

A Systematic Analysis Of Fault-Prone Prediction In A Software Framework
M. Venkata Prasad Rao, M.Tech- Software Engg, SVCET, Chittoor-AP.

G.N. Vivekananda, M.Tech. Assist. Professor, SVCET, Chittoor –AP,

Abstract

BACKGROUND - The accurate prediction of where

faults are likely to occur in code can help test effort,

reduce costs, and improve the quality of software.

Predicting fault – prone software component is an

economically important activity and so has received a

good deal of attention. OBJECTIVE: We proposed and

evaluate a systematic analysis of software framework

for software fault prediction that supports (1) unbiased

(2) Comprehensive cooperation between competing

prediction system. METHOD: The framework is

comprised of (1) Design evaluation (2) Fault prediction

components. The design evaluation analyzes the

prediction performance of compacting learning designs

for given historical data sets. The fault prediction

builds models according to the evaluated learning

design and predicts software faults with new data

according to the constructed model. RESULTS : The

result shows that we should choose different learning

designs for different data sets, that small details in

conducting how evolution are conducted can

completely reverse findings and last, that our proposed

frame work is more effective and less prone to bais then

previous approaches. CONCLUSTIONS-Failure to

properly or fully evaluate a learning design can be

misleading; however, these problems may be overcome

by our proposed framework.

1. Introduction
 Software fault prediction has been an important

research topic in the software engineering filed for

more than 32 years. Our analysis investigate how

model performance in affected by the context in which

the model was developed, the independent variables

used in the model, and the technique on which the

model was build.

Fault prediction modelling is an important area of reach

and the subject of many previous studies these studies

typically produce fault prediction models which allow

software engineers to focus development activities on

fault-prone code, thereby improving software quality

and making better use of resources.

The current fault prediction work focuses on (1)

estimating the number of faults remaining in software

systems. (2) Discovering faults association and (3)

classifying the fault- prone of software component. The

first type of work employs statically approaches,

Capture- Recapture(CR) model and detection profile

methods(DPM) to estimate the number of faults

remaining in software systems with inspection data and

process quality data. The prediction result can be used

as an important measure for the software developer and

can be used to control the software process and grange

the likely delivered quality of the a software system.

The second type of work borrows association rule

mining algorithms from the data mining community of

revel software fault associations which can be used for

these purposes. First, finding as many related faults as

possible to the detected faults and consequently make

more effective correction to the software. This may be

useful as it permits more directed testing and more

effective use of limited testing resource. Second,

helping evaluate reviewers results deriving our

inspection. Thus , a recommendation might be that his

/her work should be re-inspected for completeness.

Third, assisting managers in improving the software

process through analysis of the reasons why some

faults frequently occur together. If the analysis leads to

the identification of a process problem managers can

device corrective action. The third type of work

classifies software components as fault-prone and non-

fault-proneby means of metric based classification.

Being able to predict which component s are more

likely to be fault-prone supports better targeted testing

resources and therefore improved efficiency.

1905

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70820

2. Related Works

Much research on detection of fault prone software

modules has been carried out so far. Previous studies

can be categorized by data sets, metrics and

classification of techniques. Software metrics related

to program attribute such as lines of code, complexity

frequency of modification, coherency, coupling, and so

on are used in most of previous studies. In those

studies, such metrics are considered as explanatory

variables and fault proneness are considered as

objective variables. Then mathematical models are

constructed from those metrics. The selection of

metrics varies according to studies. For example,

studies such as used NASA MDP collection metrics.

The object oriented metrics are used in. Some studies

used metrics based on metrics collection tools.

Menzies, Greenwald, and Frank (MGF) published a

study in this journal in 2007 in which they compared

the performance of two machine learning techniques

(Rule Induction and Naive Bayes) to predict software

components containing faults. To do this, they used the

NASA MDP repository, which, at the time of their

research, contained 10separate data sets. Traditionally,

many researchers have explored issues like the relative

merits of McCabe’s cyclomatic complexity, Halstead’s

software science measures, and lines of code counts for

building fault predictors. However, MGF claim that

“such debates are irrelevant since how the attributes are

used to build predictors is much more important than

which particular attributes are used” and “the choice of

learning method is far more important than which

subset of the available data is used for learning.”

