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Abstract

In this paper, we survey the most recent research
efforts on various novel Hyperspectral image
compression techniques. The development of new
generation remote sensor has led to the emergence of
hyperspectral imaging which is basically a 3D data
cube containing both spatial and spectral domain
information. This huge amount of data generated by
advanced imaging imposes significant constraint on
bandwidth and storage capacity for transmission and
on-board processing, under these circumstances the
role of compression becomes crucial. The motivation
for this work is derived from the increased interest in
field of hyperspectral sensors in the intelligence,
surveillance and reconnaissance missions of military
and earth environmental studies

1. Introduction

The most significant recent breakthrough in remote
sensing has been the development of hyperspectral
sensors. Hyperspectral sensors are capable of
generating very high dimensional imagery through the
use of sensor optics with a large number of (nearly
contiguous) spectral bands, providing very detailed
information about the sensed scene. From a remote
sensing perspective, the spatial and significantly
improved spectral resolutions provided by these latest
generation instruments have opened cutting-edge
possibilities in  many applications, including
environmental modelling and assessment, target
detection and identification for military and
defence/security purposes, agriculture and monitoring
of oil spills and other types of chemical contamination,
among many others.

Over the past decade hyperspectral image analysis
has matured into one of the most powerful and fastest
growing technologies in the field of remote sensing.
Hyper-spectral imaging is basically known as imaging
spectroscopy, that combines the power of digital

imaging and spectroscopy. Hyperspectral images
provide much more detailed information about the
scene than a normal colour camera image, which only
acquires three different spectral channels corresponding
to the visual primary colours red, green and blue. In a
hyperspectral image each pixel acquires the light
intensity (radiance) for a large number (typically a few
tens to several hundred) of contiguous spectral bands.
Hence, hyperspectral imaging leads to a vastly
improved ability to classify the objects in the scene
based on their spectral properties. As every pixel in the
image contains a continuous spectrum (in radiance or
reflectance) this can be used to characterize the objects
in the scene with great precision and detail.

Because of their potential, remote sensing
hyperspectral sensors have been incorporated in
different satellite missions over recent years like the
currently operating Hyperion on NASA’s Earth
Observing-1 (EO-1) satellitel or CHRIS sensor on the
European  Space  Agency (ESA)’s  Proba-1.
Furthermore, the remote sensing hyperspectral sensors
that will be allocated in future missions will have
enhanced spatial, spectral, and temporal resolutions,
which will allow capturing more hyperspectral cubes
per second with much more information per cube. For
example, It has been estimated by the NASA’s Jet
Propulsion Laboratory (JPL) that a volume of 1-5 TB
of data will be daily produced by short-term future
hyperspectral missions like the NASA’s HyspIRIL
Similar data volume ratios are expected in European
missions such as Germany’s EnMAP3 or Italy’s
PRISMA .4 unfortunately, this extraordinary amount of
information jeopardizes the use of these last-generation
hyperspectral instruments in real-time or near-real-time
applications, due to the prohibitive delay in the delivery
of Earth Observation payload data to ground processing
facilities. Further it has been announced by NASA that
‘‘data rates and data volumes produced by payloads
continue to increase, while the available downlink
bandwidth to ground stations is comparatively stable’’.
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Fig. 1 Basic structure of Hyperspectral image representing both spatial and spectral information

A. BACKGROUND

In image compression, there are two primary
categories of algorithms: lossless and lossy. Lossless
image compression is one in which the original image
can be reconstructed exactly from the compressed
image is the ideal. Lossy compression schemes discard
some amount of data in an image, but can achieve
much higher compression rates —indeed, with many
algorithms, the user can choose exactly how large they
would like the resulting compressed image to be. The
difference between the original image and one
reconstructed from lossy compressed data constitutes
the compression error, and different applications for the
images have different levels of tolerance for amount
and type of introduced error. But in the case of Hyper-
spectral images lossless compression scheme . is
preferred to prevent any loss of information that might
occur due to lossy compression. Basically the purpose
of lossless compression is to represent the data using a
minimum number of bits by reducing the statistical
redundancies inherent to the data that lies within hyper-
spectral images.

B. Organization of paper

In the previous section the basic structure of
Hyperspectral images is explained in detail. The
remainder of the paper is organized as follows, section
Il provides a complete overview of each of the 4
different methods of hyperspectral compression
techniques, section 111 provides a discussion on various
trade-off confronted by each compression techniques
based on experimental results achieved by each of these
compression techniques by which the performance of
compression schemes is measured.

