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Abstract:- Database performance tuning is an evolutionary field
and is considered a difficult task, especially with large
databases. Indexing contributes largely to improve the Database
performance by reducing the query response time. The two
main areas of indexing are selecting and maintaining the index.
Selecting the right index by balancing the cost of data
retrieval/manipulation and maintaining the index without
fragmentation are challenging tasks with growing data
requirements. There is extensive research to automate index
tuning and limited research in index defragmentation. This
paper provides a survey of research in index tuning and
defragmentation techniques proposed in the last decade and the
need for using robust technology like Machine Learning (ML) to
overcome the limitations of the existing research.
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l. INTRODUCTION

The drastic growth in the Database size in today's
environment made performance maintenance necessary to
enhance and sustain the Database performance. Database
performance tuning lowers the query response time using
CPU, disk 1/0, and memory efficiently [1]. The different ways
to improve the performance are tuning the API that hits the
Database Management System (DBMS), altering hardware
configurations, index tuning, and partitioning. The researches
prove that index tuning plays a vital role in improving query
performance [2].

Indexing helps to get swift access to the data requested by
the query, acting like a big booster to the performance [3]. In
the absence of an index, a full table scan scenario involving
every row of a table occurs, resulting in Database slowdown,
especially for Large Datasets. It is necessary to maintain a
balanced index coverage to avoid any penalties for write-
heavy operations. Due to the high importance of indexing,
many researchers proposed indexing techniques that perform
index selection automatically. The recent research avenues in
indexing are to select index using Machine Learning (ML)
Models and replace indexing with learned index concept built
using hierarchical ML models.
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Figure 1: Data Access Using Index

Index maintenance comes into the picture once the index
selection and materialization completes. One of the crucial
tasks in index maintenance is index fragmentation, where the
logical and physical order of data goes out of synch. Database
professionals use defragmentation techniques, such as rebuild
and reorganize, to handle this scenario. There is limited
research towards automating the defragmentation techniques.

Initial Index Structure

22 124 |26 28 30 |32 34 |36

Fragmented Index Structure

22 | 23 30 32 |34 |36 24| 26 | 28

Figure 2: Index Fragmentation

This paper presents the existing research in index tuning,
methodologies, and limitations of the proposed models. The
next focus area is defragmentation, existing defragmentation
techniques, and limitations. We also present our views on the
need for a robust model to handle the changing query
workloads.

Il.  INDEXTUNING

Index tuning experienced extensive research in the last
decade, where most of the researchers focused on performing
index selection using the Cost-Based model. In recent years
there is a breakthrough to use ML for indexing. In addition to
the traditional index access patterns, recent researches
proposed learned indexes where the index is treated as a
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model to find the required data [4, 5]. We focus our survey on
the traditional index patterns, as there is limited to no usage of
the learned index in real-time.

A. Literature Survey

Index tuning is an essential field in Database tuning. As a
result, there is continuous research to develop automated
indexing techniques. We present the proposed index tuning
models in the last decade, and the focus is mainly on the
methodology and limitations of the models.

The index tuning model, named CoPhy, proposed in [6],
uses the linear optimization technique to perform index tuning
for large workloads. It uses off-the-shelf Binary Integer
Program (BIP) and linear programming techniques to support
fast re-tuning, early termination, and soft constraints. The
authors followed a greedy approach to improve scalability,
especially when dealing with large workloads. However, it is
unacceptable for a commercial tool to expose massive
workloads to index advisor for a longer duration [7].

Schnaitter & Polyzotis (2012) proposed a semi-automatic
model based on Database Administrator's (DBA) feedback to
create index recommendations [8]. The authors created the
framework with three components: Work Function Algorithm
(WFA) to create index recommendation, feedback mechanism
to incorporate DBA's feedback, and an online algorithm to
select the candidate indexes. The model is not entirely
automated and waits for the DBA's interference to finalize the
index recommendation [9]. As a result, DBAs experience is a
key to decide whether to materialize the index or not, which is
expensive to the organization [10].

A semi-automatic index model named Kaizen
recommends indexes and takes DBA's feedback on the
recommended indexes [11]. Kaizen is capable of integrating
with any DBMS that supports "What-If" plans, making it
portable across different platforms. It follows the divide and
conquer mode and relies on the cost of work done by the
DBMS. Kaizen relies on past queries and feedback given by
the DBAs and does not consider future workloads [12]. It uses
"What-If" plans with all the possible candidate indexes,
keeping an overhead on the optimizer.

Boronski & Bocewiz (2013) proposed an index tuning that
uses a group of queries to perform index selection [13]. The
authors used a genetic algorithm to select the efficient indexes
out of the index search space created using grouped queries.
The model is limited to work with grouped queries and is not
applicable if the queries are independent of each other.

The same authors also proposed another model to create
index recommendations using a query group, with the
restriction that the table should not have any indexes [14].
The model calculates the query group's execution time for an
index subset and compares it with the remaining subsets. It
creates the index recommendations for the hypothetical
indexes in the index set, resulting in the least execution time
[14]. The model's drawback is that it needs multiple iterations
to finalize the recommendations.

