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Abstract: Homomorphic encryption is a 

form of encryption which allows specific 

types of computations to be carried out on 

cipher text and obtain an encrypted result 

which decrypted matches the result of 

operations performed on the plaintext. As 

cloud computing provides different services, 

homomorphic encryption techniques can be 

used to achieve security.  In this paper , We 

presented the partially homomorphic 

encryption techniques.  
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1. INTRODUCTION 

Security is a desirable feature in modern 

system architectures. Homomorphic 

encryption would allow the chaining 

together of different services without 

exposing the data to each of those services. 

For example a chain of different services 

from different companies could 1) calculate 

the tax 2) the currency exchange rate 3) 

shipping, on a transaction without exposing 

the unencrypted data to each of those 

services. Homomorphic encryption schemes 

are malleable by design. The homomorphic 

property of various cryptosystems can be  

used to create secure voting systems,  

collision-resistant hash functions, private 

information retrieval schemes and enable 

widespread use of cloud computing by 

ensuring the confidentiality of processed 

data. 

There are several efficient, partially 

homomorphic cryptosystems.   Although a 

cryptosystem which is unintentionally 

homomorphic can be subject to attacks on 

this basis, if treated carefully,  

homomorphism can also be used to perform 

computations securely.  Section 2 describes 

about the partially homomorphic encryption 

techniques. 

2. Partially Homomorphic Encryption 

Techniques  

 RSA 

  In cryptography, RSA[1] is an asymmetric 

encryption system. If the RSA public key is 

modulus  and exponent , then the 

encryption of a message  is given by 

.  

    The homomorphic property is then 
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ElGamal   Encryption 

     In cryptography, the ElGamal encryption 

system[2] is an asymmetric encryption 

algorithm for public key cryptography 

which is based on the Diffie Helman 

exchange . It was described by Taher 

ElGamal in 1984. ElGamal encryption is 

used in the free GNU privacy Guard 

software, recent versions of PGP, and other 

cryptosystems. The Digital Signature 

Algorithm is a variant of ElGamal Signature 

Algorithm, which should not be confused 

with ElGamal encryption. 

ElGamal encryption can be defined over any 

cyclic Group . Its security depends upon 

the difficulty of a certain problem in  

related to computing discrete logarithms. 

Key Generation 

The key generator works as follows: 

 Alice generates an efficient 

description of a multiplicative cyclic 

group of order  with  generator 

.  

 Alice chooses a random  from 

. 

 Alice computes . 

 Alice publishes , along with the 

description of , as her public 

key. Alice retains  as her private 

key which must be kept secret. 

Encryption 

The encryption algorithm works as follows: 

to encrypt a message to Alice under her 

public key , 

 Bob chooses a random   from 

, then calculates 

. 

 Bob calculates the shared secret 

. 

 Bob converts his secret message into 

an element of . 

 Bob calculates . 

 Bob sends the cipher text 

to Alice. 

Note that one can easily find if one 

knows  . Therefore, a new is generated 

for every message to improve security. For 

this reason,  is also called an ephemeral 

key. 

Decryption 

The decryption algorithm works as follows: 

to decrypt a cipher ext with her 

private key , 

 Alice calculates the shared secret 

 

 and then computes 

which she then converts back into 

the plaintext message , where 

is inverse of    In the group . 

(E.g. modular multiplicative inverse 

if  is a subgroup of a 

multiplication group of integers 

modulo n). 

The decryption algorithm produces the 

intended message, since 

 

Efficiency 

   ElGamal encryption is probabilistic 

meaning that a single plain text can be 

encrypted to many possible cipher texts, 

with the consequence that a general 

ElGamal encryption produces a 2:1 
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expansion in size from plaintext to cipher 

text. 

Encryption under ElGamal requires two 

exponentiation.  However, these 

exponentiations are independent of the 

message and can be computed ahead of time 

if need be. Decryption only requires one 

exponentiation. 

The division by can be avoided by using 

an alternative method for decryption. To 

decrypt a cipher text with Alice's 

private key , 

 Alice calculates  

. 

is the inverse of . This is a consequence 

of Langranges Theorem, because 

. 

 Alice then computes , 

which she then converts back into 

the plaintext message . 

