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Abstract:- Database performance tuning is an evolutionary field 

and is considered a difficult task, especially with large 

databases. Indexing contributes largely to improve the Database 

performance by reducing the query response time. The two 

main areas of indexing are selecting and maintaining the index. 

Selecting the right index by balancing the cost of data 

retrieval/manipulation and maintaining the index without 

fragmentation are challenging tasks with growing data 

requirements. There is extensive research to automate index 

tuning and limited research in index defragmentation. This 

paper provides a survey of research in index tuning and 

defragmentation techniques proposed in the last decade and the 

need for using robust technology like Machine Learning (ML) to 

overcome the limitations of the existing research.  
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I.  INTRODUCTION 

The drastic growth in the Database size in today's 
environment made performance maintenance necessary to 
enhance and sustain the Database performance. Database 
performance tuning lowers the query response time using 
CPU, disk I/O, and memory efficiently [1]. The different ways 
to improve the performance are tuning the API that hits the 
Database Management System (DBMS), altering hardware 
configurations, index tuning, and partitioning. The researches 
prove that index tuning plays a vital role in improving query 
performance [2]. 

Indexing helps to get swift access to the data requested by 
the query, acting like a big booster to the performance [3]. In 
the absence of an index, a full table scan scenario involving 
every row of a table occurs, resulting in Database slowdown, 
especially for Large Datasets. It is necessary to maintain a 
balanced index coverage to avoid any penalties for write-
heavy operations. Due to the high importance of indexing, 
many researchers proposed indexing techniques that perform 
index selection automatically. The recent research avenues in 
indexing are to select index using Machine Learning (ML) 
Models and replace indexing with learned index concept built 
using hierarchical ML models. 

 

 

Figure 1: Data Access Using Index 

Index maintenance comes into the picture once the index 
selection and materialization completes. One of the crucial 
tasks in index maintenance is index fragmentation, where the 
logical and physical order of data goes out of synch. Database 
professionals use defragmentation techniques, such as rebuild 
and reorganize, to handle this scenario. There is limited 
research towards automating the defragmentation techniques. 

 
Figure 2: Index Fragmentation 

This paper presents the existing research in index tuning, 
methodologies, and limitations of the proposed models. The 
next focus area is defragmentation, existing defragmentation 
techniques, and limitations. We also present our views on the 
need for a robust model to handle the changing query 
workloads. 

II. INDEX TUNING 

Index tuning experienced extensive research in the last 
decade, where most of the researchers focused on performing 
index selection using the Cost-Based model. In recent years 
there is a breakthrough to use ML for indexing. In addition to 
the traditional index access patterns, recent researches 
proposed learned indexes where the index is treated as a 
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model to find the required data [4, 5]. We focus our survey on 
the traditional index patterns, as there is limited to no usage of 
the learned index in real-time.  

A. Literature Survey 

Index tuning is an essential field in Database tuning. As a 
result, there is continuous research to develop automated 
indexing techniques. We present the proposed index tuning 
models in the last decade, and the focus is mainly on the 
methodology and limitations of the models.  

The index tuning model, named CoPhy, proposed in [6], 
uses the linear optimization technique to perform index tuning 
for large workloads. It uses off-the-shelf Binary Integer 
Program (BIP) and linear programming techniques to support 
fast re-tuning, early termination, and soft constraints. The 
authors followed a greedy approach to improve scalability, 
especially when dealing with large workloads. However, it is 
unacceptable for a commercial tool to expose massive 
workloads to index advisor for a longer duration [7].   

Schnaitter & Polyzotis (2012) proposed a semi-automatic 
model based on Database Administrator's (DBA) feedback to 
create index recommendations [8]. The authors created the 
framework with three components: Work Function Algorithm 
(WFA) to create index recommendation, feedback mechanism 
to incorporate DBA's feedback, and an online algorithm to 
select the candidate indexes. The model is not entirely 
automated and waits for the DBA's interference to finalize the 
index recommendation [9]. As a result, DBAs experience is a 
key to decide whether to materialize the index or not, which is 
expensive to the organization [10].  