The model proposed by Sharma, Schuhknecht, & Dittrich
(2018) creates index recommendations by mapping the index
selection problem to a Deep RL model [15]. The combination
of the workload and the current index configuration serves as
an input to the model. The authors used episodic RL with

index creation as the action and calculated the reward using
the workload's execution cost with and without the indexes.
The model is not an efficient solution for the production
environment that encounter unseen data [16].

The index generation model for Microsoft Azure SQL
Database contains the Control plane, Index recommender, and
Validator [17]. The model applies "What-If" plans on the
candidate indexes for 'k’ low-performing queries. The Control
plane coordinates with other system components, the index
recommender creates index recommendations, and the
validator checks the performance impact due to index change.
The model cannot provide coverage to all exceptional cases
across workloads [17].

Ding, Das, Marcus, Wu, Chaudhuri, & Narasayya (2019)
proposed a model to recommend indexes using a classification
model to calculate the query plans' performance gain [18]. The
authors performed mathematical transformations on the
feature vectors constructed from the query plans, parallelism,
and execution mode. The different classification models used
are Random Forest (RF), Deep Neural Networks (DNN), and
Hybrid Neural Network to check a query plan's performance.
The model needs a sample workload for training and requires
human intervention to materialize index recommendation and
tuning sessions [19].

The SmartlX model creates index recommendations using
RL, with Markov Decision Process (MDP) as the RL agent
[20]. The model contains an RL agent for decision-making, an
environment to calculate the transitions, and a DBMS
interface to apply the index recommendations. This model's
drawback is that RL takes more time to converge and
expensive as it needs to visit all possible states.

B. Discussion

The existing research in index tuning falls into two
categories: semi-automatic, where the model requires DBA's
intervention, and automatic, where the model recommends
and materializes the indexes. The research widely used
"What-If* plans and cost-based models to create index
recommendations until a couple of years ago. The core
principle behind these researches until 2018 is to retrieve the
query plans for candidate indexes and calculate the plans'
execution cost. The models create index recommendations for
the candidate index, whose query plan is of minimum cost.

Though the core principle is the same, the approach to use
this principle varied across different models. For instance, the
model proposed in [13] for index tuning uses the query group
with mutually dependent queries. The models in [8, 11] use
DBA's feedback on the index recommendations to improve
model accuracy. All the researches work is based on the
current workload and do not consider the future workload
variations. As a result, the selected index may or may not
adapt to future workloads.

The research in index tuning opened new avenues to use
promising ML technologies to perform index selection. The
models proposed in [15, 18, 20] uses RL and achieved
promising results. However, the DBAs need to provide the
sample workload, and RL takes a long time to converge,
making these techniques consume a longer duration for
massive workloads. Below is the share of ML and Non-ML
technologies usage in index tuning.
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ML Usage in Index Tuning

33%

B Non-ML ML

Figure 3: Share of Index Tuning Techniques using ML and Non-
ML Methods

C. Research Findings

We analyzed the methodologies in each of the proposed
models and recognized the need to look at index tuning from a
different perspective. The existing models look at index tuning
as a problem for the current query workload. Instead, one
should consider it as a problem for current and future
workloads. Below are our findings and solutions for the
limitations in the existing research.

e Lack of index adaptability to future query workloads,
as the future index usage is not part of the existing
models. Using future workload forecast as part of the
model, creates a highly efficient index-tuning advisor.

e The models' speed is an issue to use some of the
existing models in commercials tools. Hence, it is
necessary to create models with a reasonable speed,
mainly if the index selection happens online.

e The models presented in [13, 14] use a dependent
query group to perform index selection. However, it
keeps an extra overhead on the DBA to provide the
query group for different tables in the Database,
making it inefficient in terms of resource
consumption. As a result, a generic model is
necessary to work with all the queries irrespective of
dependency properties.

e The recent research also used RL to perform index
tuning. However, RL takes long durations to
converge, making it unfit to be an online model.
Replacing RL with other ML techniques can vyield
better results for an online model.

e A broad spectrum of existing work use "What-If"
plans, making the index tuning expensive. Hence,
eliminating their usage is necessary to improve the
model efficiency.

We argue that the solution to limitations in existing
research is to use supervised ML classification algorithms that
give a response on whether to index a column or not. Dataset
construction is a crucial stage to use supervised ML models.
The dataset should contain the features to include future index
usage, query usage rate, actual execution plan, table size, and
DML operations count on the predicate column under
investigation.

This model needs DBA's expertise to create the training
set, and once trained, the model can provide the index
selection without any external intervention. Any new index
creation can be sent as feedback to the model to improvise the

performance. Using Random Forest (RF) algorithm, which
can work with different dataset sizes, suits the index selection
model. The reasons for choosing RF are its' ability to
overcome overfitting, handle unbalanced data efficiently, and
perform fault diagnosis [21, 22]. We will present the design
and results of this model in the later articles in this series.