We argue that although how is more important than

which,3 the choice of which attribute subset is used for

learning is not only circumscribed by the attribute

subset itself and available data, but also by attribute

selectors, learning algorithms, and data preprocessors.

It is well known that there is an intrinsic relationship

between a learning method and an attribute selection

method. For example, Hall and Holmes concluded that

the forward selection (FS) search was well suited to

Naive Bayes but the backward elimination (BE) search

is more suitable for C4.5. Cardie found using a

decision tree to select attributes helped the nearest

neighbor algorithm to reduce its prediction error. Kubat

et al. used a decision tree filtering attributes for use

with a Naive Bayesian classifier and obtained a similar

result. However, Kibler and Aha reported more mixed

results on two medical classification tasks. Therefore,

before building prediction models, we should choose

the combination of all three of learning algorithm, data

preprocessing, and attribute selection method, not

merely one or two of them.

We also argue that MGF’s attribute selection approach

is problematic and yielded a bias in the evaluation

results, despite the use of a M x N-way cross-

evaluation method. One reason is that they ranked

attributes on the entire data set, including both the

training and test data, though the class labels of the test

data should have been unknown to the predictor. That

is, they violated the intention of the holdout strategy.

The potential result is that they overestimate the

performance of their learning model and thereby report

a potentially misleading result. These seemingly minor

issues motivate the development of our general-purpose

fault prediction framework described in this paper.

However, we will show the large impact they can have

and how researchers may be completely misled.

Our proposed framework consists of two parts: design

evaluation and fault prediction. The design evaluation

focuses on evaluating the performance of a learning

design, while the fault prediction focuses on building a

final predictor using historical data according to the

learning design and after which the predictor is used to

predict the fault-prone components of a new (or

unseen) software system.

A learning design is comprised of:

1. a data preprocessor,

2. an attribute selector,

3. a learning algorithm.

So, to summarize, the main difference between our

framework and that of MGF lies in the following: 1)

We choose the entire learning design, not just one out

of the learning algorithm, attribute selector, or data

preprocessor;2) we use the appropriate data to evaluate

the performance of a design. That is, we build a

predictive model according to a design with only

“historical” data and validate the model on the

independent “new” data. We go on to demonstrate why

this has very practical implications.

1906

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70820

3. Proposed Software Framework

3. 1 Overview of Software Framework

 Generally, before building fault prediction model(s)

and using them for prediction purposes, we first need

to decide which learning design should be used to

construct the model. Thus, the predictive performance

of the learning design(s) should be determined,

especially for future data. However, this step is often

neglected and so the resultant prediction model may not

be trustworthy. Consequently, we propose a new

software fault prediction framework that provides

guidance to address these potential shortcomings. The

framework consists of two components: 1) design

evaluation and 2) fault prediction. Fig. 1 contains the

details. At the design evaluation stage, the

performances of the different learning designs are

evaluated with historical data to determine whether a

certain learning design performs sufficiently well for

prediction purposes or to select the best from a set of

competing designs. From Fig. 1, we can see that the

historical data are divided into two parts: a training set

for building learners with the given learning designs,

and a test set for evaluating the performances of the

learners. It is very important that the test data are not

used in any way to build the learners. This is a

necessary condition to assess the generalization ability

of a learner that is built according to a learning design

and to further determine whether or not to apply the

learning design or select one best design from the given

designs. At the fault prediction stage, according to the

performance report of the first stage, a learning design

is selected and used to build a prediction model and

predict software fault. From Fig. 1, we observe that all

of the historical data are used to build the predictor

here. This is very different from the first stage; it is

very useful for improving the generalization ability of

the predictor. After the predictor is built, it can be used

to predict the fault-proneness of new software

components.MGF proposed a baseline experiment and

reported the performance of the Naive Bayes data

miner with log-filtering as well as attribute selection,

which performed the design evaluation but with

inappropriate data. This is because they used both the

training (which can be viewed as historical data) and

test (which can be viewed as new data) data to rank

attributes, while the labels of the new data are

unavailable when choosing attributes in practice.