A semi-automatic index model named Kaizen 
recommends indexes and takes DBA's feedback on the 
recommended indexes [11]. Kaizen is capable of integrating 
with any DBMS that supports "What-If" plans, making it 
portable across different platforms. It follows the divide and 
conquer mode and relies on the cost of work done by the 
DBMS. Kaizen relies on past queries and feedback given by 
the DBAs and does not consider future workloads [12]. It uses 
"What-If" plans with all the possible candidate indexes, 
keeping an overhead on the optimizer. 

Boronski & Bocewiz (2013) proposed an index tuning that 
uses a group of queries to perform index selection [13]. The 
authors used a genetic algorithm to select the efficient indexes 
out of the index search space created using grouped queries. 
The model is limited to work with grouped queries and is not 
applicable if the queries are independent of each other.  

The same authors also proposed another model to create 
index recommendations using a query group, with the 
restriction that the table should not have any indexes [14].  
The model calculates the query group's execution time for an 
index subset and compares it with the remaining subsets. It 
creates the index recommendations for the hypothetical 
indexes in the index set, resulting in the least execution time 
[14]. The model's drawback is that it needs multiple iterations 
to finalize the recommendations. 

The model proposed by Sharma, Schuhknecht, & Dittrich 
(2018) creates index recommendations by mapping the index 
selection problem to a Deep RL model [15].  The combination 
of the workload and the current index configuration serves as 
an input to the model. The authors used episodic RL with 

index creation as the action and calculated the reward using 
the workload's execution cost with and without the indexes. 
The model is not an efficient solution for the production 
environment that encounter unseen data [16].  

The index generation model for Microsoft Azure SQL 
Database contains the Control plane, Index recommender, and 
Validator [17].  The model applies "What-If" plans on the 
candidate indexes for 'k' low-performing queries. The Control 
plane coordinates with other system components, the index 
recommender creates index recommendations, and the 
validator checks the performance impact due to index change. 
The model cannot provide coverage to all exceptional cases 
across workloads [17].  

Ding, Das, Marcus, Wu, Chaudhuri, & Narasayya (2019) 
proposed a model to recommend indexes using a classification 
model to calculate the query plans' performance gain [18]. The 
authors performed mathematical transformations on the 
feature vectors constructed from the query plans, parallelism, 
and execution mode. The different classification models used 
are Random Forest (RF), Deep Neural Networks (DNN), and 
Hybrid Neural Network to check a query plan's performance. 
The model needs a sample workload for training and requires 
human intervention to materialize index recommendation and 
tuning sessions [19]. 

The SmartIX model creates index recommendations using 
RL, with Markov Decision Process (MDP) as the RL agent 
[20]. The model contains an RL agent for decision-making, an 
environment to calculate the transitions, and a DBMS 
interface to apply the index recommendations. This model's 
drawback is that RL takes more time to converge and 
expensive as it needs to visit all possible states. 

B. Discussion 

The existing research in index tuning falls into two 
categories: semi-automatic, where the model requires DBA's 
intervention, and automatic, where the model recommends 
and materializes the indexes. The research widely used 
"What-If" plans and cost-based models to create index 
recommendations until a couple of years ago. The core 
principle behind these researches until 2018 is to retrieve the 
query plans for candidate indexes and calculate the plans' 
execution cost. The models create index recommendations for 
the candidate index, whose query plan is of minimum cost.  

Though the core principle is the same, the approach to use 
this principle varied across different models. For instance, the 
model proposed in [13] for index tuning uses the query group 
with mutually dependent queries. The models in [8, 11] use 
DBA's feedback on the index recommendations to improve 
model accuracy. All the researches work is based on the 
current workload and do not consider the future workload 
variations. As a result, the selected index may or may not 
adapt to future workloads. 