Il. HYPERSPECTRAL IMAGE
COMPRESSION TECHNIQUES

2.1. Improved Karhunen-Loéve Transform
for Remote-Sensing Image Coding

The Karhunen-Loeve (KL) transform is a statistical
transformation that can be used to generate a set of
uncorrelated variates from an analog signal specified by
its autocorrelation function. A detailed discussion of
one- and two-dimensional KL transform is in
References [1] and [2]. Basically a continuous KL
transform eliminates the need for scanning and
sampling the continuous imagery and generates the
uncorrelated ordered samples directly from the analog
data. This approach, although simple and attractive, is
almost impossible to implement. This is because of the
following considerations

Solution to the integral equation required to solve
for the eigen functions is only known for specific types
of autocorrelation functions. Samples can be generated
from analog imagery using analog filters with impulse
response function. These filters are very difficult to
implement In order to overcome these problems a new
technique is adopted into the KL transform. Through
the multilevel clustering approach computational cost
of KLT having high spectral de-correlation property
has been reduced & scalability has also been increased.

2.1.1 Multilevel clustering:

In this multilevel clustering structure, the 3 main
sources that contribute to computational cost of KLT
are covariance matrix calculation forward and reverse
applications of the transforms. The resultant effective
computational complexity of the above operations can
be expressed by O(n?) where n represents the number
of spectral components. In order to reduce the
computational cost large transform is divided into
multiple clusters and transform is applied to smaller
clusters drawback of this approach is that it provides
local decorrelation within each cluster. So global
decorrelation can be achieved by including additional
transform stage such that it decorrelates only the most
important parts. The multilevel clustering scheme is
shown in figure 2. The multilevel clustering KLT is
defined by notation C={C_eveL,inpex} Such that C_ is
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the set of cluster in level L of structure and Index being
position at that level L As an example consider C is
cluster-set C ={c1,1,c1,2,c1,3,c2,1,c2,2,c3,1} for each
cluster, let Size(i,j) be the size of the cluster and N(i,j)
is the number of elements in the said cluster that
proceeds to the next level. For instance, if number of
element in 2nd cluster of level 1 are 5 & out of which
only 2 values are send for next level, then they can be
given as S(c1,2 )= 5 and E(c2,1)= 3 as shown in
figure.2

Fig. 2 The figure shows Multilevel clustering technique

Specification can be divided into two kinds:
determining the size of each cluster in the structure and
setting the threshold using Eigen thresholding methods
to decide how many components are to be forwarded to
the next stage as shown in figure 2. Multilevel
clustering is two stage process: In first stage, several
candidate structures are generated for each specific
situation through local search and Eigen thresholding
methods. There are different Eigen thresholding
methods either static or dynamic, like Screen test [3],
Average Eigen value (AE), Empirical Indicator
Function (EIF) [4]. If thresholds are known a priori, the
result is a fully static structure, where the whole
structure can be chosen before it is applied and does not
vary with different images i.e. we set same value for
each cluster. On the other hand, a dynamic structure is
produced if either AE or EIF thresholding method are
used to set the threshold individually for each cluster
without any training. And then, candidates are further
screened to select the best clustering configuration
producing a list of different candidate structures. To
reduce these candidate structures three constraints are
added viz. cluster size homogeneity, non-regularity of
structure and structure having more number of clusters
at top level. Once a list of candidate structures has been
generated, each Candidate needs to be tested against the
others to determine the most suitable one. The
suitability of a candidate structure will be determined
by three criteria:

* Quality is evaluated with the signal-to-noise ratio of
tested structure.

* Cost is calculated counting the total floating-point
operations required for applying and removing a
transform.

» Scalability is evaluated measuring the dependences to
decode only one component.

2.2. Anomaly based JPEG2000 Compression
Technique

In this proposed work, initially the pixels are
extracted before compression these are termed as
anomalous pixels then the pixels are replaced with
interpolation from surrounding non-anomalous pixels.
Further the resultant image is encoded using Principal
component analysis technique for spectral de-
correlation which is followed by JPEG 2000 [5]. In the
work anomalous pixels do not participate in lossy
compression and are transmitted in a lossless fashion,
such that upon decoding the anomalous pixels can be
inserted back into the image. It has been shown [6],[7]
that PCA in conjunction with JPEG2000 can provide
superior rate-distortion performance for hyperspectral
image compression, where PCA provides spectral
decorrelation prior to the application of JPEG2000 to
the resulting principal component (PC) images ( refer
to this as “PCA+JPEG2000”). In particular,
PCA+JPEG2000 out performs DWT+JPEG2000, the
corresponding strategy that uses a discrete wavelet
transform (DWT) for spectral decorrelation. In this
sense, spectral decorrelation is critical for hyperspectral
compression, and PCA outperforms the DWT in this
respect.

