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Abstract—6G networks aren’t just another step forward-they
promise to completely change how we connect and interact. Think
holograms you can talk to in real time. Imagine the Tactile
Internet letting you feel things remotely, or XR experiences that
blend digital and physical worlds seamlessly. These futuristic
applications bring a whole new level of complexity, on a scale the
industry hasn’t dealt with before. Handling this isn’t something
you can manage by hand anymore. We need networks that
basically run themselves-zero-touch automation. This paper takes
a close look at what makes that possible: Artificial Intelligence
(AI) and Cloud-Native principles. First, we lay out the basics-
what AI and Cloud-Native mean in this context. Then, we
dive into how Al, especially Reinforcement Learning, is already
stepping in to orchestrate services and manage network slicing
on the fly. We also dig into the nuts and bolts of Cloud-Native
architectures: the RAN Intelligent Controller (RIC), Multi-Access
Edge Computing (MEC), and how non-terrestrial networks
(NTNs) fit into the picture. These elements bring the speed and
flexibility that automated systems need to actually work. Finally,
we pull back to look at what still stands in the way: the lack of a
unified management framework for hybrid networks (terrestrial
and non-terrestrial) and the security issues that come with Al-
driven control loops. Solving these is how we’ll get to truly Al-
native orchestration frameworks.

Index Terms—6G, Network Orchestration, AI, Machine Learn-
ing, Cloud-Native, Network Slicing, Zero-Touch Management,
Non-Terrestrial Networks (NTN).

[. INTRODUCTION

Every new generation of wireless networks has stretched
what’s possible, but 6G is set to break the mold. Where
5G connects people and devices, 6G aims to dissolve the
boundaries between physical, digital, and human worlds. Pic-
ture a network that’s not just a data pipe, but a fabric for
sensing, computing, and immersive experience-whether it’s
holographic calls, remote-touch surgery, or XR entertainment.
Industries from healthcare to media will feel the impact. And
this isn’t just hype: most network operators (64%) say their
main goal is to deliver these kinds of next-gen services.
But moving from vision to reality isn’t easy. 6G apps have
brutal requirements. You need terabit-per-second speeds for
holograms, sub-millisecond latency for tactile feedback, and
”seven nines” reliability (99.99999%) if you’re going to trust
remote surgery to the network. Then add in the scale-up to
10 million devices per square kilometer. That’s a management
nightmare. Old-school, manual network management simply
can’t keep up. The real challenge isn’t just bandwidth; it’s
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handling the complexity, especially when current Quality of
Service mechanisms start to buckle. For example, existing 5G
RAN stacks often get bogged down by bufferbloat-greedy data
flows clog things up, leading to huge queues and killing the
low latency that time-sensitive apps need. Clearly, we need
to move past manual intervention and shift to zero-touch au-
tomation. This article addresses that head-on, offering a unified
survey of the two main forces driving this change: Al for smart
decision-making, and Cloud-Native design for agile, adaptable
architecture. While other surveys look at Al or Cloud-Native
principles in isolation, we focus on their combined power as
the engine for automated service orchestration as we move
from 5G to 6G. Here’s what you’ll find in this survey:

o A big-picture look at network automation, tracking how
management has evolved and spotlighting Cloud-Native
and Al as the key technologies.

e A detailed taxonomy of how Al techniques tackle core
orchestration challenges, from resource allocation to ser-
vice activation.

o An analysis of major architectural frameworks like ETSI
ZSM and O-RAN-that lay the groundwork for intelligent
automation.

o A discussion of pressing open research challenges, out-
lining a clear path toward building a truly Al-native
orchestration framework for 6G.

II. FOUNDATIONAL PILLARS

Before delving into the transformative influence of Al and
cloud-native concepts on 6G, it’s crucial to establish a solid un-
derstanding of the foundational principles that underpin these
technologies. This section lays the groundwork by clarifying
what “cloud-native” really entails, and by spotlighting the most
impactful Al and machine learning approaches driving modern
network orchestration and management.

A. The Evolution of Network Management

Network management has always been at the heart of
telecommunications, encompassing a wide range of responsi-
bilities: deploying resources, monitoring performance, config-
uring services, analyzing data, and maintaining control over
the network’s state. The overarching goals have remained
constant-maximizing performance, reliability, and quality of
service but the strategies and tools have evolved dramatically:
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o Manual Management: Initially, networks were operated dramatically reducing operational costs and accelerating

through direct human intervention. Every configuration,
troubleshooting step, and upgrade required skilled tech-
nicians to interact with hardware and software. This
hands-on approach was not only time-consuming but also
error-prone and difficult to scale as networks grew in
complexity and size.