The research in index tuning opened new avenues to use 
promising ML technologies to perform index selection. The 
models proposed in [15, 18, 20] uses RL and achieved 
promising results. However, the DBAs need to provide the 
sample workload, and RL takes a long time to converge, 
making these techniques consume a longer duration for 
massive workloads. Below is the share of ML and Non-ML 
technologies usage in index tuning. 
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Figure 3: Share of Index Tuning Techniques using ML and Non-

ML Methods 

 

C. Research Findings 

We analyzed the methodologies in each of the proposed 
models and recognized the need to look at index tuning from a 
different perspective. The existing models look at index tuning 
as a problem for the current query workload. Instead, one 
should consider it as a problem for current and future 
workloads. Below are our findings and solutions for the 
limitations in the existing research. 

• Lack of index adaptability to future query workloads, 
as the future index usage is not part of the existing 
models. Using future workload forecast as part of the 
model, creates a highly efficient index-tuning advisor. 

• The models' speed is an issue to use some of the 
existing models in commercials tools. Hence, it is 
necessary to create models with a reasonable speed, 
mainly if the index selection happens online. 

• The models presented in [13, 14] use a dependent 
query group to perform index selection. However, it 
keeps an extra overhead on the DBA to provide the 
query group for different tables in the Database, 
making it inefficient in terms of resource 
consumption. As a result, a generic model is 
necessary to work with all the queries irrespective of 
dependency properties.   

• The recent research also used RL to perform index 
tuning. However, RL takes long durations to 
converge, making it unfit to be an online model. 
Replacing RL with other ML techniques can yield 
better results for an online model.  

• A broad spectrum of existing work use "What-If" 
plans, making the index tuning expensive. Hence, 
eliminating their usage is necessary to improve the 
model efficiency.  

We argue that the solution to limitations in existing 
research is to use supervised ML classification algorithms that 
give a response on whether to index a column or not. Dataset 
construction is a crucial stage to use supervised ML models. 
The dataset should contain the features to include future index 
usage, query usage rate, actual execution plan, table size, and 
DML operations count on the predicate column under 
investigation.  

This model needs DBA's expertise to create the training 
set, and once trained, the model can provide the index 
selection without any external intervention. Any new index 
creation can be sent as feedback to the model to improvise the 

performance. Using Random Forest (RF) algorithm, which 
can work with different dataset sizes, suits the index selection 
model. The reasons for choosing RF are its' ability to 
overcome overfitting, handle unbalanced data efficiently, and 
perform fault diagnosis [21, 22]. We will present the design 
and results of this model in the later articles in this series. 

III. INDEX DEFRAGMENTATION 

The index is a logical structure that contains pointers to the 
physical location of the record. If there is data update or insert 
operations on the indexed column, the logical order will go 
out of synch with the physical order. This scenario of 
mismatch between logical and physical pages is called 
fragmentation. The DBMS experience delays as it needs more 
I/O to access the requested data.  

The two types of fragmentation are internal and external 
fragmentation. The query hit that split the index page causes 
internal fragmentation [23, 24]. The query hit that disturbs the 
existing logical index page order causes external 
fragmentation [23, 24]. Defragmentation compacts and 
reorders the index pages to mitigate internal and external 
fragmentation, respectively. The DBAs use fragmentation 
statistics to determine the need for defragmentation. 

Rebuilding and Reorganizing are the two defragmentation 
techniques used to counter fragmentation. The table size and 
fragmentation level determine the suitable type of 
defragmentation technique. Rebuilding index deletes the index 
and recreates it anew. It is a heavy process and is suitable for 
high fragmentation levels, especially on larger tables [24]. 
Reorganizing the index reorders the index pages and is a light-
weight operation, suitable for low fragmentation levels [23].  

A. Literature Survey 

Though defragmentation is one of the critical areas that 
help to use the indexes to the fullest capacity, it received 
significantly less attention from the research community. It is 
imperative to address the challenges in this area, to take away 
the manual effort Database teams keep to do fragmentation 
analysis and defragmentation. We discuss the research 
contribution and their corresponding limitations in this field. 