2.2.1 ANOMALY-ADJUSTED COMPRESSION

In this method a procedure to preserve anomalous
pixels in compression is proposed. Firstly RX
algorithm [8][9] is applied to detect anomalous pixels
within hyperspectral image. Next to exploit data
redundancy within an image spectral decorrelation
technique is employed through PCA. Now, the
identified anomalous pixels are adjusted by mean
removal, i.e., the anomalous pixels are averaged, and
this resulting mean is subtracted from each anomalous
pixel. Finally JPEG2000 is applied to the entire image.
In AA scheme, the anomalous pixel mean is
transmitted losslessly that too separately from rest of
data. Upon decoding anomalous pixel mean is restored
to each of the anomalous pixels resulting in improved
spectral fidelity of the anomalous pixels.

This AA approach in [10] is premised on the
assumption that, the anomaly pixels belong to a single
class that shares the same statistics, specifically the
same mean vector which means that although different
from their surrounding pixels, the anomalies are
themselves rather similar. The drawback of AA

International Journal Of Engineering Research and Technology(1JERT), NCRTICE - 2013 Conference Proceedings

189



technique is that depending on the dataset, sometimes
this assumption holds, but sometimes it does not. In
such latter cases, the AA approach has difficulty
preserving the anomaly pixels.

2.2.2 ANOMALY-REMOVED COMPRESSION

In this approach the author proposed to completely
remove anomalies prior to compression in contrast to
previously discussed AA technique. In AR approach in
[10], anomaly detection, such as the RX algorithm
[8][9] is applied first to identify anomalous pixels.
These pixels are then extracted from the dataset and
transmitted (losslessly) independently of the remainder
of the dataset. In order to compress the rest of the
image, the anomalous pixels in the original dataset are
replaced by values interpolated from neighbouring
pixels. Specifically, for an isolated anomalous pixel
vector, the anomaly is replaced with the average of the
eight pixels immediately surrounding it spatially. For
larger regions, the entire anomalous region is replaced
by the average of the non-anomalous pixels calculated
along the boundary of the region. Since this spatial-
averaging interpolation is a simple form of low-pass
filtering, high spatial frequency components produced
by anomalous pixels tend to be suppressed, leading to
increased compression efficiency. The PCA spectral
transform is then calculated and applied to the resulting
dataset, followed by PCA+JPEG2000 or Sub-
PCA+JPEG2000 coding. After decoding, the original
anomalous pixels are inserted back into the
reconstructed image. In order to permit restoration of
the anomalous pixels after decompression, several
items of ancillary data are required to be provided by
the encoder separate from the JPEG2000 compressed
bit stream. In experiments, this proposed work
represents each anomalous pixel vector (uncompressed)
using 16 bits per vector component; for anomaly
locations, further the row and column indices are
represented using 9 bits each. Although this ancillary
information is technically independent from the
JPEG2000 bit-stream, it can be embedded directly into
a JP2- or JPX-format compressed file with one or more
UUID blocks which are designed to carry application-
specific user data.

2.3. UNIFIED LOSSY and NEAR-LOSSLESS
COMPRESSION BASED ON KLT+JPEG2000

In this proposed work a compression algorithm
featuring both lossy and near-lossless compression for
hyperspectral images had been implemented. As the
algorithm is based on JPEG 2000 it provides better
near-lossless compression performance than 3D-
CALIC. In this work, the author proposes two key
aspects. First, hyperspectral images are considered,
which are 3-D data and contain a significant degree of

spectral correlation, this heavily affects the entropy
coder design. Second, the rate of the lossy layer is
choosen in order to minimize the overall rate [11].