Scripted/Automated Management: The next stage saw
the advent of automation tools like SNMP and command-
line interface (CLI) scripting. These allowed operators
to automate repetitive and routine tasks, such as device
monitoring and configuration updates. Automation made
networks more efficient and reduced human error, but still
required significant oversight and custom scripting.
Policy-Based Network Management (PBNM): As net-
works expanded, it became clear that a rule-based ap-
proach was needed. Policy-based management introduced
structured sets of rules that dictated network behavior
in response to specific conditions. By offloading low-
level management to policies, operators could focus on
strategic objectives, while the network handled everyday
operations automatically. This abstraction improved con-
sistency and responsiveness.

Intent-Based Networking (IBN): The real paradigm
shift came with intent-based networking. Instead of spec-
ifying detailed step-by-step instructions, operators could
simply define their desired outcomes such as a certain
level of service quality or security posture-and the net-
work would autonomously translate these intentions into
concrete actions. IBN harnesses advanced analytics and
automation to bridge the gap between high-level business
goals and technical execution, freeing operators from
micromanaging network processes.

Self-Organizing Networks (SON): The introduction of
SON, particularly with 3GPP Release 8, brought sophisti-
cated automation to radio access networks. SON systems
could autonomously handle tasks like cell planning, load
balancing, interference mitigation, and fault recovery.
While SON reduced operational overhead and improved
adaptability, it often relied on static heuristics or pre-
defined rules, necessitating periodic human intervention
to fine-tune parameters and respond to unexpected situa-
tions.

Zero-Touch Network Management (ZTM): The ul-
timate goal-and the focus of much current research
and development-is Zero-Touch Management. ZTM en-
visions fully autonomous network and service manage-
ment, where human operators oversee processes rather
than intervene directly. By leveraging Al and machine
learning, networks are now equipped to interpret their
own status, predict future conditions, and make real-time
decisions regarding planning, deployment, optimization,
and healing. The ideal ZTM system can not only self-
configure and self-optimize but also learn from experi-
ence, minimizing the need for manual oversight. Humans
are only required to validate or approve critical actions,
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innovation. This survey will explore how Al and cloud-
native architectures are converging to make ZTM a prac-
tical reality for 6G.

B. The Cloud-Native Paradigm

”Cloud-native” is far more than industry jargon-it represents
a foundational shift in how modern networks are designed, de-
ployed, and operated. Traditional, hardware-centric networks
were rigid and slow to adapt, making them ill-suited for the
dynamic demands of next-generation services. In contrast,
cloud-native principles bring agility, elasticity, and resilience
to the fore, all of which are essential for the hyper-connected,
heterogeneous landscape envisioned for 6G. At the core of the
cloud-native transformation is the Service-Based Architecture
(SBA), which has become the backbone for both 5G and
6G core networks. SBA breaks down monolithic network
functions into modular, reusable microservices. Each microser-
vice encapsulates a specific capability-such as authentication,
session management, or policy enforcement and communicates
with other services through well-defined, standardized APIs.
This modularity enables operators to rapidly introduce new
features, scale individual functions as needed, and recover
from failures with minimal disruption. Two pivotal technolo-
gies make the cloud-native paradigm possible:

1) Microservices: By decomposing network functions into
granular, independently deployable units, microservices
enable unparalleled flexibility. Each microservice can be
developed, updated, and scaled in isolation, allowing for
continuous improvement and innovation without risking
the stability of the entire system. This approach also
simplifies troubleshooting and maintenance, as problems
can be isolated to specific services rather than affecting
the whole network.

2) Containers: Containers further amplify efficiency by
packaging applications and their dependencies into
lightweight, portable units. Unlike virtual machines
which require separate operating systems for each
instance-containers share the underlying host OS, result-
ing in faster startup times and lower resource consump-
tion. This efficiency is crucial for the dynamic, large-
scale environments characteristic of 6G, where network
functions need to be deployed, scaled, and migrated with
minimal delay.

Effectively managing vast fleets of containers requires robust
orchestration. Kubernetes has emerged as the industry stan-
dard for automating deployment, scaling, and management
of containerized microservices. It provides powerful primi-
tives for handling service discovery, load balancing, rolling
updates, and fault tolerance. However, orchestration alone
is not enough-microservices must also interact securely and
reliably, often across distributed environments. A Service
Mesh addresses this challenge by providing a dedicated in-
frastructure layer that manages inter-service communication.
It enforces security policies, manages traffic routing, and
collects telemetry, all transparently to the application itself.
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This enables operators to implement sophisticated networking
features such as mutual TLS, circuit breaking, and traffic
shaping-without altering application code. To support rapid
innovation and maintain continuous service availability, cloud-
native networks rely heavily on automated CI/CD (Contin-
uous Integration/Continuous Deployment) pipelines. These
pipelines automate the processes of building, testing, and
deploying new services and updates, dramatically reducing
the risk of human error and enabling networks to evolve
at the pace of user demand and technological change. In
summary, the fusion of Al-driven automation with cloud-
native principles is setting the stage for a new era in network
management-one defined by adaptability, efficiency, and self-
sufficiency. As 6G approaches, these foundational pillars will
be essential in meeting the unprecedented scale, complexity,
and diversity of next-generation networks.

