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Abstract  
 

In this paper, we survey the most recent research 

efforts on various novel Hyperspectral image 

compression techniques. The development of new 

generation remote sensor has led to the emergence of 

hyperspectral imaging which is basically a 3D data 

cube containing both spatial and spectral domain 

information. This huge amount of data generated by 

advanced imaging imposes significant constraint on 

bandwidth and storage capacity for transmission and 

on-board processing, under these circumstances the 

role of compression becomes crucial. The motivation 

for this work is derived from the increased interest in 

field of hyperspectral sensors in the intelligence, 

surveillance and reconnaissance missions of military 

and earth environmental studies  

 

1. Introduction  

 
The most significant recent breakthrough in remote 

sensing has been the development of hyperspectral 

sensors. Hyperspectral sensors are capable of 

generating very high dimensional imagery through the 

use of sensor optics with a large number of (nearly 

contiguous) spectral bands, providing very detailed 

information about the sensed scene. From a remote 

sensing perspective, the spatial and significantly 

improved spectral resolutions provided by these latest 

generation instruments have opened cutting-edge 

possibilities in many applications, including 

environmental modelling and assessment, target 

detection and identification for military and 

defence/security purposes, agriculture and monitoring 

of oil spills and other types of chemical contamination, 

among many others.  
 
Over the past decade hyperspectral image analysis 

has matured into one of the most powerful and fastest 

growing technologies in the field of remote sensing. 

Hyper-spectral imaging is basically known as imaging 

spectroscopy, that combines the power of digital 

imaging and spectroscopy. Hyperspectral images 

provide much more detailed information about the 

scene than a normal colour camera image, which only 

acquires three different spectral channels corresponding 

to the visual primary colours red, green and blue. In a 

hyperspectral image each pixel acquires the light 

intensity (radiance) for a large number (typically a few 

tens to several hundred) of contiguous spectral bands. 

Hence, hyperspectral imaging leads to a vastly 

improved ability to classify the objects in the scene 

based on their spectral properties. As every pixel in the 

image contains a continuous spectrum (in radiance or 

reflectance) this can be used to characterize the objects 

in the scene with great precision and detail. 

  

Because of their potential, remote sensing 

hyperspectral sensors have been incorporated in 

different satellite missions over recent years like the 

currently operating Hyperion on NASA‘s Earth 

Observing-1 (EO-1) satellite1 or CHRIS sensor on the 

European Space Agency (ESA)‘s Proba-1. 

Furthermore, the remote sensing hyperspectral sensors 

that will be allocated in future missions will have 

enhanced spatial, spectral, and temporal resolutions, 

which will allow capturing more hyperspectral cubes 

per second with much more information per cube. For 

example, It has been estimated by the NASA‘s Jet 

Propulsion Laboratory (JPL) that a volume of 1–5 TB 

of data will be daily produced by short-term future 

hyperspectral missions like the NASA‘s HyspIRI. 

Similar data volume ratios are expected in European 

missions such as Germany‘s EnMAP3 or Italy‘s 

PRISMA.4 unfortunately, this extraordinary amount of 

information jeopardizes the use of these last-generation 

hyperspectral instruments in real-time or near-real-time 

applications, due to the prohibitive delay in the delivery 

of Earth Observation payload data to ground processing 

facilities. Further it has been announced by NASA that 

‗‗data rates and data volumes produced by payloads 

continue to increase, while the available downlink 

bandwidth to ground stations is comparatively stable‘‘.  
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Fig. 1 Basic structure of Hyperspectral image representing both spatial and spectral information  
 

A. BACKGROUND 

 

In image compression, there are two primary 

categories of algorithms: lossless and lossy. Lossless 

image compression is one in which the original image 

can be reconstructed exactly from the compressed 

image is the ideal. Lossy compression schemes discard 

some amount of data in an image, but can achieve 

much higher compression rates –indeed, with many 

algorithms, the user can choose exactly how large they 

would like the resulting compressed image to be. The 

difference between the original image and one 

reconstructed from lossy compressed data constitutes 

the compression error, and different applications for the 

images have different levels of tolerance for amount 

and type of introduced error. But in the case of Hyper-

spectral images lossless compression scheme is 

preferred to prevent any loss of information that might 

occur due to lossy compression. Basically the purpose 

of lossless compression is to represent the data using a 

minimum number of bits by reducing the statistical 

redundancies inherent to the data that lies within hyper-

spectral images.  
 