 Design Evaluation

 Fault Prediction

Fig 1. Proposed Software fault prediction Framework

3.2 Design Evaluation

The design evaluation is a fundamental part of the

software fault prediction framework. At this stage,

different earning designs are evaluated by building and

evaluating learners with them. The first problem of

design evaluation is how to divide historical data into

training and test data. As mentioned above, the test data

should be independent of the learner construction. This

is a necessary precondition to evaluate the performance

of a learner for new data. Cross-validation is usually

used to estimate how accurately a predictive model will

perform in practice. One round of cross validation

involves partitioning a data set into complementary

subsets, performing the analysis on one subset, and

validating the analysis on the other subset. To reduce

variability, multiple rounds of cross-validation are

Historical

Data

Training

Data

Test Data

New

Data

a

Learnin

g

Designs

Performanc

e Report

Predictio

n Result

Learnin

g

Learn

ers

Testing

Learnin

g

Predict

or

Predictin

g

1907

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70820

performed using different partitions, and the validation

results are averaged over the rounds. In our framework,

an M x N-way cross-validation is used for estimating

the performance of each predictive model, that is, each

data set is first divided into N bins, and after that a

predictor is learned on (N-1) bins, and then tested on

the remaining bin. This is repeated for the N folds so

that each bin is used for training and testing while

minimizing the sampling bias. To overcome any

ordering effect and to achieve reliable statistics, each

holdout experiment is also repeated M times and in

each repetition the data sets are randomized. So overall,

M x N models are built in all during the period of

evaluation; thus M x N results are obtained on each

data set about the performance of the each learning

design. After the training-test splitting is done each

round, both the training data and learning design(s) are

used to build a learner. A learning design consists of a

data preprocessing method, an attribute selection

method, and a learning algorithm. The detailed learner

construction procedure is as follows:

1. Data preprocessing. This is an important art

of building a practical learner. In this step, the

training data are preprocessed, such as

removing outliers, handling missing values,

and discretizing or transforming numeric

attributes. In our experiment, we use a log-

filtering preprocessor which replaces all

numeric’s n with their logarithms ln(n), such

as used in MGF.

2. Attribute selection. The data sets may not have

originally been intended for fault prediction;

thus, even if all of the attributes are useful for

its original task, not all may be helpful for

fault prediction. Therefore, attribute selection

has to be performed on the training data.

Attribute selection methods can be categorized

as either filters or wrappers. It should be noted

that both “filter” and “wrapper” methods only

operate on the training data. A “filter” uses

general characteristics of the data to evaluate

attributes and operates independently of any

learning algorithm. In contrast, a “wrapper”

method exists as a wrapper around the

learning algorithm searching for a good subset

using the learning algorithm itself as part of

the function evaluating attribute subsets.

Wrappers generally give better results than

filters but are more computationally intensive.

In our proposed framework, the “wrapper”

attribute selection method is employed. To

make the most use of the data, we use an M x

N-way cross-validation to evaluate the

performance of different attribute subsets.

3. Learner construction: Once attribute selection

is finished, the preprocessed training data are

reduced to the best attribute subset. Then, the

reduced training data and the learning

algorithm are used to build the learner. Before

the learner is tested, the original test data are

preprocessed in the same way and the

dimensionality is reduced to the same best

subset of attributes. After comparing the

predicted value and the actual value of the test

data, the performance of one pass of validation

is obtained. As mentioned previously, the final

“evaluation” performance can be obtained as

the mean and variance values across the M x

N passes of such validation.

Pseudo code

This is the detailed design evaluation process is

described with the pseudo code which consists of

function Learning and function AttrSelect. The

function Learning is used to build a learner with a

given learning design, and the function AttrSelect

performs attribute selection with a learning algorithm.

Function Learning(data, design)

Input :data - the data on which the learner is

built;

design - the learning design.

Output:learner - the final learner built on data

 withdesign;

 bestAttrs - the best attribute subset

selected bythe attribute selector of design

1 m=10; /*number of repetitions for
attributeselection * /

2 n= 10;/* number of folds for attribute

selection*/

3 d= Preprocessing(data; design.preprocessor);

4 bestAttrs=AttrSelect(d, design. Algorithm,

Design.attrSelector, m, n);

5 d’= selectbestAttrsfrom d;

6 learner=BuildClassifier(d’,design.algorithm);

/* build a classifier on d’ with the learning

algorithm of design */

3.3 Fault Prediction

The fault prediction part of our framework is

straightforward; it consists of predictor construction

and fault prediction.