C. The AI/ML Toolkit for Network Automation

Al and Machine Learning (ML) drive network automation
by letting systems learn from data, predict what’s coming, and
make smart, real-time decisions. When you look at network
orchestration, the main ML techniques fall into three big
groups:

o Supervised Learning (SL): Here, the model learns to
map inputs to outputs using a labeled dataset-basically,
it gets the right answers during training. The goal is to
nail predictions or classifications on new data it’s never
seen before. In networking, people use SL for traffic
forecasting, predicting when QoS or QoE will drop,
classifying types of traffic, or spotting familiar security
threats by their signatures. Popular algorithms? You’ll
run into Linear and Logistic Regression, Support Vector
Machines (SVM), Decision Trees, Random Forests, and
Neural Networks like Multi-Layer Perceptrons (MLPs).

o Unsupervised Learning (UL): This approach skips the
labels. The model hunts for patterns or hidden structures
in raw data, without anyone pointing out the “right”
answer. The aim is to uncover relationships or find
oddities in the data. For networks, UL shines at anomaly
detection-catching weird behavior or possible threats
clustering users or devices by how they act, and shrinking
down complex data with dimensionality reduction. Com-
mon tools here include K-Means Clustering, Principal
Component Analysis (PCA), Autoencoders, and Gaussian
Mixture Models (GMMs).

o Reinforcement Learning (RL): Think of this as learning
by trial and error. An agent interacts with its environment,
tries different actions, sees what happens, and gets a
reward or penalty. The agent’s job is to figure out a
policy-a plan for what to do in every situation that
racks up the most reward over time. RL is a natural fit
for dynamic control and optimization, where the system
keeps changing as it acts. You’ll see RL in things like
dynamic resource allocation for network slicing, adaptive
traffic routing, power control, mobility management, and
beamforming. Key algorithms include Q-Learning, Deep
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Q-Networks (DQN), Policy Gradient methods, and Actor-

Critic algorithms. When deep neural networks join the

mix, you get Deep Reinforcement Learning (DRL), which

can handle huge, complicated state and action spaces.
These groups cover a huge range of algorithms-some of which
you’ll find summed up in the table below.

TABLE I
CLASSIFICATION OF COMMON ML ALGORITHMS FOR
NETWORKING
Category Algorithm Exam- | Typical Network Use Case
ple
Supervised Linear Regression Predicting network load or

traffic.

Classifying traffic types or de-
tecting anomalies.

Grouping users with similar
behavior patterns.

Anomaly detection in perfor-
mance data.

Support Vector Ma-
chines (SVM)
K-Means Clustering

Unsupervised

Principal
Component
Analysis (PCA)

Reinforcement | Q-Learning/DQN Dynamic resource allocation
Policy Gradient | for network slices.
Methods

Optimizing handover
parameters in real-time.

III. ARCHITECTURAL FRAMEWORKS FOR
AUTOMATION

To help the industry stay on the same page-and actually get
things working together-several standards bodies have rolled
out reference architectures for network automation.

A. ETSI Zero-Touch Service Management (ZSM)

The European Telecommunications Standards Institute
(ETSI) ZSM group sketches out a blueprint for end-to-
end, multi-domain automation. Their approach leans on a
modular, Service-Based Architecture (SBA), which is built
for easy scaling and future expansion. At the heart of this
architecture are Management Domains, each shaped by either
administrative control or technical boundaries. When a service
stretches across more than one domain, an End-to-End (E2E)
Service Management Domain steps in to handle cross-domain
coordination. Each domain runs on closed-loop automation:
Data Collection services keep an eye on the network, An-
alytics services sift through the numbers and spot trends,
and Intelligence services decide when and how to act on
managed resources. The Integration Fabric ties these domains
together, making sure communication flows smoothly both
inside and between them. To better visualize this, the ETSI
ZSM reference architecture is depicted in Figure 1, which
illustrates the modular, service-based approach with its distinct
management domains.

B. O-RAN Architecture

The O-RAN Alliance takes a different angle, pushing for
an open, intelligent, and virtualized Radio Access Network
(RAN). Central to their vision is the RAN Intelligent Con-
troller (RIC), which is split into two distinct parts:
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Fig. 1. The ETSI ZSM reference architecture, illustrating the end-to-end and
domain-specific management loops (Source: Adapted from [3]).

o Non-Real-Time RIC (Non-RT RIC): Working at the
SMO level, this platform manages policies and machine
learning models for the RAN. It lets “rApps” run control
loops that don’t need to react instantly-anything slower
than a second.

o Near-Real-Time RIC (Near-RT RIC): Deployed at the
network’s edge, this platform hosts "xApps” that interact
with RAN nodes via the E2 interface, making decisions
in near-real-time (from 10 milliseconds up to a second).