B. Organization of paper 

 

In the previous section the basic structure of 

Hyperspectral images is explained in detail. The 

remainder of the paper is organized as follows, section 

II provides a complete overview of each of the 4 

different methods of hyperspectral compression 

techniques, section III provides a discussion on various 

trade-off confronted by each compression techniques 

based on experimental results achieved by each of these 

compression techniques by which the performance of 

compression schemes is measured. 

 

II. HYPERSPECTRAL IMAGE 

COMPRESSION TECHNIQUES 
 

2.1. Improved Karhunen–Loêve Transform 

for Remote-Sensing Image Coding 

 

The Karhunen-Loeve (KL) transform is a statistical 

transformation that can be used to generate a set of 

uncorrelated variates from an analog signal specified by 

its autocorrelation function. A detailed discussion of 

one- and two-dimensional KL transform is in 

References [1] and [2]. Basically a continuous KL 

transform eliminates the need for scanning and 

sampling the continuous imagery and generates the 

uncorrelated ordered samples directly from the analog 

data. This approach, although simple and attractive, is 

almost impossible to implement. This is because of the 

following considerations 

 

Solution to the integral equation required to solve 

for the eigen functions is only known for specific types 

of autocorrelation functions. Samples can be generated 

from analog imagery using analog filters with impulse 

response function. These filters are very difficult to 

implement In order to overcome these problems a new 

technique is adopted into the KL transform. Through 

the multilevel clustering approach computational cost 

of KLT having high spectral de-correlation property 

has been reduced & scalability has also been increased. 

 

 2.1.1 Multilevel clustering: 

 

In this multilevel clustering structure, the 3 main 

sources that contribute to computational cost of KLT 

are covariance matrix calculation forward and reverse 

applications of the transforms. The resultant effective 

computational complexity of the above operations can 

be expressed by O(n
2
) where n represents the number 

of spectral components. In order to reduce the 

computational cost large transform is divided into 

multiple clusters and transform is applied to smaller 

clusters drawback of this approach is that it provides 

local decorrelation within each cluster. So global 

decorrelation can be achieved by including additional 

transform stage such that it decorrelates only the most 

important parts. The multilevel clustering scheme is 

shown in figure 2. The multilevel clustering KLT is 

defined by notation C={CLEVEL,INDEX} such that CL is 

International Journal Of Engineering Research and Technology(IJERT), NCRTICE - 2013 Conference Proceedings

IJ
E
R
T

IJ
E
R
T

188



  

the set of cluster in level L of structure and Index being 

position at that level L As an example consider C is 

cluster-set  C ={c1,1,c1,2,c1,3,c2,1,c2,2,c3,1} for each 

cluster, let Size(i,j) be the size of the cluster and N(i,j) 

is the number of elements in the said cluster that 

proceeds to the next level. For instance, if number of 

element in 2nd cluster of level 1 are 5 & out of which 

only 2 values are send for next level, then they can be 

given as S(c1,2 )= 5 and E(c2,1)= 3 as shown in 

figure.2 

 

 
Fig. 2 The figure shows Multilevel clustering technique 

 