The proposed workload driven defragmentation model 
overcomes the data-driven approach's limitations [24].  The 
limitations listed by the authors are granular defragmentation 
levels and defragmenting without considering index usage. 
The proposed model uses a range-level driven index and 
workload usage rate to determine the need for fragmentation 
[24].  

The range-level index gives the highly used data range 
using the "What-If" API, and the workload usage rate gives 
the number of queries accessing the data [24]. This approach's 
limitations are the need for domain knowledge and the usage 
of "What-IF" APIs that often result in extra cost. The authors 
also always used the heavy-weight rebuilding technique 
irrespective of the fragmentation levels, keeping an overhead 
on the DBMS. 

The Autonomous Re-indexing model proposed in [25] 
uses heuristics to identify the indexes that need 
defragmentation. The authors considered fragmentation level, 
index scan count, and index size to make a defragmentation 
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decision. This model alleviates the manual effort of DBAs in 
defragmentation decision-making. This research's drawback is 
that the defragmentation always happens online, resulting in 
system slowdown when done for large tables or highly-
fragmented data.  

B. Discussion 

There is minimal research in automatic index 
defragmentation, and existing work also uses "What-If" APIs 
and always uses rebuild technique irrespective of 
fragmentation level and table size. Choosing the 
defragmentation technique is crucial to performance, mainly 
when the operation works online. Rebuilding is a heavy 
operation and slows downs the system when used during work 
hours. Hence, the Database teams schedule the index 
rebuilding on a non-work day. The model in [24, 25] 
considers index usage, which is a crucial factor limiting 
unnecessary defragmentation for an index with minimal 
usage. However, using the "What-IF" API for this purpose 
adds overhead on the DBMS. 

C. Research Findings 

Index fragmentation results in serious performance issues, 
even if the table has the most efficient indexes. Hence, index 
defragmentation needs more attention. Below are the current 
model's limitations and solutions to make the defragmentation 
autonomous. 

• The existing methods [24, 25] always use rebuild 
operation whenever defragmentation is required. 
Applying the right type of defragmentation is very 
much necessary, mainly when it happens in an online 
mode.  

• The model in [24] uses "What-If" plans, keeping an 
overhead on the DBMS. Hence creating a model 
without using the "What-If" plans is necessary. 

The problem of defragmentation is a multi-class 
classification problem with three output labels. The output 
labels are "No Defragmentation," "Rebuild," and 
"Reorganize." Defragmentation is similar to diabetes 
prediction, student grade prediction, and other classification 
problems solved using Machine learning. Hence, adopting ML 
techniques to identify the defragmentation technique provides 
an automated and efficient solution.  

The challenge with implementing ML is the training 
dataset construction, as the fragmentation level standards 
followed may vary from one domain to another. However, 
DBAs expertise can solve this problem of data collection. ML 
is already in use in Database knob configuration management 
and index tuning and has proven to be an efficient solution. 
We argue that it is necessary to explore the use of ML to 
create an efficient autonomous defragmentation technique.  

We will use the RF model for defragmentation, as the 
dataset will be small initially, which will grow over time. RF 
has robust capabilities to handle overfitting and anomalies and 
is an efficient model for innovation-friendly environments 
[21, 22]. We will present the dataset collection, 
implementation details, and results in later articles. 

IV. CONCLUSION 

The survey presented the research in index tuning and 
defragmentation in the last decade. There is exhaustive 
research in index tuning and limited research in 
defragmentation. We discussed the index tuning models' 
limitations, and few models are not suitable for commercial 
tools due to the required resources. The typical limitations are 
the usage of expensive "What-If" APIs, slow converging RL 
models, and lack of adaptability to future workloads.  

The research in defragmentation used "What-If" APIs and 
heuristics and always applied rebuild technique irrespective of 
fragmentation statistics, leading to performance degradation. 
As a result, creating a model to decide on the defragmentation 
technique should use fragmentation level, index usage rate, 
and table size. We argue that using ML classification 
techniques for both index tuning and defragmentation can 
yield better results, and constructing the dataset to include the 
future usage rates makes the model adaptable to future 
workloads. 
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