This layered setup means the system can handle everything
from big-picture, long-term policy tweaks in the Non-RT RIC
to rapid-fire, resource-level decisions in the Near-RT RIC.
In practice, it creates several levels of nested control loops,
each tuned for a specific timescale. Figure 2 provides a clear
illustration of this layered architecture and its corresponding
control loops.

IV. SURVEY OF AI-DRIVEN ORCHESTRATION AND
AUTOMATION

Let’s dive deeper into how artificial intelligence and ma-
chine learning are reshaping the landscape of network or-
chestration and automation, especially as we move toward
the era of 6G networks. The complexity of modern networks
has grown dramatically they’re now highly dynamic, adapting
constantly to changing conditions and diverse service require-
ments. Unlike traditional, static approaches where network
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Fig. 2. The O-RAN architecture with its nested control loops, showing the
interaction between the Non-RT RIC, Near-RT RIC, and the RAN elements
(Source: Adapted from [3]).

resources were provisioned once and left untouched, today’s
networks demand real-time intelligence and adaptability at
every layer. Network slicing, which enables the creation of
multiple virtual networks over a shared infrastructure, has
intensified these challenges by introducing more granular and
often conflicting resource needs. In this environment, static
configurations quickly become obsolete. Instead, smarter,
context-aware automation powered by Al is emerging as the
only viable solution. Al-driven systems can make rapid, data-
driven decisions throughout the entire lifecycle of a network
slice: from initial deployment, through ongoing performance
optimization as user demand fluctuates, to eventual decom-
missioning when the slice is no longer needed. The ultimate
goal is to create autonomous networks that can intelligently
allocate and reallocate resources such as compute power,
storage capacity, and radio spectrum-on their own, even when
multiple services with varying requirements are vying for
those same resources. Researchers are at the forefront of this
transformation, experimenting with a wide array of machine
learning techniques to tackle the orchestration and automation
hurdles unique to 6G and beyond. Their work is thoroughly
documented in recent surveys, including those by Wajid and
Rodrigo, which are highlighted in Table II. These surveys de-
tail the latest breakthroughs, mapping out the specific network
management problems addressed and the AI methodologies
employed to solve them.

A. Al for Dynamic Resource Allocation

Dynamic resource allocation is fundamental to effective
network slicing, as it directly impacts the network’s ability to
meet a variety of quality of service (QoS) demands across di-
verse applications-from ultra-reliable low-latency communica-
tions required by autonomous vehicles, to massive connectivity
for TIoT devices, and high-throughput needs for multimedia
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TABLE I

REPRESENTATIVE WORKS IN AI-DRIVEN NETWORK

ORCHESTRATION

Key Innovation

Problem Addressed

Al Technique Used

Al-Native Slicing
Framework: An
integrated framework
for space, air, and
ground network
segments.

Orchestration for 6G
network slicing
across different

segments to meet
diverse Quality of
Service (QoS)
demands.

A combination of deep
reinforcement learning
for resource allocation
and recurrent neural
networks for demand
prediction.

Explainable MLOps
(SliceOps): A
framework to make the
AT’s decisions in
network management
more transparent and
trustworthy.

Optimizing network
slicing in 6G while
ensuring the Al’s
decisions are
understandable and
reliable.

Explanation-Guided
Reinforcement Learning
(XRL) used to enhance

dual-slice radio
resource management.

Al-as-a-Service (AlaaS)
Integration: Enhancing
the standard NWDAF

by integrating it with an

AlaaS platform for
more flexible ML
model provisioning.

Overcoming the
limitations of
traditional 5G

NWDAF
architectures to
improve anomaly
detection and
resource
optimization.

A dual-slice approach
separating “'training
slices” for continuous
model updates from
“inference slices” for
real-time analytics.

Core and RAN
Analytics Fusion: A
system combining core
network data (NWDAF)
with real-time RAN
data (RIC) for more
effective resource

Dynamic resource
allocation in 6G by
integrating data from
both the core
network and the
Radio Access
Network (RAN).

A dual-slice paradigm
where training slices
refine ML models, and
inference slices enable
real-time network
management decisions.

framework to
dynamically orchestrate
resources to balance
model training and
low-latency inference.

demands of
data-intensive model
training with
low-latency inference
needs.

control.
Dynamic Efficiently managing Al algorithms
Training/Inference network resources by dynamically manage
Balancing: A balancing the resource allocation

across separate training
and inference slices.

needs of individual slices.