Specification can be divided into two kinds: 

determining the size of each cluster in the structure and 

setting the threshold using Eigen thresholding methods 

to decide how many components are to be forwarded to 

the next stage as shown in figure 2. Multilevel 

clustering is two stage process: In first stage, several 

candidate structures are generated for each specific 

situation through local search and Eigen thresholding 

methods. There are different Eigen thresholding 

methods either static or dynamic, like Screen test [3], 

Average Eigen value (AE), Empirical Indicator 

Function (EIF) [4]. If thresholds are known a priori, the 

result is a fully static structure, where the whole 

structure can be chosen before it is applied and does not 

vary with different images i.e. we set same value for 

each cluster. On the other hand, a dynamic structure is 

produced if either AE or EIF thresholding method are 

used to set the threshold individually for each cluster 

without any training. And then, candidates are further 

screened to select the best clustering configuration 

producing a list of different candidate structures. To 

reduce these candidate structures three constraints are 

added viz. cluster size homogeneity, non-regularity of 

structure and structure having more number of clusters 

at top level. Once a list of candidate structures has been 

generated, each Candidate needs to be tested against the 

others to determine the most suitable one. The 

suitability of a candidate structure will be determined 

by three criteria: 

   

• Quality is evaluated with the signal-to-noise ratio of 

tested structure. 

• Cost is calculated counting the total floating-point 

operations required for applying and removing a 

transform. 

• Scalability is evaluated measuring the dependences to 

decode only one component. 

 

2.2. Anomaly based JPEG2000 Compression        

Technique 
  

In this proposed work, initially the pixels are 

extracted before compression these are termed as 

anomalous pixels then the pixels are replaced with 

interpolation from surrounding non-anomalous pixels. 

Further the resultant image is encoded using Principal 

component analysis technique for spectral de-

correlation which is followed by JPEG 2000 [5]. In the 

work anomalous pixels do not participate in lossy 

compression and are transmitted in a lossless fashion, 

such that upon decoding the anomalous pixels can be 

inserted back into the image. It has been shown [6],[7] 

that PCA in conjunction with JPEG2000 can provide 

superior rate-distortion performance for hyperspectral 

image compression, where PCA provides spectral 

decorrelation prior to the application of JPEG2000 to 

the resulting principal component (PC) images ( refer 

to this as ―PCA+JPEG2000‖). In particular, 

PCA+JPEG2000 out performs DWT+JPEG2000, the 

corresponding strategy that uses a discrete wavelet 

transform (DWT) for spectral decorrelation. In this 

sense, spectral decorrelation is critical for hyperspectral 

compression, and PCA outperforms the DWT in this 

respect. 

 

2.2.1 ANOMALY-ADJUSTED COMPRESSION 

 

In this method a procedure to preserve anomalous 

pixels in compression is proposed. Firstly RX 

algorithm [8][9] is applied to detect anomalous pixels 

within hyperspectral image. Next to exploit data 

redundancy within an image spectral decorrelation 

technique is employed through PCA. Now, the 

identified anomalous pixels are adjusted by mean 

removal, i.e., the anomalous pixels are averaged, and 

this resulting mean is subtracted from each anomalous 

pixel. Finally JPEG2000 is applied to the entire image. 

In AA scheme, the anomalous pixel mean is 

transmitted losslessly that too separately from rest of 

data. Upon decoding anomalous pixel mean is restored 

to each of the anomalous pixels resulting in improved 

spectral fidelity of the anomalous pixels. 

 

This AA approach in [10] is premised on the 

assumption that, the anomaly pixels belong to a single 

class that shares the same statistics, specifically the 

same mean vector which means that although different 

from their surrounding pixels, the anomalies are 

themselves rather similar. The drawback of AA 
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technique is that depending on the dataset, sometimes 

this assumption holds, but sometimes it does not. In 

such latter cases, the AA approach has difficulty 

preserving the anomaly pixels. 

 

2.2.2 ANOMALY-REMOVED COMPRESSION 

 

In this approach the author proposed to completely 

remove anomalies prior to compression in contrast to 

previously discussed AA technique. In AR approach in 

[10], anomaly detection, such as the RX algorithm 

[8][9] is applied first to identify anomalous pixels. 