The decryption algorithm produces the 

intended message, since 

. 

In the ElGamal cryptosystem, in a 

group , if the public key is 

, where , and 

is the secret key, then the 

encryption of a message is 

, for some 

random . The 

homomorphic property is then 

 

 Goldwasser–Micali 

   The Goldwasser–Micali (GM) crypto 

system[3] is an asymmetric key encryption 

algorithm developed by Shaff Goldwasser   

and Silvio Micali in 1982. GM has the 

distinction of being the first probabilistic 

public-key encryption scheme which is 

provably secure under standard 

cryptographic assumptions. However, it is 

not an efficient cryptosystem, as cipher texts 

may be several hundred times larger than the 

initial plaintext. To prove the security 

properties of the cryptosystem, Goldwasser 

and Micali proposed the widely used 

definition of semantic security. 

     Because encryption is performed using a 

probabilistic algorithm, a given plaintext 

may produce very different cipher texts each 

time it is encrypted. This has significant 

advantages, as it prevents an adversary from 

recognizing intercepted messages by 

comparing them to a dictionary of known 

cipher texts. 

 The scheme relies on deciding whether a 

given value x is a square mod N, given the 

factorization (p, q) of N. This can be 

accomplished using the following 

procedure: 

1. Compute xp = x mod p, xq = x mod q. 

2. If and 

, then x 

is a quadratic residue mod N. 

Key Generation 

Alice generates two distinct large prime 

numbers p and q, randomly and 

independently of each other. 
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1. Alice computes N = p q. 

2. She then finds some non-residue x 

such that the legendra symbols 

satisfy and hence 

the Jacobi symbol is +1. The 

value x can for example be found by 

selecting random values and testing 

the two Legendre symbols. If (p, q) = 

3 mod 4 (i.e., N is a Blum integer), 

then the value N − 1 is guaranteed to 

have the required property. 

The public key consists of (x, N). The secret 

key is the factorization (p, q). 

Message encryption 

Suppose Bob wishes to send a message m to 

Alice: 

1. Bob first encodes m as a string of 

bits (m1,  ., mn). 

2. For every bit , Bob generates a 

random value from the group of 

units modulo N, or . 

He outputs the value 

. 

Bob sends the cipher text (c1, .. , cn). 

Message Decryption 

Alice receives (c1, ..., cn). She can recover m 

using the following procedure: 

1. For each i, using the prime 

factorization (p, q), Alice determines 

whether the value ci is a quadratic 

residue; if so, mi = 0, otherwise mi = 

1. 

Alice outputs the message m = (m1, ..., mn). 

In the Goldwasser micali cryptosystem , if 

the public key is the modulus m and 

quadratic non-residue x, then the encryption 

of a bit b is , for 

some random . The 

homomorphic property is then

 

where denotes addition modulo 2. 

 Benaloh Cryptosystem 

The Benaloh Cryptosystem[4] is an 

extension of the Goldwasser micali 

cryptosystem(GM) created in 1994 by Josh 

(Cohen) Benaloh. The main improvement of 

the Benaloh Cryptosystem over GM is that 

longer blocks of data can be encrypted at 

once, whereas in GM each bit is encrypted 

individually. Like many public key 

cryptosystem, this scheme works in the 

group where n is a product of 

two large primes. This scheme is 

homomorphic and hence malleable. 

Key Generation 

A public/private   key pair is generated as 

follows: 

 Choose a block size r. 

 Choose large primes p and q such 

that r divides (p-1), gcd(r, (p-1)/r) = 

1 and gcd(q-1,r) = 1. 

 Set n = pq 

 Choose such that 

. 

The public key is then y, n, and the private 

key is the two primes p, q. 

Message encryption  

To encrypt a message m, where m is taken to 

be an element in  
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 Choose a random  

 Set  

Message decryption 

 

To understand decryption, we first notice 

that for any m, u we have 

Since m < r  and 

, we can conclude that 

if and 

only if m = 0. So if is 

an encryption of m, given the secret key p, q 

we can determine whether m=0. If r is small, 

we can decrypt z by doing an exhaustive 

search, i.e. decrypting the messages y
-I 

z for i 

from 1 to r. By pre computing values, using 

the Baby step Gaint step algorithm, 

decryption can be done in time . 

