
A Survey on Frequent Pattern Mining Algorithms

Sumit Aggarwal
Research Scholar

Department of Computer Science and Application

Kurukshetra University, Kurukshetra (India)

Vinay Singal
Research Scholar

Computer Engineering, U.I.E.T.

Kurukshetra University, Kurukshetra(India)

Abstract: Web mining can simply be described as the

application of data mining techniques to the Web. It can be

broadly divided in to three categories: Web content mining, Web

structure mining and Web usage mining. We will be discussing

the web usage mining techniques in this text. In web usage

mining association rules are generated from the frequent

patterns. The two widely used frequent pattern mining

algorithms are apriori algorithm and FP-growth algorithm.

Keywords: Apriori Algorithm, FP-growth Algorithm, FP-tree,

Web Usage Mining.

I. INTRODUCTION

World Wide Web is a huge, dynamic and unstructured data

repository. The use of WWW has increased tremendously

in the near past and the information available on internet

has had an explosive growth. It has become very difficult

to access relative information on the web. This has lead to

a hot research in the field of web usage mining. Web usage

mining helps to understand the behavior of the customer

and to evaluate the efficiency and performance of particular

web site [4].

The focus of this paper is to provide an overview on the

two main Frequent Pattern Mining (FPM) algorithms:

Apriori algorithm and FP-growth algorithm. The rest of the

text is organized as follows: Section II provides an

overview of the web usage mining. In section III, we have

discussed the problem statement and some terminology

related to the research is defined. Section IV, contains two

FPM algorithms which are the main part of this text.

Section V will give a comparison of the algorithms which

are studied and finally section VI, contain the conclusion of

the text.

II. WEB USAGE MINING

Web usage mining refers to the discovery of interesting

association rules from the data generated as a result of

interaction of users with the various Web resources [2].

The association rules will represent the information

regarding the resources and pages that are frequently

accessed by various user groups having common needs and

interests.

The main goal of the web usage mining is to collect, model

and analyze the behavioral patterns of the users interacting

with a web site. The data used for mining can be collected

at the servers, clients or the proxy servers. In web usage

mining the data consists of pattern of usage of the

resources. It is represented using web log files. These log

files record each page request information.

The most significant phase of the web usage mining is the

discovery of frequent patterns from the web log files using

FPM algorithms. Using these frequent patterns association

rules are generated, which is a straightforward task because

we don’t need to refer the databases.

III. PROBLEM STATEMENT

In web usage mining, association rules are generated using

frequent patterns. The problem consists of two phases [5]:

1. Firstly we find the frequent item sets. They are the set of

items whose occurrence exceeds a predefined threshold

value.

2. Then we generate the association rules from the frequent

item sets, with a constraint of minimum confidence.

A more formal definition of the problem is as follows [1]:

Let I: {i1, i2, i3, …… in} be a set of distinct items. D be a

database containing transaction over I in which each

transaction consists of a set of items i1, i2, i3,… in ⊆ I. Each

transaction in the database is associated with an transaction

identifier TID. We say that the transaction T contain X if X

⊆ T. Here X is a set of some items in I. The association

rules are the implications of the form X ⇒ Y. Where X ⊂

I, Y ⊂ I and X ∩Y = ∅. Here X is called the antecedent

and Y is called the consequent of the rule. The rule X ⇒ Y

holds in database D with confidence c if c% of the

transactions in D containing X also contains Y in them.

The rule X ⇒ Y has a support s in the database D if s% of

transactions in D contains X ∪ Y.

Confidence and support are significant measures of rule

interestingness and they reflect usefulness and certainty of

rule respectively [5]. The selection of the association rules

depend upon these two values because the selected rules

should have support and confidence greater than the

respective threshold values.

Support (X ⇒ Y) = Frequency (X ∪ Y)

/D/

Confidence (X ⇒ Y) = Frequency (X ∪ Y)

 Frequency (X)

2606

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS042211

International Journal of Engineering Research & Technology (IJERT)

A set of items is called itemset. And the itemset having k

items is called k-itemset. The support count of itemset

gives us the number of transactions in the database

containing the itemset. The number of transactions that

should contain the itemset to fulfill the minimum support

condition is called the minimum support count [1].

