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Abstract: Web mining can simply be described as the 

application of data mining techniques to the Web. It can be 

broadly divided in to three categories: Web content mining, Web 

structure mining and Web usage mining. We will be discussing 

the web usage mining techniques in this text. In web usage 

mining association rules are generated from the frequent 

patterns. The two widely used frequent pattern mining 

algorithms are apriori algorithm and FP-growth algorithm. 

Keywords: Apriori Algorithm, FP-growth Algorithm, FP-tree, 

Web Usage Mining. 

I. INTRODUCTION 

World Wide Web is a huge, dynamic and unstructured data 

repository. The use of WWW has increased tremendously 

in the near past and the information available on internet 

has had an explosive growth. It has become very difficult 

to access relative information on the web. This has lead to 

a hot research in the field of web usage mining. Web usage 

mining helps to understand the behavior of the customer 

and to evaluate the efficiency and performance of particular 

web site [4]. 

The focus of this paper is to provide an overview on the 

two main Frequent Pattern Mining (FPM) algorithms: 

Apriori algorithm and FP-growth algorithm. The rest of the 

text is organized as follows: Section II provides an 

overview of the web usage mining. In section III, we have 

discussed the problem statement and some terminology 

related to the research is defined. Section IV, contains two 

FPM algorithms which are the main part of this text. 

Section V will give a comparison of the algorithms which 

are studied and finally section VI, contain the conclusion of 

the text.  

II. WEB USAGE MINING 

Web usage mining refers to the discovery of interesting 

association rules from the data generated as a result of 

interaction of users with the various Web resources [2]. 

The association rules will represent the information 

regarding the resources and pages that are frequently 

accessed by various user groups having common needs and 

interests. 

The main goal of the web usage mining is to collect, model 

and analyze the behavioral patterns of the users interacting 

with a web site. The data used for mining can be collected 

at the servers, clients or the proxy servers. In web usage 

mining the data consists of pattern of usage of the 

resources. It is represented using web log files. These log 

files record each page request information. 

The most significant phase of the web usage mining is the 

discovery of frequent patterns from the web log files using 

FPM algorithms. Using these frequent patterns association 

rules are generated, which is a straightforward task because 

we don’t need to refer the databases. 

III. PROBLEM STATEMENT 

In web usage mining, association rules are generated using 

frequent patterns. The problem consists of two phases [5]: 

1. Firstly we find the frequent item sets. They are the set of 

items whose occurrence exceeds a predefined threshold 

value. 

2. Then we generate the association rules from the frequent 

item sets, with a constraint of minimum confidence. 

A more formal definition of the problem is as follows [1]:  

Let I: {i1, i2, i3, …… in} be a set of distinct items. D be a 

database containing transaction over I in which each 

transaction consists of a set of items i1, i2, i3,… in ⊆ I. Each 

transaction in the database is associated with an transaction 

identifier TID. We say that the transaction T contain X if X 

⊆ T. Here X is a set of some items in I. The association 

rules are the implications of the form X ⇒ Y. Where X ⊂ 

I, Y ⊂ I and X ∩Y = ∅. Here X is called the antecedent 

and Y is called the consequent of the rule. The rule X ⇒ Y 

holds in database D with confidence c if c% of the 

transactions in D containing X also contains Y in them. 

The rule X ⇒ Y has a support s in the database D if s% of 

transactions in D contains X ∪ Y. 

Confidence and support are significant measures of rule 

interestingness and they reflect usefulness and certainty of 

rule respectively [5]. The selection of the association rules 

depend upon these two values because the selected rules 

should have support and confidence greater than the 

respective threshold values. 

Support (X ⇒ Y) = Frequency (X ∪ Y)  

/D/ 

Confidence (X ⇒ Y) = Frequency (X ∪ Y) 

      Frequency (X) 
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A set of items is called itemset. And the itemset having k 

items is called k-itemset. The support count of itemset 

gives us the number of transactions in the database 

containing the itemset. The number of transactions that 

should contain the itemset to fulfill the minimum support 

condition is called the minimum support count [1]. 

The definition of frequent item sets can be given as, the 

itemset which has a support count greater than the 

minimum support count. 

IV. FREQUENT PATTERN MINING ALGORITHMS 

A. Apriori Algorithm:  

Apriori algorithm was proposed by R. Aggarwal and R. 

Srikant in 1994 for finding the interesting association rules 

from the databases. Figure 1 gives the apriori algorithm. 

The algorithm [1] contains two functions apriori_gen() and 

subset(). 

The apriori_gen() takes Lk-1 as argument, which represents 

the set of large (k-1)-itemsets. The function returns the 

superset of the set of all large k-itemsets. 

 

 

Lk 

Set of large k-itemsets having minimum support. Each 
element of this set has two values: Itemset and 

Support_count. 

 

Ck 

Set of candidate k-itemsets. Each of the element has 

two values: Itemset and Support_count. 

 
Table 1[1] 

The table above represents the notation used. 

1) L1={ Large 1-itemsets}; 

2) For(k=2; Lk-1!= ∅; k++) do begin 

3) Ck= apriori_gen(Lk-1); //New candidate 

4) For all transactions t∈D do begin 

5) Ct= Subset(Ck,t) //Candidates in t 

6) For all candidates c∈Ct do 

7) c.count ++; 

8) End 

9) Lk= {c∈Ct| c.count >= minsup} 

10) End 

11) Answer= ∪ kLk   

 

Figure 1[1] 

The subset () function takes two arguments, Ck and t. Here 

t is the transaction and Ck represents the set of candidate k-

itemsets. This function gives us all the candidates present 

in transaction t. The working of the algorithm is explained 

as under: 

The first pass of algorithm will give us the large 1-itemsets 

by counting occurrences of items. Any subsequent pass k 

of the algorithm will consist of two phases. In first phase, 

apriori_gen function is run to generate the candidate 

itemsets Ck using the large itemsets Lk-1 generated in the k-

1 pass. In second phase, the support of the candidates in Ck 

is counted using database scan. For determining the 

candidates in Ck present in any transactions t, subset() 

function is used as described above. 