Core Network Resource Allocation: The core network
presents its own set of challenges, particularly in the
placement and scaling of Virtual Network Functions
(VNFs) or Cloud-Native Network Functions (CNFs) that
are essential for supporting network slices. Here, DRL
can be leveraged to make complex placement decisions,
ensuring that latency-sensitive services are hosted close
to the edge while optimizing the utilization of centralized
cloud resources. By continuously learning from network
feedback, DRL agents can anticipate bottlenecks and
proactively migrate or scale functions, maintaining ser-
vice quality even as network loads fluctuate.

o Edge Computing Resource Allocation: At the edge, the

decision-making process becomes even more granular.
Al systems must decide not only how to distribute
computational workloads among local devices and edge
servers, but also when to offload tasks to achieve the best
balance between delay, energy consumption, and overall
network efficiency. DRL has proven particularly effective
in this context, enabling edge nodes to collaboratively
learn optimal offloading and resource-sharing strategies
that adapt to both local and global network conditions.
This leads to reduced latency for end users and more
sustainable energy consumption across the network.

o Beam Hopping/Management (SatCom/NTN): In the

realm of satellite communications and non-terrestrial net-
works (NTN), the challenges of resource allocation are
compounded by the need to manage steerable beams
and rapidly changing coverage areas. DRL agents are
now being employed to dynamically allocate satellite
beams based on real-time assessments of user demand
and traffic distribution on the ground. These intelligent
agents can prioritize coverage for regions experiencing
surges in usage, optimize overall network throughput,
and minimize latency, all while adjusting to the unique
constraints of satellite mobility and coverage patterns.

Overall, the integration of Al and machine learning into
network orchestration and automation is ushering in a new
era of self-optimizing, resilient, and highly efficient networks.
As these technologies mature, we can expect networks that
not only react to current conditions but also anticipate future
demands, providing seamless, high-quality connectivity for
a wide spectrum of services and applications. The ongoing
research and development in this space are paving the way
for fully autonomous networks that will form the backbone of
tomorrow’s digital society.

streaming. Among the various Al methods explored, reinforce-
ment learning and particularly deep reinforcement learning
(DRL) stands out for its ability to handle sequential decision-
making and adapt to real-time environmental changes.

e RAN Resource Allocation: In the radio access network
(RAN), DRL agents are increasingly being used to
allocate Physical Resource Blocks (PRBs) to different
network slices as traffic patterns evolve. These agents
process continuous streams of network data and QoS
feedback, dynamically adjusting allocations to maximize
efficiency and fairness. Compared to traditional static or
heuristic-based schedulers, DRL-based approaches have
consistently demonstrated superior adaptability and per-
formance, learning to anticipate and respond to changing
demands. Methods such as Q-learning, Deep Q-Networks

B. Al for QoS and QoE Prediction/Assurance

Looking ahead-predicting how the network and user expe-
rience will change-lets operators act early and dodge SLA
violations. Supervised learning dominates in this space.

o Traffic Forecasting: Models like ARIMA, LSTMs, and

(DQN), and Actor-Critic algorithms each bring unique
strengths, allowing for more nuanced and customized
allocation strategies that can be tailored to the specific
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other RNNs predict future traffic-whether by cell, slice, or
user. These forecasts steer resource allocation and scaling
before spikes or dips hit.
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e Q0S/QoE Prediction: Supervised learning models esti-
mate future QoS metrics or QoE scores using current
network stats and traffic patterns. This gives orchestrators
a heads-up, so they can fix issues before they affect users.

o Channel State Information (CSI) Prediction: In the
RAN, deep learning models-CNNs and LSTMs-predict
where channel conditions are headed. That’s key for
tweaking beamforming, adapting links, and making smart
handover calls, especially when users move fast.

C. Al for Network Security and Anomaly Detection

Al steps up to spot threats and odd behavior in today’s
sprawling, complex networks. Unsupervised learning shines
here, especially for catching new or never-before-seen attacks.

o Intrusion Detection:  Deep  learning  models-
Autoencoders, Deep Belief Networks (DBNs)-learn
what normal traffic looks like, so they can flag anything
that smells like trouble.

o Anomaly Detection: Unsupervised algorithms find pat-
terns that don’t fit the norm, signaling performance hic-
cups, misconfigurations, or outright security breaches.

o Traffic Classification: Deep learning can sort encrypted
traffic based on flow patterns, dodging the need for deep
packet inspection. This matters for both security checks
and QoS management.

D. Al for Automated Service Activation and Provisioning

Al acts as a vital bridge between abstract service objectives
and the intricate realities of network deployment, fundamen-
tally transforming how networks are activated and maintained.
Rather than merely facilitating initial configuration, Al-driven
systems provide continuous oversight and adaptive manage-
ment, ensuring that services remain optimized and resilient
throughout their entire lifecycle.

o Intent Translation: Advanced machine learning algo-
rithms analyze diverse, high-level service intents-such
as latency, throughput, and security requirements-and
dynamically translate them into granular network slice
configurations. This goes beyond static parameter map-
ping, as Al can learn from historical data to refine how in-
tents are interpreted, adapting to evolving business needs
or regulatory changes. Such models can also resolve
conflicts between competing service requirements, bal-
ancing priorities in real-time to maximize overall network
efficiency.