I1l.  INDEX DEFRAGMENTATION

The index is a logical structure that contains pointers to the
physical location of the record. If there is data update or insert
operations on the indexed column, the logical order will go
out of synch with the physical order. This scenario of
mismatch between logical and physical pages is called
fragmentation. The DBMS experience delays as it needs more
I/0 to access the requested data.

The two types of fragmentation are internal and external
fragmentation. The query hit that split the index page causes
internal fragmentation [23, 24]. The query hit that disturbs the
existing logical index page order causes external
fragmentation [23, 24]. Defragmentation compacts and
reorders the index pages to mitigate internal and external
fragmentation, respectively. The DBAs use fragmentation
statistics to determine the need for defragmentation.

Rebuilding and Reorganizing are the two defragmentation
techniques used to counter fragmentation. The table size and
fragmentation level determine the suitable type of
defragmentation technique. Rebuilding index deletes the index
and recreates it anew. It is a heavy process and is suitable for
high fragmentation levels, especially on larger tables [24].
Reorganizing the index reorders the index pages and is a light-
weight operation, suitable for low fragmentation levels [23].

A. Literature Survey

Though defragmentation is one of the critical areas that
help to use the indexes to the fullest capacity, it received
significantly less attention from the research community. It is
imperative to address the challenges in this area, to take away
the manual effort Database teams keep to do fragmentation
analysis and defragmentation. We discuss the research
contribution and their corresponding limitations in this field.

The proposed workload driven defragmentation model
overcomes the data-driven approach's limitations [24]. The
limitations listed by the authors are granular defragmentation
levels and defragmenting without considering index usage.
The proposed model uses a range-level driven index and
workload usage rate to determine the need for fragmentation
[24].

The range-level index gives the highly used data range
using the "What-If* API, and the workload usage rate gives
the number of queries accessing the data [24]. This approach's
limitations are the need for domain knowledge and the usage
of "What-IF" APIs that often result in extra cost. The authors
also always used the heavy-weight rebuilding technique
irrespective of the fragmentation levels, keeping an overhead
on the DBMS.

The Autonomous Re-indexing model proposed in [25]
uses heuristics to identify the indexes that need
defragmentation. The authors considered fragmentation level,
index scan count, and index size to make a defragmentation
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decision. This model alleviates the manual effort of DBAs in
defragmentation decision-making. This research's drawback is
that the defragmentation always happens online, resulting in
system slowdown when done for large tables or highly-
fragmented data.

B. Discussion

There is minimal research in automatic index
defragmentation, and existing work also uses "What-1f" APIs
and always uses rebuild technique irrespective of
fragmentation level and table size. Choosing the
defragmentation technique is crucial to performance, mainly
when the operation works online. Rebuilding is a heavy
operation and slows downs the system when used during work
hours. Hence, the Database teams schedule the index
rebuilding on a non-work day. The model in [24, 25]
considers index usage, which is a crucial factor limiting
unnecessary defragmentation for an index with minimal
usage. However, using the "What-IF" API for this purpose
adds overhead on the DBMS.

C. Research Findings

Index fragmentation results in serious performance issues,
even if the table has the most efficient indexes. Hence, index
defragmentation needs more attention. Below are the current
model's limitations and solutions to make the defragmentation
autonomous.

e The existing methods [24, 25] always use rebuild
operation whenever defragmentation is required.
Applying the right type of defragmentation is very
much necessary, mainly when it happens in an online
mode.

e The model in [24] uses "What-If" plans, keeping an
overhead on the DBMS. Hence creating a model
without using the "What-If" plans is necessary.

The problem of defragmentation is a multi-class
classification problem with three output labels. The output
labels are "No Defragmentation,” "Rebuild,” and
"Reorganize.” Defragmentation is similar to diabetes
prediction, student grade prediction, and other classification
problems solved using Machine learning. Hence, adopting ML
techniques to identify the defragmentation technique provides
an automated and efficient solution.

The challenge with implementing ML is the training
dataset construction, as the fragmentation level standards
followed may vary from one domain to another. However,
DBAs expertise can solve this problem of data collection. ML
is already in use in Database knob configuration management
and index tuning and has proven to be an efficient solution.
We argue that it is necessary to explore the use of ML to
create an efficient autonomous defragmentation technique.

We will use the RF model for defragmentation, as the
dataset will be small initially, which will grow over time. RF
has robust capabilities to handle overfitting and anomalies and
is an efficient model for innovation-friendly environments

IV. CONCLUSION

The survey presented the research in index tuning and
defragmentation in the last decade. There is exhaustive
research in index tuning and limited research in
defragmentation. We discussed the index tuning models'
limitations, and few models are not suitable for commercial
tools due to the required resources. The typical limitations are
the usage of expensive "What-If* APIs, slow converging RL
models, and lack of adaptability to future workloads.

The research in defragmentation used "What-If" APIs and
heuristics and always applied rebuild technique irrespective of
fragmentation statistics, leading to performance degradation.
As a result, creating a model to decide on the defragmentation
technique should use fragmentation level, index usage rate,
and table size. We argue that using ML classification
techniques for both index tuning and defragmentation can
yield better results, and constructing the dataset to include the
future usage rates makes the model adaptable to future
workloads.
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