These pixels are then extracted from the dataset and 

transmitted (losslessly) independently of the remainder 

of the dataset. In order to compress the rest of the 

image, the anomalous pixels in the original dataset are 

replaced by values interpolated from neighbouring 

pixels. Specifically, for an isolated anomalous pixel 

vector, the anomaly is replaced with the average of the 

eight pixels immediately surrounding it spatially. For 

larger regions, the entire anomalous region is replaced 

by the average of the non-anomalous pixels calculated 

along the boundary of the region. Since this spatial-

averaging interpolation is a simple form of low-pass 

filtering, high spatial frequency components produced 

by anomalous pixels tend to be suppressed, leading to 

increased compression efficiency. The PCA spectral 

transform is then calculated and applied to the resulting 

dataset, followed by PCA+JPEG2000 or Sub-

PCA+JPEG2000 coding. After decoding, the original 

anomalous pixels are inserted back into the 

reconstructed image. In order to permit restoration of 

the anomalous pixels after decompression, several 

items of ancillary data are required to be provided by 

the encoder separate from the JPEG2000 compressed 

bit stream. In experiments, this proposed work 

represents each anomalous pixel vector (uncompressed) 

using 16 bits per vector component; for anomaly 

locations, further the row and column indices are 

represented using 9 bits each. Although this ancillary 

information is technically independent from the 

JPEG2000 bit-stream, it can be embedded directly into 

a JP2- or JPX-format compressed file with one or more 

UUID blocks which are designed to carry application-

specific user data. 

 

2.3. UNIFIED LOSSY and NEAR-LOSSLESS 

COMPRESSION BASED ON KLT+JPEG2000 
 

In this proposed work a compression algorithm 

featuring both lossy and near-lossless compression for 

hyperspectral images had been implemented. As the 

algorithm is based on JPEG 2000 it provides better 

near-lossless compression performance than 3D-

CALIC. In this work, the author proposes two key 

aspects. First, hyperspectral images are considered, 

which are 3-D data and contain a significant degree of 

spectral correlation, this heavily affects the entropy 

coder design. Second, the rate of the lossy layer is 

choosen in order to minimize the overall rate [11]. 

 

2.3.1. Prediction Loop for Near-Lossless 

Compression 
 

The proposed algorithm is based on a non-causal 

DPCM scheme, as shown in Fig. 3. the original 

hyperspectral image is denoted as I and the prediction 

as IL. The prediction is computed as follows. First the 

original image is sent as input to the lossy compression 

algorithm in [12], with a desired target rate. Secondly 

encode and decode the image and use the reconstructed 

image IL as a predictor. In order to decode the near-

lossless layer, the complete lossy layer has to be 

decoded first. The residual image is obtained as e = I − 

IL. Uniform scalar quantization is applied to e as 

follows: 

      (1) 

 

The coefficients eQ are eventually decorrelated and 

entropy coded as described in Section 2.4.3 

 

At the decoder, the predictor IL is recovered by 

extracting lossy layer from the compressed file and 

decoding it. Then the near-lossless layer is entropy 

decoded and inversely predicted to yield eQ. The near-

lossless reconstructed image IR is obtained as IR = IL + 

(2δ + 1) eQ. Considering that quantization step size for 

e is 2δ + 1, a maximum absolute error δ is guaranteed 

between IR and I. 

 

 
 Fig. 3.architechture of lossy and lossless compression 

algorithm using KLT+JPEG2000 

 

2.3.2. Lossy Compression Stage 

 

To obtain IL, the proposed scheme employs the 

algorithm in [12], which exploits the multicomponent 
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transformation (MCT) feature of JPEG 2000 part 2 in 

[13], to take maximum advantage of the spectral 

correlation present in hyperspectral images. 

 

2.3.3. Coding of the Residual Image 

 

A key component of the proposed scheme lies in the 

entropy coding stage that has the purpose to yield a 

compact description of the residual image eQ spatially. 

