

selection was terminated when the first i+ 1 

attributes performed no better than the first i. 

So, the first i top-ranked attributes were 

selected as the best subset, with the averaged 

balance as the evaluation performance. The 

historical data were processed by the log-

filtering method and reduced by the selected 

best attribute subset and the resultant data 

were used to build a Naive Bayes predictor. 

Then, the predictor was used to predict fault 

with the new data that were processed by same 

way as that of the historical data. 

3. We also simulated the whole fault prediction 

process presented in our framework. 

In order to be comparable with MGF, were stricted our 

learning design to the same preprocessing method, 

attribute selection method, and the same learning 

algorithm. A 10 x 10-way cross-validation was used to 

evaluate the learning design. The learning design was 

wrapped in each validation of the 10 x 10-way cross-

validation, which is different from MGF’s study. 

Specifically, as described in the design evaluation 

procedure, we applied the learning design only to the 

training data, after which the final Naive Bayes learner 

was built and the test data were used to evaluate the 

performance of the learner. One hundred such holdout 

experiments were performed for each pass of the 

evaluation and the mean of 100 balance measures was 

reported as the evaluation performance. The historical 

data were processed according to the learning design, 

and a Naive Bayes predictor was built with the 

processed data. Then, the predictor was used to predict 

fault with the new data that were processed by the same 

way as that of the historical data. 
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6. Conclusions 

In this paper, we have presented a novel benchmark 

framework for software fault prediction. The 

framework involves evaluation and prediction. In the 

evaluation stage, different learning designs are 

evaluated and the best one is 

selected. Then, in the prediction stage, the best learning 

design is used to build a predictor with all historical 

data and the predictor is finally used to predict fault on 

the new data. We have compared the proposed 

framework with MGF’s study and pointed out the 

potential bias in their baseline experiment. We have 

also performed a baseline experiment to simulate the 

whole process of fault prediction in both MGF’s study 

and our framework. From our experimental results, we 

observe that there is a bigger difference between the 

evaluation performance and the actual prediction 

performance in MGF’s study than with our framework. 

This means that the results that they report are over 

optimistic. While this might seem like some small 

technicality, the impact is profound. When we perform 

statistical significance testing, we find dramatically 

different findings that are highly statistically significant 

but in opposite directions. The real point is not which 

learning design does “better” but how should one set 

about answering this question. From our experimental 

results, we also observe that the predictions of Menzies 

et al. on the AR data are much more biased than that on 

the NASA data 

and the performance of the MGF framework varies 

greatly with data from different resources. Thus, we 

contend our framework is less biased and more capable 

of yielding results closer to the “true” answer. 

Moreover, our framework is more stable. We have also 

performed experiments to explore the impacts of 

different elements of a learning design on the 

evaluation and prediction. From these results, we see 

that a data preprocessor/attribute selector can play 

different roles with different learning algorithms for 

different data sets and that no learning design 

dominates, i.e., always outperforms the others for all 

data sets. This means we should choose different 

learning designs for different datasets, and 

consequently, the evaluation and decision processes 

important. 
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