o VNF/CNF Placement: The optimal placement of Virtual
Network Functions (VNFs) and Cloud-Native Functions
(CNFs) within a distributed, often multi-cloud infras-
tructure is a complex problem. AI enhances this pro-
cess by considering a multitude of factors including
current resource availability, predicted traffic patterns, and
hardware constraints. It employs optimization techniques,
sometimes in combination with reinforcement learning, to
dynamically allocate functions where they will deliver the
best performance, minimize latency, and reduce energy
consumption. These intelligent placement strategies are
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crucial for meeting the stringent service level agreements
(SLAs) required by emerging 6G applications.

o Slice Lifecycle Management: Al automates the end-to-
end management of network slices, leveraging real-time
analytics to make informed decisions about when to scale
resources, conduct software updates, or gracefully de-
commission unused slices. Predictive models forecast de-
mand surges and potential bottlenecks, enabling proactive
resource provisioning that prevents service degradation.
By integrating feedback loops and continual monitoring,
Al ensures that network slices remain aligned with chang-
ing application requirements and user expectations, all
while optimizing operational costs.

E. Analysis of Trends

The current landscape reveals a decisive shift toward more
sophisticated, data-driven automation throughout network op-
erations. Deep reinforcement learning is being harnessed for
complex, real-time decision-making scenarios-such as adap-
tive resource allocation and fault recovery-where agility and
precision are paramount. Meanwhile, supervised learning, par-
ticularly with advanced neural architectures like LSTMs and
RNNS, is driving innovation in traffic and demand forecast-
ing, resource usage prediction, and user behavior modeling.
These predictive insights inform and enhance the automation
pipeline. Unsupervised learning methods are gaining traction
in network security, where they excel at uncovering anomalous
patterns indicative of intrusions or failures without requiring
labeled data. Additionally, hybrid approaches are emerging
as particularly powerful: by coupling the foresight of su-
pervised prediction with the adaptability of reinforcement
learning, networks can both anticipate and respond to dynamic
conditions more effectively. As Al increasingly assumes a
central role in network management, the industry is placing
heightened emphasis on explainable Al (XAI). Ensuring that
Al-driven decisions are transparent and understandable is
now critical for fostering trust among network operators and
stakeholders, as well as for meeting regulatory requirements.
Simultaneously, securing Al models-preventing data poison-
ing, adversarial attacks, and model theft-has become an urgent
research priority. A notable development is the concept of
Net4Al, which reimagines the network itself as an enabler
for AL In this paradigm, network architectures are purpose-
built to facilitate large-scale, distributed Al workloads, offering
specialized support for high-throughput data transport, edge
inference, and collaborative learning. This approach is poised
to create a virtuous cycle, where Al not only manages the
network but is also empowered by it.

V. SURVEY OF CLOUD-NATIVE ENABLERS FOR A
DYNAMIC 6G

While AI and machine learning lay the groundwork for
intelligent automation, their true potential is only realized
within a network that is agile, programmable, and inherently
distributed. The cloud-native paradigm provides this essential
foundation, introducing a suite of architectural components
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Fig. 3. An example of a disaggregated cloud-native architecture, showing the interplay between the nearRT-RIC, xApps, CU/DU split, and various UPF
deployment models (Edge, Regional, Central) that enable dynamic service orchestration (Source: Adapted from [10]).

that unlock unprecedented flexibility and scalability. By ab-
stracting network resources and exposing programmable in-
terfaces, cloud-native design makes it possible for Al-driven
control loops to operate in real time, orchestrating services and
infrastructure with fine-grained precision. This section delves
into the most transformative elements enabling this shift:
from the granular programmability of the RAN Intelligent
Controller to the distributed compute capabilities of Multi-
Access Edge Computing (MEC), each plays a critical role in
realizing the vision of a dynamic, responsive 6G ecosystem.
A helpful illustration of how these components interact in a
modern network is provided in Figure 3.

A. The RAN Intelligent Controller (RIC)

The RAN Intelligent Controller (RIC) represents a piv-
otal advancement in the evolution of radio access technolo-
gies. Integrated within the Open RAN architecture, the RIC
fundamentally redefines how radio resources are managed
and optimized. By modularizing the traditional, monolithic
base station into disaggregated components, the RIC intro-
duces standardized interfaces that empower trusted third-party
applications-namely xApps and rApps to monitor, analyze,
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and control RAN behavior with unprecedented granularity
and near real-time responsiveness. This open, programmable
environment enables rapid innovation: Al-driven algorithms
for spectrum management, load balancing, and interference
mitigation can be deployed and updated dynamically, tailored
to the unique demands of different deployment scenarios. The
RIC not only enhances operational efficiency but also fosters
a vibrant ecosystem of innovation, where diverse vendors and
developers can contribute novel solutions. Ultimately, the RIC
transforms the RAN from a rigid, vendor-locked domain into
a flexible, intelligent platform capable of adapting to the fast-
evolving requirements of 6G networks.