B. FP-growth Algorithm: 

The Apriori algorithm generated a large number of 

candidate sets. A new method, FP-growth, was purposed 

for frequent itemsets generation without candidate itemset 

generation. This method involves two phases. First phase 

consist of constructing a compact data structure called FP-

tree [3]. In second phase, we extract frequent itemsets 

using FP-growth algorithm over FP-tree generated in 

previous phase. 

First phase need two database scans for generating the FP-

tree. But the second phase don’t need any scan over 

database and it uses on FP-tree to generate frequent 

itemset. 

FP-tree can be defined as follows [3]: 

1. It consists of a root labeled null, a frequent item header 

table and a set of item prefix subtrees as the children of 

root. 

2. Each node consists of: item-name, count and node-link. 

Item-name gives us the name of item represented by the 

node, count will give us the number of transactions that can 

be represented by the path leading to the node, node-link 

contains the pointer to the next node containing the same 

item or null if there is none. 

3. Frequent item header table consists of: item-name and 

head of node-link which have a pointer to the first node in 

the tree containing the item-name. 

The two phases of FP-growth can be represented by two 

algorithms as described below: 

Algorithm 1[3]: (Phase 1: FP-tree const.) 

Input: A transactional database DB and a minimum support 

threshold min_sup. 

Output: Its frequent pattern tree, FP-tree 

Method: The FP-tree is constructed in following steps: 

1. Scan the transaction database D once. Collect the set of 

frequent items F and their support. Sort F in support 

descending order as L, the list of frequent items. 

2. Create the root of an FP-tree, FPT, and label it as “root”. 

For each transaction T in D do the following: 
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a. Select and sort the frequent items in T according to the 

order L. Let the sorted frequent item list in T be [p|P], 

where p is the first element and P is the remaining list. Call 

insert_tree([p|P],FPT). 

b. The function insert_tree([p|P],FPT) is performed as 

follows. If FPT has a child N such that N.item-

name=p.item-name, then increment N’s count by 1; else 

create a new node N, and let its count be 1, its parent link 

be linked to FPT, and its node-link be linked to the nodes 

with the same item-name via the node-link structure. If P is 

nonempty, call insert_tree(P,N) recursively. 

Algorithm 2[3]: (Phase 2: FP-growth) 

Input: A FP-tree constructed with above algorithm; 

D-transaction database; 

s- Minimum support threshold. 

Output: The complete set of frequent patterns. 

Method: 

Call FP-growth (FP-tree, null). 

Procedure FP-growth (Tree, A) 

{ 

1.) If Tree contains a single path P 

2.) Then for each combination (denoted as B) of the nodes 

in the path P do 

3.) Generate pattern B ∪ A with support = minimum 

support of node in B; 

4.) Else for each ai in the header of the Tree do{ 

5.) Generate pattern B = ai ∪ A with support = ai.support; 

 

6.) Construct B’s conditional pattern base and B’s 

conditional FP-tree TreeB;  

7.) If TreeB ≠ Ø  

8.) Then call FP-growth (TreeB, B)} 

} 

V. COMPARISON OF THE ALGORITHMS 

The two algorithms discussed above are widely studied 

algorithms for frequent pattern mining. The apriori 

algorithm works by generating candidate itemsets while the 

FP-growth algorithm works without generating the 

candidate sets. 

The apriori algorithm has the following bottlenecks: 

1.) Difficult to handle huge number of candidate itemsets. 

The candidate generation can be very costly with the 

increasing size of database. 

2.) It is tedious to repeatedly scan the huge databases. 

The FP-growth algorithm is quite a different algorithm 

from its predecessors. It works by generating a prefix-tree 

data structure known as FP-tree from two scans of the 

database. This algorithm doesn’t need to scan the database 

multiple times. The main drawbacks of the apriori 

algorithm are removed with the introduction of the FP-

growth algorithm. The table represents the comparison of 

two algorithms studied here based on different parameters. 

 

Parameter Apriori Algorithm FP-Growth algorithm 

Technique Use Apriori property and join and prune property Constructs FP-tree and conditional pattern base satisfying 

minimum support. 

Memory Utilization Large memory space for candidate itemsets Lesser memory due to compact structure 

No, of scans Multiple scans of database.  Scans the database twice only 

Time Execution time is large because of candidate itemsets 

generation. 

Execution time is smaller. 

 

Table 2: Comparison of Algorithms 

VI. CONCLUSION 

It is evident from the study that FP-growth is a far better 

algorithm than the apriori algorithm. It can also be shown 

from the experimental data that in the apriori algorithm the 

performance is influenced by the support factor. And the 

number of database scans in apriori algorithm increases 

with the dimensions of the candidate itemsets. So the 

apriori algorithm works well only with the small databases 

and with large support factor. On the other hand, FP-

growth algorithm works very well with large databases as 

there are only two database scans and no candidate 

generation. But some future work can be done to increase 

the efficiency of the apriori algorithm. In future these 

algorithms can also be extended to web content mining and 

web structure mining. 
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