The definition of frequent item sets can be given as, the

itemset which has a support count greater than the

minimum support count.

IV. FREQUENT PATTERN MINING ALGORITHMS

A. Apriori Algorithm:

Apriori algorithm was proposed by R. Aggarwal and R.

Srikant in 1994 for finding the interesting association rules

from the databases. Figure 1 gives the apriori algorithm.

The algorithm [1] contains two functions apriori_gen() and

subset().

The apriori_gen() takes Lk-1 as argument, which represents

the set of large (k-1)-itemsets. The function returns the

superset of the set of all large k-itemsets.

Lk

Set of large k-itemsets having minimum support. Each
element of this set has two values: Itemset and

Support_count.

Ck

Set of candidate k-itemsets. Each of the element has

two values: Itemset and Support_count.

Table 1[1]

The table above represents the notation used.

1) L1={ Large 1-itemsets};

2) For(k=2; Lk-1!= ∅; k++) do begin

3) Ck= apriori_gen(Lk-1); //New candidate

4) For all transactions t∈D do begin

5) Ct= Subset(Ck,t) //Candidates in t

6) For all candidates c∈Ct do

7) c.count ++;

8) End

9) Lk= {c∈Ct| c.count >= minsup}

10) End

11) Answer= ∪ kLk

Figure 1[1]

The subset () function takes two arguments, Ck and t. Here

t is the transaction and Ck represents the set of candidate k-

itemsets. This function gives us all the candidates present

in transaction t. The working of the algorithm is explained

as under:

The first pass of algorithm will give us the large 1-itemsets

by counting occurrences of items. Any subsequent pass k

of the algorithm will consist of two phases. In first phase,

apriori_gen function is run to generate the candidate

itemsets Ck using the large itemsets Lk-1 generated in the k-

1 pass. In second phase, the support of the candidates in Ck

is counted using database scan. For determining the

candidates in Ck present in any transactions t, subset()

function is used as described above.

B. FP-growth Algorithm:

The Apriori algorithm generated a large number of

candidate sets. A new method, FP-growth, was purposed

for frequent itemsets generation without candidate itemset

generation. This method involves two phases. First phase

consist of constructing a compact data structure called FP-

tree [3]. In second phase, we extract frequent itemsets

using FP-growth algorithm over FP-tree generated in

previous phase.

First phase need two database scans for generating the FP-

tree. But the second phase don’t need any scan over

database and it uses on FP-tree to generate frequent

itemset.

FP-tree can be defined as follows [3]:

1. It consists of a root labeled null, a frequent item header

table and a set of item prefix subtrees as the children of

root.

2. Each node consists of: item-name, count and node-link.

Item-name gives us the name of item represented by the

node, count will give us the number of transactions that can

be represented by the path leading to the node, node-link

contains the pointer to the next node containing the same

item or null if there is none.

3. Frequent item header table consists of: item-name and

head of node-link which have a pointer to the first node in

the tree containing the item-name.

The two phases of FP-growth can be represented by two

algorithms as described below:

Algorithm 1[3]: (Phase 1: FP-tree const.)

Input: A transactional database DB and a minimum support

threshold min_sup.

Output: Its frequent pattern tree, FP-tree

Method: The FP-tree is constructed in following steps:

1. Scan the transaction database D once. Collect the set of

frequent items F and their support. Sort F in support

descending order as L, the list of frequent items.

2. Create the root of an FP-tree, FPT, and label it as “root”.

For each transaction T in D do the following:

2607

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS042211

International Journal of Engineering Research & Technology (IJERT)

a. Select and sort the frequent items in T according to the

order L. Let the sorted frequent item list in T be [p|P],

where p is the first element and P is the remaining list. Call

insert_tree([p|P],FPT).

b. The function insert_tree([p|P],FPT) is performed as

follows. If FPT has a child N such that N.item-

name=p.item-name, then increment N’s count by 1; else

create a new node N, and let its count be 1, its parent link

be linked to FPT, and its node-link be linked to the nodes

with the same item-name via the node-link structure. If P is

nonempty, call insert_tree(P,N) recursively.