1908

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70820

During the period of the predictor construction:

1. A learning design is chosen according to the

Performance Report.

2. A predictor is built with the selected learning

design and the whole historical data. While

evaluating a learning design, a learner is built

with the training data and tested on the test

data. Its final performance is the mean over all

rounds. This reveals that the evaluation indeed

covers all the data. However, a single round of

cross-validation uses only one part of the data.

Therefore, as we use all of the historical data

to build the predictor, it is expected that the

constructed predictor has stronger

generalization ability.

3. After the predictor is built, new data are

preprocessed in same way as historical data,

then the constructed predictor can be used to

predict software fault with preprocessed new

data.

The detailed fault prediction process is described with

pseudo code in the following Procedure Prediction.

Procedure Prediction (historicalData, newData,

Design);

Input: historicalData - the historical data;

newData-thenew data;

Design- the learning design.

Output: Result - the predicted result for the

newData

1 [Predictor,bestAttrs]=Learning

 (historicalData, Design);

2 d= select bestAttrsfrom newData;

3 Result=Predict(d,Predictor);

/* predict the class label of d with

Predictor */

4. Experiments

 We have to collect both fault-prone(FP) modules

and non fault-prone(NFP) modules from source code

repository for this research. The collection of such

modules seems easy for a software project which has a

bug database such as an Open Source Software

development. However, even in such an environment,

the revision control system and bug database system

are usually separated and thus tracking on the fault-

prone modules needs effort. In the development of

software in companies, the situation becomes harder.

4.1 Data Sets

 We used the data taken from the public NASA

MDP repository, which was also used by MGF and

many others. What’s more, the AR data from the

PROMISE repository where also used., Thus there are

17 data sets in total, 13 from NASA and the remaining

4 from the PROMISE repository.

 Each data set is comprised of a number of

software modules, each containing the corresponding

number of faults and various software static code

attributes. After preprocessing, modules that contain

one or more faults were labelled as faultive. Besides

LOC counts, the data sets include Halstead attributes,

as well as McCabe complexity measures.

4.2 Performance Measures

 The receiver operating characteristic(ROC) curve is

often used to evaluate the performance of binary

predictors. The following shown in Fig. 2. The y-axis

shows probability of detection (pd) and the y-axis

shows probability of false alarms(pf).

Fig 2.The ROC Curves.

Formal definitions for pd and pf are given in(1) and (2)

respectively. Obviously, higher pds and lower pfs are

desired. The point(pf=0,pd=1) is the ideal position

where we recognize all faultive modules and never

make mistakes.

1909

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70820

MGF introduced a performance measure called balance

,which is used to choose the optimal (pd, pf) pairs. The

definition is shown in (3) from which we can see that it

is equivalent to the normalized euclidean distance from

the desired point (0, 1) to (pf, pd) in a ROC curve.

Zhang and Reformat [41] argue that using (pd, pf)

performance measures in the classification of

imbalanced data is not practical due to low precisions.

By contrast, MGF argue that precision has an unstable

nature and can bemisleading to determine the better

predictor. We also think that predictors with high pd

have practical usage even when their pf is also high.

Nevertheless, such a predictor could still be helpful for

software testing, especially in mission critical and

safety critical systems, where the cost of many false

positives (wrongly identifying a software component as

fault-prone) is far less than that of false negatives.

However, we would like to note that balance should be

used carefully for determining the best among a set of

predictors. Since it is a distance measure, predictors

with different (pf, pd) values can have the same balance

value. Nevertheless, this doesn’t necessarily show that

all predictors

with the same balance value have the same practical

usage. Usually, domain specific requirement may lead

us to choose a predictor with a high pd rank, although it

may also have a high pf rank.

5. Experiment Design

Two experiments are designed in the experiment. One

is to compare our framework with that of MGF, the

second is intended to demonstrate our framework in

practice and explore whether we should choose a

particular learning design or not.