B. Multi-Access Edge Computing (MEC)

The advent of ultra-low latency applications such as tactile
internet, immersive AR/VR, autonomous vehicles, and real-
time industrial automation has underscored the need for com-
putation to occur much closer to end-users. Multi-Access Edge
Computing (MEC) addresses this challenge by distributing
cloud computing resources to the network’s edge, such as
base stations, aggregation points, and enterprise premises. For
orchestration platforms, MEC introduces a new dimension of

Page 7

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)



Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

International Journal of Engineering Research & Technology (IJERT)
I SSN: 2278-0181
Vol. 15 Issue 01, January - 2026

complexity and opportunity. Decisions are no longer limited
to how much resource to allocate, but now also encompass
the optimal placement of workloads-evaluating whether tasks
should execute in centralized data centers, regional edge
clouds, or ultra-local edge nodes. This distributed computing
fabric allows for rapid deployment and scaling of applications,
directly in proximity to the devices and users that require them.
By bringing compute, storage, and analytics capabilities to
the edge, MEC not only reduces latency but also alleviates
core network congestion, improves data privacy by limiting
data exposure, and enables context-aware services that adapt
to local conditions. For 6G networks, this flexibility is in-
dispensable, empowering operators to deliver differentiated,
low-latency services while supporting massive numbers of
connected devices and diverse application requirements. The
synergy between MEC and Al-driven orchestration further am-
plifies these benefits, enabling intelligent workload placement,
proactive fault management, and seamless user experiences
across the entire network continuum.

C. Non-Terrestrial Network (NTN) Integration

6G aims for global, everywhere-you-go connectivity, but
terrestrial networks just can’t stretch that far on their own.
So, bringing in Non-Terrestrial Networks think LEO satellite
constellations becomes essential [9]. By weaving together
ground, air, and space, NTN integration builds a single,
unified network. The orchestration framework faces a tough
job here. It needs to keep services running smoothly, handle
user movement, and juggle resources across domains that don’t
play by the same rules-latency and bandwidth swing wildly
from one to the next. The management framework has to
guarantee seamless connections, especially in remote places
or disaster zones where ground networks vanish. All of this
adds serious complexity to automating service activation.

D. Digital Twins

A Digital Twin is a virtual, living replica of a real-world
system, process, or service. In networking, it acts like a high-
precision simulation lab, echoing the true state and behavior
of the live network.

¢ Role in Automation: Digital Twins give engineers a safe
space to train, test, and validate Al-powered orchestration
and control algorithms before rolling them out in the real
world.

o Implementation: To pull off an accurate digital twin, you
need real-time data feeds from the network, advanced
modeling, and tight synchronization with physical sys-
tems.

E. Al Slice Architectures (Net4Al)

Net4Al pushes network architecture to evolve and truly
support Al workloads.

e Dual Slice Model: Splitting network resources and
QoS policies between Al Training Slices (built for raw
throughput) and AI Inference Slices (tuned for ultra-low
latency) lets the network serve both stages well.

o Evolved UPF (e-UPF): The UPF needs a boost-it has
to recognize both slices and Al traffic, inspecting flows
and steering them dynamically to the right MEC server,
whether it’s for data aggregation during training or for
fast inference.

o Integration with NWDAF/MEC: The Network Data
Analytics Function (NWDAF), or something like it, can
work with the SMF and e-UPF to keep tabs on the
lifecycle and resource needs of Al slices, making sure
everything runs smoothly.

VI. OPEN RESEARCH CHALLENGES AND FUTURE
DIRECTIONS

Al and cloud-native approaches have opened the door to
smarter, more automated networks. Even so, our review of
where things stand shows there’s still a long way to go to reach
a true zero-touch, fully orchestrated 6G network. The biggest
hurdles? They cluster around automated service activation and
provisioning.

A. Challenge: Lack of a Unified Framework for Service Acti-
vation Across Heterogeneous Domains

Everyone talks about a single, end-to-end management
framework-look at the ETSI Zero-touch Service Management
(ZSM) architecture [3]. In theory, it should handle everything.
In reality, research is still split: RIC [10], cloud-native core
[8], and NTNs [9] each get treated as their own separate
problem. This gap shows up most clearly when you look
at complicated service activation workflows. Imagine kicking
off a smooth, low-latency XR session for a user speeding
along on a train, jumping from 5G coverage to a satellite
NTN link. That’s a huge orchestration headache. You need
one framework that can model performance, predict resource
demand, and automate service activation and handoff across
these completely different domains, all in real time. Right
now, there’s no proven orchestrator that can wrangle the wild
swings in mobility and delay you find in NTNs, while also
handling terrestrial MEC and RIC deployments, all under one
roof. Until that exists, seamless service provisioning will stay
out of reach.