Therefore, arithmetic coding of eQ as done in [11] can 

be highly suboptimal, and lead to poor bit-rates. But 

main objective was to obtain the minimum total bit-rate 

for a given δ; this typically leads to slightly smaller 

lossy layer rates that leave some residual spatial 

correlation. Since eQ exhibits some residual spatial 

correlation, entropy coding of eQ must be preceded by 

a spatial de-correlation stage. so 2-D version of CALIC 

as decorrelator and entropy coding stage for the 

residual layer is inhabited by this proposed work. 

 

2.3.4. Allocation of Lossy Layer Rate 

 

Given that the user specifies a maximum absolute 

error δ for the residual near-lossless layer, to optimally 

select the bit rate of the lossy layer. It can be seen that,  

• At small lossy layer rates, the rate required to encode 

the residual layer is high, making the total rate high. 

Increasing the lossy layer rate provides better trade-

offs. 

 

• At high lossy layer rates, the residual image becomes 

quite noisy, again increasing the total rate. However, 

there is a rather broad region of rates that provides 

near-optimal performance.  

 

2.4. Lossy-to-Lossless Compression Using the 

3D Embedded Zero Block Coding Alogrithm 
  

 In this work, lossy to lossless hyperspectral 

image compression coder employing a Three-

Dimensional Embedded Zero Block Coding (3D 

EZBC) algorithm is proposed. To exploit data 

redundancy within hyperspectal image through 

decorrelation three-dimensional integer wavelet packet 

transform with unitary scaling is adopted. More 

specifically 3D EZBC algorithm without motion 

compensation to process bit-plane zero block coding is 

inhabited. 

 

2.4.1. Three-Dimensional Integer Wavelet 

Transform 

 

To realize lossy-to-lossless image compression 

based on wavelet transform, the integer-based lifting 

scheme is an indispensable tool. Basically it requires 3 

steps to perform the reversible integer-to-integer 

wavelet transform namely split, predict and update by 

rounding each filter output [14][15]. There are many 

diversified 3D wavelet transform structures 

[14][16][17] according to the different order of 

decomposition in the spatial-horizontal, spatial-vertical, 

and spectral-slice directions. For achieving better lossy 

coding performance, a simple approach via bit shifting 

of wavelet coefficients is inhabited to make the integer 

WT approximately unitary. This unitary scaling 

structure can obtain not only the better lossless 

performances, but also the excellent integer based lossy 

performances 

 

 

 

 

 

 

 
Fig. 4.a the spatial scaling factors 

. 

2.4.2. Hyperspectral Image Lossy-to-Lossless 

Coder based on the 3D EZBC Algorithm 
 

The Embedded ZeroBlock Coding and context 

modeling (EZBC) algorithm proposed by Hsiang and 

Woods is a state-of-the-art image compression 

algorithm using two powerful embedded techniques --- 

the hierarchical set-partitioning zeroblock coding and  

the context based adaptive arithmetic coding [16].The 

3D EZBC coder provides not only lower computational 

complexity and excellent compression performance, 

but also the various features with quality, resolution 

and temporal scalability [17]. 3D EZBC is an 

embedded zero block bit-plane coding algorithm by 

effective utilizing the energy clustering nature within 

subbands and strong dependency across subbands.  

 

 

 

The complete coding procedure can be summarized as 

the following three steps: 

 

First a hierarchical pyramidal structure is 

determined for hyperspectral image through 3D integer 

wavelet packet transform with Fig.4.a‘s unitary scaling 

structure. 
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 Second, the 3D EZBC coder has to establish a 

quadtree representation structure with the hierarchical 

pyramidal model for each individual 2D subband 

before the set partitioning bitplane coding process 

starts. Here 3D EZBC adopts bitplane coding to 

progressively encode the wavelet coefficients of each 

subband from the Most Significant Bit (MSB) plane 

toward the Least Significant Bit (LSB) plane. 

 

Finally, coding performance is improved further 

with the context-based adaptive arithmetic coding 

approach by 3D EZBC to encode the significance map, 

signs and refinement bit streams. 3D EZBC exploits 

two statistical dependencies — the intra-band 

correlation among quadtree nodes at the same quadtree 

level in subband and the inter-band correlation among 

quadtree nodes across subband. 