2.3.1. Prediction
Compression

Loop for Near-Lossless

The proposed algorithm is based on a non-causal
DPCM scheme, as shown in Fig. 3. the original
hyperspectral image is denoted as | and the prediction
as IL. The prediction is computed as follows. First the
original image is sent as input to the lossy compression
algorithm in [12], with a desired target rate. Secondly
encode and decode the image and use the reconstructed
image IL as a predictor. In order to decode the near-
lossless layer, the complete lossy layer has to be
decoded first. The residual image is obtained as e =1 —
IL. Uniform scalar quantization is applied to e as
follows:

The coefficients eQ are eventually decorrelated and
entropy coded as described in Section 2.4.3

At the decoder, the predictor IL is recovered by
extracting lossy layer from the compressed file and
decoding it. Then the near-lossless layer is entropy
decoded and inversely predicted to yield eQ. The near-
lossless reconstructed image IR is obtained as IR = IL +
(26 + 1) eQ. Considering that quantization step size for
e is 28 + 1, a maximum absolute error d is guaranteed
between IR and I.

! i el €a | decorrelation +
\_\ 'i s Q entropy coding
KLT + JPEG 2000
encoder / decoder IL
W///////////////W\IIIIIIIIIIIIIIIIIIIII Ml compressed file
lossy layer near-lossless layer |

Ir

KLT + JPEG 2000 | 'L

L N
D decoder \]/
o (25+1)eq

Fig. 3.architechture of lossy and lossless compression
algorithm using KLT+JPEG2000

A 4

2.3.2. Lossy Compression Stage

To obtain IL, the proposed scheme employs the
algorithm in [12], which exploits the multicomponent
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transformation (MCT) feature of JPEG 2000 part 2 in
[13], to take maximum advantage of the spectral
correlation present in hyperspectral images.

2.3.3. Coding of the Residual Image

A key component of the proposed scheme lies in the
entropy coding stage that has the purpose to yield a
compact description of the residual image eQ spatially.
Therefore, arithmetic coding of eQ as done in [11] can
be highly suboptimal, and lead to poor bit-rates. But
main objective was to obtain the minimum total bit-rate
for a given J; this typically leads to slightly smaller
lossy layer rates that leave some residual spatial
correlation. Since eQ exhibits some residual spatial
correlation, entropy coding of eQ must be preceded by
a spatial de-correlation stage. so 2-D version of CALIC
as decorrelator and entropy coding stage for the
residual layer is inhabited by this proposed work.

2.3.4. Allocation of Lossy Layer Rate

Given that the user specifies a maximum absolute
error & for the residual near-lossless layer, to optimally
select the bit rate of the lossy layer. It can be seen that,
At small lossy layer rates, the rate required to encode
the residual layer is high, making the total rate high.
Increasing the lossy layer rate provides better trade-
offs.

* At high lossy layer rates, the residual image becomes
quite noisy, again increasing the total rate. However,
there is a rather broad region of rates that provides
near-optimal performance.

2.4. Lossy-to-Lossless Compression Using the
3D Embedded Zero Block Coding Alogrithm

In this work, lossy to lossless hyperspectral
image compression coder employing a Three-
Dimensional Embedded Zero Block Coding (3D
EZBC) algorithm is proposed. To exploit data
redundancy within hyperspectal image through
decorrelation three-dimensional integer wavelet packet
transform with unitary scaling is adopted. More
specifically 3D EZBC algorithm without motion
compensation to process bit-plane zero block coding is
inhabited.

2.4.1.  Three-Dimensional Wavelet
Transform

Integer

To realize lossy-to-lossless image compression
based on wavelet transform, the integer-based lifting
scheme is an indispensable tool. Basically it requires 3
steps to perform the reversible integer-to-integer
wavelet transform namely split, predict and update by

rounding each filter output [14][15]. There are many
diversified 3D  wavelet transform  structures
[14][16][17] according to the different order of
decomposition in the spatial-horizontal, spatial-vertical,
and spectral-slice directions. For achieving better lossy
coding performance, a simple approach via bit shifting
of wavelet coefficients is inhabited to make the integer
WT approximately unitary. This unitary scaling
structure can obtain not only the better lossless
performances, but also the excellent integer based lossy
performances

13):8',,
XSIT{4—X4 ‘;2
x4lx2]°
x1
x2 |Ix1
x 1 x1

Fig. 4.a the spatial scaling factors

2.4.2. Hyperspectral Image Lossy-to-Lossless
Coder based on the 3D EZBC Algorithm

The Embedded ZeroBlock Coding and context
modeling (EZBC) algorithm proposed by Hsiang and
Woods is a state-of-the-art image compression
algorithm using two powerful embedded techniques ---
the hierarchical set-partitioning zeroblock coding and
the context based adaptive arithmetic coding [16].The
3D EZBC coder provides not only lower computational
complexity and excellent compression performance,
but also the various features with quality, resolution
and temporal scalability [17]. 3D EZBC is an
embedded zero block bit-plane coding algorithm by
effective utilizing the energy clustering nature within
subbands and strong dependency across subbands.