B. Challenge: Security and Trust in Al-driven Activation
Workflows

Al-powered automation has transformed network opera-
tions, but it also opens up a new vulnerability: the Al
itself. Recent work points out that attackers don’t just go
after the network hardware or software anymore-they target
the intelligence running the show. Data poisoning, evasion,
inference attacks these aren’t just buzzwords. They’re real
threats, and they exploit the fact that AI models can be
manipulated. When the management AI receives poisoned
data, it can make disastrous choices, all while thinking it’s
optimizing the network. Imagine an attacker feeding just the
right malicious input, tricking the model into misconfiguring
a network slice. Suddenly, there’s a security gap, the promised
quality of service gets trashed, or resources get drained,
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causing denial-of-service for everyone else. The community
knows about these problems, but we’re still searching for
practical, lightweight defenses that can actually protect the
AI/ML pipeline during real-time network management and
service activation. This is wide open territory for research.

C. Challenge: Explainable and Trustworthy Al (XAl)

Network operators aren’t going to hand over the keys to
an Al system unless they understand what it’s doing. The
problem? Most deep learning models are black boxes-you get
an answer, but not the reasoning behind it. When something
goes wrong, it’s almost impossible to trace the cause. That’s
where explainable Al (XAI) comes in. XAl tries to bridge the
gap by making Al decisions transparent and understandable to
humans. But in practice, especially in the context of zero-touch
management (ZTM), building models that networking experts
can actually interpret-and developing metrics that measure just
how explainable these models are is still a major challenge.

D. Challenge: Data Management and Federated Learning

Machine learning models live and die by their data. The
richer and more representative the dataset, the better the model.
But gathering huge amounts of network data and moving it to
a central location? That’s a privacy nightmare, especially when
you’re dealing with multiple vendors and operators. Federated
Learning (FL) steps in as an alternative. With FL, the global
model gets trained across many distributed devices, so the raw
data never leaves its source. This protects privacy, but it’s not
a silver bullet. FL brings new technical headaches: commu-
nication overhead, the risk of attackers extracting sensitive
information from gradients, and the challenge of working with
wildly different data formats and qualities across devices.

E. Future Direction: Towards an Al-Native Orchestration
Framework

Building an AI-Native Orchestration Framework These
challenges make one thing clear: just slapping Al on top of
existing cloud-native systems isn’t enough for what 6G needs.
We have to rethink the architecture itself. The orchestration
framework of the future can’t treat Al as an afterthought or
a bolt-on module. It needs to be built around AI from the
ground up, with intelligence, security, and explainability baked
into the very core of orchestration and activation. This kind
of framework unifies the management of diverse networks-
terrestrial, non-terrestrial, you name it and raises the bar for
what automated network services can do.

FE. Towards an Al-Native Orchestration Framework

Tackling these problems means we can’t just focus on Al for
the network (AI4Net) or the network for Al (Net4Al) in iso-
lation. The real challenge is designing an orchestration system
where Al is a native part of the architecture-fully integrated
with cloud-native principles, not just tacked on. The long-term
goal is clear: develop an Al-native framework with unified data
planes, intelligence embedded at every level, explainability and
security designed in from day one, and seamless management
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of all kinds of resources, whether they’re on the ground or in
orbit. That’s the vision for truly autonomous, intelligent, and
trustworthy 6G networks.

VII. CONCLUSION

Getting 6G networks up and running-and keeping them
running-will depend on how well we handle their complexity.
Zero-touch automation powered by intelligent systems isn’t
just a nice-to-have; it’s the only way to make these networks
work at the scale and speed we expect. In this survey, we
focused on the two pillars that make this shift possible: Arti-
ficial Intelligence, which brings learning and smart decision-
making, and the Cloud-Native approach, which gives us the
flexibility, scalability, and programmability modern networks
demand. We started by breaking down the basics, showing
how network management has moved from manual processes
all the way to Zero-Touch Management (ZTM). Along the
way, we mapped out the main cloud-native technologies and
the AI/ML models shaping this evolution. Key standards like
ETSI ZSM and O-RAN have set the stage for automation
that actually works across different systems. When we looked
at Al in orchestration, we saw Deep Reinforcement Learn-
ing dominating dynamic control tasks, Supervised Learning
handling predictions, and Unsupervised Learning helping with
security. Hybrid models and concepts like Net4Al-think ded-
icated Al slices are catching on, too. We also took a close
look at 6G enablers like the RIC, MEC, NTN integration,
and Digital Twins. Still, big gaps remain. Building a truly
unified orchestration framework that works seamlessly across
both terrestrial and non-terrestrial domains isn’t just important
it’s essential. The AI components driving this automation
need to be secure, trustworthy, and explainable. Managing
the massive data flows that Al needs, while keeping privacy
intact (possibly using Federated Learning), and making sure all
this runs efficiently without burning through energy are major
challenges we can’t ignore. The next step is clear: we need
an Al-native orchestration framework, built from scratch to
serve as the secure, intelligent, unified core of future networks.
Tackling these open research problems isn’t just an academic
exercise; it’s the key to unlocking everything 6G promises-
smarter, automated, and truly global connectivity.
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