Security 

The security of this scheme rests on the 

Higher residuosity problem specifically, 

given z, r and n where the factorization of n 

is unknown, it is computationally infeasible 

to determine whether z is an r th residue 

mod n, i.e. if there exists an x such that 

. 

In the Benaloh cryptosystem if the public 

key is the modulus m and the base g with a 

blocksize of c, then the encryption of a 

message x is , for 

some random . The 

homomorphic property is then 

 

 

 

Pailler cryptosystem 

   The Paillier crypto system[5], named after 

and invented by pascal pailler in 1999, is a 

probabilistic asymmetric algorithm for 

public key cryptography. The problem of 

computing n-th residue classes is believed to 

be computationally difficult. The decisional 

composite residuosity assumption  is the 

intractability hypothesis upon which this 

cryptosystem is based. 

The scheme is an additive homomorphic 

cryptosystem; this means that, given only 

the public-key and the encryption of  

and , one can compute the encryption of 

. 

Key Generation 

1. Choose two large prime numbers p 

and q randomly and independently of 

each other such that 

. 

This property is assured if both 

primes are of equivalent length, i.e., 

for security 

parameter . 

2. Compute  and 

. 

3. Select random integer where 

 
4. Ensure  divides the order of  by 

checking the existence of the 

following modular multiplicative 

inverse 

, where function  is defined  

as .  

Note that the notation a/b  does not 

denote the modular multiplication of 

 times the modular multiplicative 

inverse of but rather the quotient of 
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divided by , i.e., the largest 

integer value   to satisfy the 

relation . 

 The public (encryption) key is 

. 

 The private (decryption) key is 

 

If using p, q of equivalent length, a simpler 

variant of the above key generation steps 

would be to set  

and , where 

. 

Encryption 

1. Let  be a message to be encrypted 

where  

2. Select random where  

3. Compute cipher text as: 

 

Decryption 

1. Cipher text  

2. Compute message: 

 

Homomorphic properties 

A notable feature of the Paillier 

cryptosystem is its homomorphic properties. 

As the encryption function is additively 

homomorphic, the following identities can 

be described: 

 Homomorphic addition of 

plaintexts 

The product of two cipher texts will 

decrypt to the sum of their 

corresponding plaintexts, 

                              

 

The product of a cipher text with a 

plaintext raising g will decrypt to the 

sum of the corresponding plaintexts, 

 

 Homomorphic multiplication of 

plaintexts 

An encrypted plaintext raised to the 

power of another plaintext will 

decrypt to the product of the two 

plaintexts, 

         

         

More generally, an encrypted 

plaintext raised to a constant k will 

decrypt to the product of the 

plaintext and the constant, 

 

However, given the Paillier encryptions of 

two messages there is no known way to 

compute an encryption of the product of 

these messages without knowing the private 

key. 

Okamoto–Uchiyama cryptosystem 

  The Okamoto–Uchiyama crypto system[6] 

was discovered in 1998 by T. Okamoto and 

S. Uchiyama. The system works in the 

group , where n is of the form p
2
q 

and p and q are large primes. 
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Key Generation 

A public/private key pair is generated as 

follows: 

 Generate large primes p and q and 

set . 

 Choose such that 

. 

 Let h = g
n
 mod n. 

The public key is then (n, g, h) and the 

private key is the factors (p, q). 

Message Encryption  

To encrypt a message m, where m is taken to 

be an element in  

 Select at random. Set 

 

Message Decryption 

If we define , then decryption 

becomes 

 

How the system works 

The group  

The group has a unique subgroup of 

order p, call it H. By the uniqueness of H, 

we must have 

. 

For any element x in , we have 

x
p−1

 mod p
2
 is in H, since p divides x

p−1
 − 1. 

The map L should be thought of as a 

logarithm from the cyclic group H to the 

additive group , and it is easy to check 

that L(ab) = L(a) + L(b), and that the L is an 

isomorphism between these two groups. As 

is the case with the usual logarithm, 

L(x)/L(g) is, in a sense, the logarithm of x 

with base g. 

We have 

 

So to recover m we just need to take the 

logarithm with base g
p−1

, which is 

accomplished by 

 

Naccache–Stern   cryptosystem. 