 

 

III. DISCUSSIONS 

 

In the proposed work in section 2.1, the Lossless 

compression rates are reported, where it is seen that 

little impact is produced by the use of the static 

clustered approach but for dynamic cluster approach it 

produces larger bit streams, which have CRs between 

the Reduced KLT and IWT. The static transform allows 

applying KLT with very reasonable resource 

constraints. On the other hand dynamic transform can 

be taken as a direct replacement of the DWT for 

spectral coding, improving the DWT in all the three 

measured criteria: quality, cost, and scalability. 

In the proposed work in section 2.2, SNR for data 

fidelity has been employed since it is widely used for 

assessment of rate-distortion performance. For both AA 

and AR, anomaly detection results can be retrieved 

directly from the compressed bit stream since the 

anomaly locations are transmitted losslessly. The post-

compression anomaly detection conducted is intended 

simply as a means to objectively evaluate how well 

anomalies can be extracted from the reconstructed 

images. Further even in the case that anomalies are 

perfectly preserved, some anomalies may fail to be 

detected while some background pixels may produce 

false alarms due to compression effects on the 

background. 

 

In the proposed work in section 2.4, the author 

evaluate the near-lossless compression performance of 

the proposed algorithm and compares it with other 

existing algorithms. The lossy layer rates of 0.25, 0.5, 

0.4, and 0.5 bpppb for Cuprite, Jasper Ridge, Moffett 

Field, and Purdue Indian Pines, respectively are 

selected. As benchmark, the near-lossless version of 

3D-CALIC is employed. The bit rates achieved for 

near-lossless compression of sample hyperspectral 

images such as cuprite, jasper ridge and moffett field 

are 3.60, 3.61 and 3.69 respectively. It can be seen that, 

for smaller compression, the proposed scheme achieves 

a bit rate that is significantly low without any loss of 

information. 
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Fig.5. Architecture of Lossy to lossless coder using 3D Embedded Zero Block Coding 

 

 
   

Fig. 4.b the spectral scaling factors 

  
 

Fig. 4.c shows 3D integer WPT structure of two 

spatial levels and two spectral levels. The numbers 

on the front upper left corner for all the subbands 

indicate the initialization order of LINk list for 3D 

EZBC as proposed by Xiong‘s in [14].  
 

 

 

In the proposed work in section 2.5, lossless 

compression performances use bits per pixel per 

band (bpppb) to evaluate compressed data streams 

size .the coding experiments are performed on four 

signed 16-bit radiance AVIRIS hyperspectral 

images namely Cuprite scene 1, Jasper Ridge scene 

1, Low Altitude scene 1 and Lunar Lake scene 1. 

Experimental results obtained in this proposed 

scheme validate that 3D EZBC outperforms 3D 

SPECK, 3D SPIHT and AT-3D SPIHT. The 

average compression ratio of 3D EZBC is 5.70 % 

lower than 3D SPECK, 7.14 % lower than 3D 

SPIHT, 4.96 % lower than AT-3D SPIHT, and 1.07 

% higher than JPEG2000-MC. 

IV. CONCLUSION 

In this paper, recent development in the area of 

hyperspectral image compression techniques have 

been presented. All the technique which have been 

reviewed in this work provides a clear vision to 

achieve lossless compression with higher 

compression ratio taking into account compactness 

of representation, speed and cost in terms of 

precessing time and number of computations 

required. From the observations made so far the 

algorithms suitable for satellite on-board 

compression, either lossless or near-lossless should 

have favorable characteristics such as low 

complexity, low power and storage requirements 

last but not least capability of working on Raw 

images i.e uncalibrated data as they are provided by 

advanced imaging sensors since a performance 

ranking of compression algorithms may be 

different on raw uncalibrated images. Thereby 

allowing raw data to be compressed 
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