The complete coding procedure can be summarized as
the following three steps:

First a hierarchical pyramidal structure is
determined for hyperspectral image through 3D integer
wavelet packet transform with Fig.4.a’s unitary scaling
structure.
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Second, the 3D EZBC coder has to establish a
quadtree representation structure with the hierarchical
pyramidal model for each individual 2D subband
before the set partitioning bitplane coding process
starts. Here 3D EZBC adopts bitplane coding to
progressively encode the wavelet coefficients of each
subband from the Most Significant Bit (MSB) plane
toward the Least Significant Bit (LSB) plane.

Finally, coding performance is improved further
with the context-based adaptive arithmetic coding
approach by 3D EZBC to encode the significance map,
signs and refinement bit streams. 3D EZBC exploits
two statistical dependencies — the intra-band
correlation among quadtree nodes at the same quadtree
level in subband and the inter-band correlation among
quadtree nodes across subband.

I1l. DISCUSSIONS

In the proposed work in section 2.1, the Lossless
compression rates are reported, where it is seen that
little impact is produced by the use of the static
clustered approach but for dynamic cluster approach it
produces larger bit streams, which have CRs between
the Reduced KLT and IWT. The static transform allows
applying KLT with very reasonable resource
constraints. On the other hand dynamic transform can
be taken as a direct replacement of the DWT for
spectral coding, improving the DWT in all the three
measured criteria: quality, cost, and scalability.

In the proposed work in section 2.2, SNR for data
fidelity has been employed since it is widely used for
assessment of rate-distortion performance. For both AA
and AR, anomaly detection results can be retrieved
directly from the compressed bit stream since the
anomaly locations are transmitted losslessly. The post-
compression anomaly detection conducted is intended
simply as a means to objectively evaluate how well
anomalies can be extracted from the reconstructed
images. Further even in the case that anomalies are
perfectly preserved, some anomalies may fail to be
detected while some background pixels may produce
false alarms due to compression effects on the
background.

In the proposed work in section 2.4, the author
evaluate the near-lossless compression performance of
the proposed algorithm and compares it with other
existing algorithms. The lossy layer rates of 0.25, 0.5,
0.4, and 0.5 bpppb for Cuprite, Jasper Ridge, Moffett
Field, and Purdue Indian Pines, respectively are
selected. As benchmark, the near-lossless version of
3D-CALIC is employed. The bit rates achieved for
near-lossless compression of sample hyperspectral
images such as cuprite, jasper ridge and moffett field

are 3.60, 3.61 and 3.69 respectively. It can be seen that,
for smaller compression, the proposed scheme achieves
a bit rate that is significantly low without any loss of
information.
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Fig. 4.c shows 3D integer WPT structure of two
spatial levels and two spectral levels. The numbers
on the front upper left corner for all the subbands
indicate the initialization order of LINK list for 3D
EZBC as proposed by Xiong’s in [14].

In the proposed work in section 2.5, lossless
compression performances use bits per pixel per
band (bpppb) to evaluate compressed data streams
size .the coding experiments are performed on four
signed 16-bit radiance AVIRIS hyperspectral
images namely Cuprite scene 1, Jasper Ridge scene
1, Low Altitude scene 1 and Lunar Lake scene 1.
Experimental results obtained in this proposed
scheme validate that 3D EZBC outperforms 3D
SPECK, 3D SPIHT and AT-3D SPIHT. The
average compression ratio of 3D EZBC is 5.70 %
lower than 3D SPECK, 7.14 % lower than 3D
SPIHT, 4.96 % lower than AT-3D SPIHT, and 1.07
% higher than JPEG2000-MC.

1\VV. CONCLUSION

In this paper, recent development in the area of
hyperspectral image compression techniques have
been presented. All the technique which have been
reviewed in this work provides a clear vision to
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achieve lossless compression  with  higher
compression ratio taking into account compactness
of representation, speed and cost in terms of
precessing time and number of computations
required. From the observations made so far the
algorithms  suitable for  satellite  on-board
compression, either lossless or near-lossless should
have favorable characteristics such as low
complexity, low power and storage requirements
last but not least capability of working on Raw
images i.e uncalibrated data as they are provided by
advanced imaging sensors since a performance
ranking of compression algorithms may be
different on raw uncalibrated images. Thereby
allowing raw data to be compressed
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