Algorithm 2[3]: (Phase 2: FP-growth)

Input: A FP-tree constructed with above algorithm;

D-transaction database;

s- Minimum support threshold.

Output: The complete set of frequent patterns.

Method:

Call FP-growth (FP-tree, null).

Procedure FP-growth (Tree, A)

{

1.) If Tree contains a single path P

2.) Then for each combination (denoted as B) of the nodes

in the path P do

3.) Generate pattern B ∪ A with support = minimum

support of node in B;

4.) Else for each ai in the header of the Tree do{

5.) Generate pattern B = ai ∪ A with support = ai.support;

6.) Construct B’s conditional pattern base and B’s

conditional FP-tree TreeB;

7.) If TreeB ≠ Ø

8.) Then call FP-growth (TreeB, B)}

}

V. COMPARISON OF THE ALGORITHMS

The two algorithms discussed above are widely studied

algorithms for frequent pattern mining. The apriori

algorithm works by generating candidate itemsets while the

FP-growth algorithm works without generating the

candidate sets.

The apriori algorithm has the following bottlenecks:

1.) Difficult to handle huge number of candidate itemsets.

The candidate generation can be very costly with the

increasing size of database.

2.) It is tedious to repeatedly scan the huge databases.

The FP-growth algorithm is quite a different algorithm

from its predecessors. It works by generating a prefix-tree

data structure known as FP-tree from two scans of the

database. This algorithm doesn’t need to scan the database

multiple times. The main drawbacks of the apriori

algorithm are removed with the introduction of the FP-

growth algorithm. The table represents the comparison of

two algorithms studied here based on different parameters.

Parameter Apriori Algorithm FP-Growth algorithm

Technique Use Apriori property and join and prune property Constructs FP-tree and conditional pattern base satisfying

minimum support.

Memory Utilization Large memory space for candidate itemsets Lesser memory due to compact structure

No, of scans Multiple scans of database. Scans the database twice only

Time Execution time is large because of candidate itemsets

generation.

Execution time is smaller.

Table 2: Comparison of Algorithms

VI. CONCLUSION

It is evident from the study that FP-growth is a far better

algorithm than the apriori algorithm. It can also be shown

from the experimental data that in the apriori algorithm the

performance is influenced by the support factor. And the

number of database scans in apriori algorithm increases

with the dimensions of the candidate itemsets. So the

apriori algorithm works well only with the small databases

and with large support factor. On the other hand, FP-

growth algorithm works very well with large databases as

there are only two database scans and no candidate

generation. But some future work can be done to increase

the efficiency of the apriori algorithm. In future these

algorithms can also be extended to web content mining and

web structure mining.

VII. REFERENCES

[1] Agrawal R., Srikant R., “Fast Algorithm for Mining Association
Rules”, VLDB. Sep 12-15 1994, Chile, 487-99, pdf, ISBN 1-55860-153-8.

[2] Huiping Peng, “Discovery of Interesting Association Rules Based on

Web Usage Mining” 2010 International Conference.

[3] Han J., Pei J., Yin Y., Mao R., “Mining Frequent Patterns without

Candidate Generation: A Frequent-Pattern Tree Approach” Data Mining

and Knowledge Discovery, 2004, 53-87.

[4] K. R. Suneetha and Dr. R. Krishnamoorthi “Identifying User Behavior

by Analyzing Web Server Access Log File”, International Journal of

Computer Science and Network Security, vol. 9, no. 4, 2009.

[5] Goswami D.N., Chaturvedi Anshu., Raghuvanshi C.S., “An Algorithm

for Frequent Pattern Mining Based on Apriori”, IJCSE, Vol. 02, No. 04,

2010, 942-947.

2608

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS042211

International Journal of Engineering Research & Technology (IJERT)