5.1FrameworkComparison

 The experimental process is described as follows:

1. We divided each data set into two parts: One

is used as historical data and the other is

viewed as new data. To make most use of the

data, we performed 10-pass simulation. In

each pass, we took 90 percent of the data as

historical data, the remaining 10 percent as

new data.

2. We replicated MGF’s work with the historical

data. First, all of the historical data were

preprocessed in the same way by a log-

filtering preprocessor. Then, an iterative

attribute subset selection as used in MGF’s

study was performed. In the subset selection

method, the i= 1; 2; . . . , Nth top-ranked

attribute(s) were evaluated step by step. Each

subset was evaluated by a 10 x 10-way cross-

validation with the Naive Bayes algorithm; the

averaged balance after 100 holdout

experiments was used to estimate the

performance. The process of attribute subset

selection was terminated when the first i+ 1

attributes performed no better than the first i.

So, the first i top-ranked attributes were

selected as the best subset, with the averaged

balance as the evaluation performance. The

historical data were processed by the log-

filtering method and reduced by the selected

best attribute subset and the resultant data

were used to build a Naive Bayes predictor.

Then, the predictor was used to predict fault

with the new data that were processed by same

way as that of the historical data.

3. We also simulated the whole fault prediction

process presented in our framework.

In order to be comparable with MGF, were stricted our

learning design to the same preprocessing method,

attribute selection method, and the same learning

algorithm. A 10 x 10-way cross-validation was used to

evaluate the learning design. The learning design was

wrapped in each validation of the 10 x 10-way cross-

validation, which is different from MGF’s study.

Specifically, as described in the design evaluation

procedure, we applied the learning design only to the

training data, after which the final Naive Bayes learner

was built and the test data were used to evaluate the

performance of the learner. One hundred such holdout

experiments were performed for each pass of the

evaluation and the mean of 100 balance measures was

reported as the evaluation performance. The historical

data were processed according to the learning design,

and a Naive Bayes predictor was built with the

processed data. Then, the predictor was used to predict

fault with the new data that were processed by the same

way as that of the historical data.

1910

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70820

6. Conclusions

In this paper, we have presented a novel benchmark

framework for software fault prediction. The

framework involves evaluation and prediction. In the

evaluation stage, different learning designs are

evaluated and the best one is

selected. Then, in the prediction stage, the best learning

design is used to build a predictor with all historical

data and the predictor is finally used to predict fault on

the new data. We have compared the proposed

framework with MGF’s study and pointed out the

potential bias in their baseline experiment. We have

also performed a baseline experiment to simulate the

whole process of fault prediction in both MGF’s study

and our framework. From our experimental results, we

observe that there is a bigger difference between the

evaluation performance and the actual prediction

performance in MGF’s study than with our framework.

This means that the results that they report are over

optimistic. While this might seem like some small

technicality, the impact is profound. When we perform

statistical significance testing, we find dramatically

different findings that are highly statistically significant

but in opposite directions. The real point is not which

learning design does “better” but how should one set

about answering this question. From our experimental

results, we also observe that the predictions of Menzies

et al. on the AR data are much more biased than that on

the NASA data

and the performance of the MGF framework varies

greatly with data from different resources. Thus, we

contend our framework is less biased and more capable

of yielding results closer to the “true” answer.

Moreover, our framework is more stable. We have also

performed experiments to explore the impacts of

different elements of a learning design on the

evaluation and prediction. From these results, we see

that a data preprocessor/attribute selector can play

different roles with different learning algorithms for

different data sets and that no learning design

dominates, i.e., always outperforms the others for all

data sets. This means we should choose different

learning designs for different datasets, and

consequently, the evaluation and decision processes

important.

REFERENCES

[1] B.T. Compton and C. Withrow, “Prediction and

Control of ADA Software Defects,” J. Systems and

Software, vol. 12, no. 3, pp. 199- 207, 1990.

[2] J. Munson and T.M. Khoshgoftaar, “Regression

Modelling ofSoftware Quality: Empirical

Investigation,” J. Electronic Materials, vol. 19, no. 6,

pp. 106-114, 1990.

[3] N.B. Ebrahimi, “On the Statistical Analysis of the

Number ofErrors Remaining in a Software Design

Document After Inspection,”IEEE Trans. Software

Eng., vol. 23, no. 8, pp. 529-532, Aug. 1997.