The Naccache–Stern crypto system[7] is a 

homomorphic public key encryption whose 

security rests on the higher residuosity   

problem. The Naccache–Stern cryptosystem 

was discovered by David Naccache and   

Jacques Stern in 1998. Like many public key 

cryptosystem, this scheme works in the 

group where n is a product of two 

large primes.. This scheme is homomorphic 

and hence malleable. 

Key Generation 

 Pick a family of k small distinct 

primes p1,...,pk. 

 Divide the set in half and set 

  . 

 Set  

 Choose large primes a and b such 

that both p = 2au+1 and q=2bv+1 are 

prime. 

 Set n=pq. 
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 Choose a random g mod n such that 

g has order φ(n)/4. 

The public key is the numbers σ, n, g and 

the private key is the pair p, q. 

When k=1 this is essentially the Benaloh 

cryptosystem. 

Message encryption 

This system allows encryption of a message 

m in the group . 

 Pick a random . 

 Calculate  

Then E(m) is an encryption of the message 

m. 

Message decryption 

To decrypt, we first find m mod pi for each i, 

and then we apply the Chinese remainder 

theorem to calculate m mod . 

Given a cipher text c, to decrypt, we 

calculate 

. Thus 

 

where . 

Since pi is chosen to be small, mi can 

be recovered be exhaustive search, 

i.e. by comparing to for 

j from 1 to pi-1. 

Once mi is known for each i, m can 

be recovered by a direct application 

of the Chinese remainder theorem. 

Damg ard–Jurik cryptosystem 

The Damg ard–Jurik   crypto system[8]
 
 is a 

generalization of the Pailler cryptosystem.. 

It uses computations modulo where  

is an RSA modulus and  a (positive) 

natural number. Paillier's scheme is the 

special case with . The order 

of can be divided by . 

Moreover can be written as the direct 

product of .  is cyclic and of order 

, while  is isomorphic to . For 

encryption, the message is transformed into 

the corresponding coset of the factor Group 

and the security of the scheme relies on 

the difficulty of distinguishing random 

elements in different cosets of . It is 

semantically secure if it is hard to decide if 

two given elements are in the same coset. 

Like Paillier, the security of Damgård–Jurik 

can be proven under the   decisional 

composite residuosity assumption. 

Key generation 

1. Choose two large prime numbers p 

and q randomly and independently of 

each other. 

2. Compute  and 

. 

3. Choose an element such 

that 

for a known relative prime  to 

and . 

4. Using the chinese remainder  

theorem , choose  such that 

and 

. For instance 

could be  as in Paillier's original 

scheme. 
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 The public (encryption) key is 

. 

 The private (decryption) key is . 

Encryption 

Let  be a message to be encrypted 

where . 

1. Select random  where . 

2. Compute cipher text as: 

. 

Decryption 

1. Cipher text  

2.  Compute   . If c is a 

valid cipher text then 

 
3. Apply a recursive version of the 

pailler decryption mechanism to 

obtain . As is known, it is 

possible to compute 

. 

 Residue Number System  

      RNS is homomorphic   encryption[9] 

technique which can be used to achieve 

security.         A residue number system is 

defined by a set of N integer constants, 

{m1, m2, m3, ... , mN }, 

referred   to as the moduli. Let M be the least 

common multiple of all the mi. 

Encryption 

Any arbitrary integer X smaller than M can 

be represented in the defined residue number 

system as a set of N smaller integers 

{x1, x2, x3, ... , xN}  

with 

xi = X modulo mi 

Decryption 

Chinese Remainder theorem can be used to 

decrypt the number represented in Residue 

Number System. The Chinese Remainder 

Theorem is the theorem that enables the 

conversion of residues back into more 

traditional form such as Decimal form. With 

this theorem, for residues {r1, r2, ..., rn} of a 

number x, can be converted back into x, 

provided the greatest common divisor of any 

pair of moduli is 1. The theorem can be 

expressed as:  

 

Where, ri is the residue, Ai is ,  where M 

is the product of moduli and Ti is the 

multiplicative inverse over the ring modulo 

, popularly written as . 

4.  Conclusion 

     This paper presents a partially 

homomorphic encryption techniques used in 

cloud computing to achieve security. 
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