[4] S. Vander Wiel and L. Votta, “Assessing Software

Designs UsingCapture-Recapture Methods,” IEEE

Trans. Software Eng., vol. 19,

no. 11, pp. 1045-1054, Nov. 1993.

[5] P. Runeson and C. Wohlin, “An Experimental

Evaluation of anExperience-Based Capture-Recapture

Method in Software CodeInspections,” Empirical

Software Eng., vol. 3, no. 4, pp. 381-406,1998.

[6] L.C. Briand, K. El Emam, B.G. Freimut, and O.

Laitenberger, “AComprehensive Evaluation of

Capture-Recapture Models forEstimating Software

Defect Content,” IEEE Trans. Software Eng.,vol. 26,

no. 6, pp. 518-540, June 2000.

[7] K. El Emam and O. Laitenberger, “Evaluating

Capture-RecaptureModels with Two Inspectors,” IEEE

Trans. Software Eng., vol. 27,no. 9, pp. 851-864, Sept.

2001.

[8] C. Wohlin and P. Runeson, “Defect Content

Estimations fromReview Data,” Proc. 20th Int’l Conf.

Software Eng., pp. 400-409,1998.

[9] G.Q. Kenney, “Estimating Defects in Commercial

Software duringOperational Use,” IEEE Trans.

Reliability, vol. 42, no. 1, pp. 107-

115, Mar. 1993.

[10] F. Padberg, T. Ragg, and R. Schoknecht, “Using

Machine Learningfor Estimating the Defect Content

After an Inspection,” IEEETrans. Software Eng., vol.

30, no. 1, pp. 17-28, Jan. 2004.

[11] N.E. Fenton and M. Neil, “A Critique of Software

DefectPrediction Models,” IEEE Trans. Software Eng.,

vol. 25, no. 5,pp. 675-689, Sept./Oct. 1999.

[12] Q. Song, M. Shepperd, M. Cartwright, and C.

Mair, “SoftwareDefect Association Mining and Defect

Correction Effort Prediction,”IEEE Trans. Software

Eng., vol. 32, no. 2, pp. 69-82, Feb. 2006.

1911

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70820

[13] A. Porter and R. Selby, “Empirically Guided

Software DevelopmentUsing Metric-Based

Classification Trees,” IEEE Software,vol. 7, no. 2, pp.

46-54, Mar. 1990.

[14] J.C. Munson and T.M. Khoshgoftaar, “The

Detection of Fault-Prone Programs,” IEEE Trans.

Software Eng., vol. 18, no. 5, pp. 423-433, May 1992.

[15] V.R. Basili, L.C. Briand, and W.L. Melo, “A

Validation of Object-Oriented Design Metrics as

Quality Indicators,” IEEE Trans.Software Eng., vol. 22,

no. 10, pp. 751-761, Oct. 1996.

[16] T.M. Khoshgoftaar, E.B. Allen, J.P. Hudepohl,

and S.J. Aud,“Application of Neural Networks to

Software Quality Modeling of

a Very Large Telecommunications System,” IEEE

Trans. NeuralNetworks, vol. 8, no. 4, pp. 902-909, July

1997.

[17] T.M. Khoshgoftaar, E.B. Allen, W.D. Jones, and

J.P. Hudepohl,“Classification Tree Models of Software

Quality over MultipleReleases,” Proc. 10th Int’l

Symp.Software Reliability Eng., pp. 116-125, 1999.

[18] K. Ganesan, T.M. Khoshgoftaar, and E. Allen,

“Case-BasedSoftware Quality Prediction,” Int’l J.

Software Eng. and KnowledgeEng., vol. 10, no. 2, pp.

139-152, 2000.

[19] K. El Emam, S. Benlarbi, N. Goel, and S.N. Rai,

“Comparing Case-Based Reasoning Classifiers for

Predicting High Risk Software

Components,” J. Systems and Software, vol. 55, no. 3,

pp. 301-320,2001.

[20] L. Zhan and M. Reformat, “A Practical Method for

the SoftwareFault-Prediction,” Proc. IEEE Int’l Conf.

Information Reuse andIntegration, pp. 659-666, 2007.

1912

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70820

