Special Issue- 2015 International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCRT S-2015 Conference Proceedings

A Survey of user Privacy for Android Applications
Based on Permission Analysis and Permission
Removal

Pushpa S Mukesh Kamath
M.Tech 2nd semester Associate professor
Department of CSE Department of CSE

City Engineering College

Abstract— Android mobile devices are becoming a popular
alternative to computers. The rise in the number of tasks
performed on mobile devices means sensitive information is
stored on the devices. Since the openness of android platform
leads to a mess of privacy leaks and property damages of users
and Android devices are a potential vector for criminal
exploitation. This research proposes the use of permission
analysis and permission removal for android application. The
existing research on user privacy on android devices can be
classified as android modifications; these solutions often require
operating systems modifications which significantly reduce their
potential. The proposed research for permission analysis is based
on the detection system which is incorporated with computer
terminals as well as mobile terminals and can detect the
permission information of Apps and check the sensitive
permission. In addition, the detect system can provide a
secondary judgment of APPs to guarantee the information and
property security of the users. The proposed research for the
permission removal is based on the reverse engineering process.
This process is used to remove an app’s permission to a resource.
The repackaged app will run on all devices the original app
supported. Our findings that are based on a study of seven
popular social networking apps for Android mobile devices
indicate that the difficulty of permissions removal may vary
between types of permissions and how well-integrated a
permission is within an app.

Keywords: Android platform; Permission analysis; Permission
removal

I INTRODUCTION

Android is an open source mobile operating system
developed based on Linux system. Introduced by Google and
its open handset alliance [10]. Android has been widely used
in mobile phones, tablet PCs, laptops and other smart mobile
devices. Paying bills, banking, ordering items online and
others can now be done entirely on a smartphone .With the
increase in the amount of sensitive information stored on a
mobile device, user privacy becomes an important. As mobile
device usage increases in ubiquity and capability, so will the
need for increased security and privacy. Android dominates
the mobile market. Because of the open source characteristic
and market openness property of Android, Android is
convenient for individual to release APPs development freely.

City Engineering College

Everything has two sides, on one hand, Android provides
developers with the convenience of APPs development. On
the other hand, it also means a convenience to criminals due to
the lack of effective supervision mechanism on the publisher.
The ordinary user’slack of safety knowledge is easy to
download and install this malicious software, which may lead
to the leak of the user’s privacy information. The Google Play
Store uses a blacklist style of accepting Android applications
(“apps”) that is all apps are accepted unless they are reported
by users. Android relies on its permissions system in order to
reduce the risk of a malicious app on a device. A user can
manually check the list of permissions required by the app
upon installation as a method to determine if it is a legitimate
app.
1. RELATED WORKS

2.1 Android structure

Android apps are stored and distributed within an
Android Application Package File (APK), a ZIP format file.
Apps are commonly installed via the Google Play Store
platform, which contains hundreds of thousands of apps
created by third-party programmers and companies. Apps are
generally unmoderated, and Google uses Google Bouncer [1],
an in-house developed anti-malware application, to scan all
submitted apps. The use of the Google Play Store allows
automatic selection of appropriate app installation packages
based on the device that is installing the app.

2.2 APK File Structure

An APK contains at a minimum, the directories and
files shown in Figure 1. This AndroidManifest.xml file is most
important. This is stored in a binary XML format and must be
converted to a plain text format before becoming human-
readable. This file contains information such as the minimum
Android version the app was designed for, the main activity
(which is launched upon opening the app) and other details
important to the basic functionality of an Android app.

Volume 3, | ssue 27

Published by, www.ijert.org 1

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCRT S-2015 Conference Proceedings

Android
application
package (APK file)

assets |

7{ armeabi |
F'. St >| Armeabi-v7a |

Classes.dex

.—)Required \
" —>optional

Figure 1: Overview of an APK files structure.

Most importantly for our purposes, it contains declarations of
the Android permissions the app requires. Another file that
will be used within this research is the classes.dex file, which
contains the binary code of the app compiled to Dalvik byte
code [2].Programmers are free to add as many directories and
files as needed to fulfill their requirements. Due to the
inclusion of the manifest filedetailing every file contained
within an app, the structure is quite flexible.

Android apps are required to go through the application
signing process before they can be installed onto a device. By
default an Android system will not install an application if it is
unsigned. This includes both physical and emulated Android
systems. For an organisation that releases Android apps, there
is a single private key used to sign all their applications. By
signing different applications with the same private key, they
are able to share code and data as Android considers them to
be within the same process [3].

2.3 Android Permissions System

Android uses a permissions-based approach to user
privacy and security. Each app runs in its own virtual machine
process, separate from all other apps currently running. Each
Android app has a unique “Linux” User ID (POSIX). Two
apps with different IDs cannot run in the same process [4].
This sandbox approach ensures that app data cannot leak to
other apps.Before installation of an app; a user is presented
with a list of permissions the app requires. A user can only
accept all permissions the app requires and install the app or
cancel the installation completely. These permissions are
defined by the AndroidManifest.xml file noted above,
contained within the APK file in the root directory. An

Android app’s list of permissions is a reflection of the
functionality of that particular app. A heavily over-privileged
app [an app with too many permission requests] can act as a
deterrent to users due to the long, potentially suspicious list of
permissions requested. As of Android version 4.2.2, the
Android OS has over 120 permissions [5]. Many of these
permissions, though, have little effect on the privacy concerns
of an Android smartphone user and are called normal
permissions.“Dangerous” permissions, on the other hand, are
requested upon installation and explicitly defined in the
AndroidManifest.xml file [6]. Figure 2 gives an example of a
dangerous permission; the highlighted row shows that the app
requests access to the user’s contacts.

ien andTeddiname="androld. peaTMisnion MARE_LOCE® 2

"sndraid. paTRASNLGN, §

‘androld.permiselon .y E />

nape=Yandrold. parmlsslon, BEAL SONTACTES /x

cuses-permisaion asdraid:

Figure 2. Example of AndroidManifest.xml.

2.4 Android specific security mechanisms

Android system supports multi-platform operation,
which uses the version of the kernel of Linux 2.6, and uses
Dalvik virtual machine as an APP runtime environment.
Android system has a layered architecture [11]. The bottom to
the top, there are five layers, which are the Linux kernel, the
local library, the Android runtime environment, the APP
framework and the APP. During designing and developing the
Android operating system, Google not only inherits the
designing idea of Linux, but also sets a corresponding security
mechanism in each layer.Google also sets two kinds of
Android specific security mechanisms: signature and APP
permission control.

2.5 Signature mechanism

All Android APPs must have a digital certificate, due
to that the system will not install an APP that doesn’t have a
digital certificate. Unlike other platforms, Android APP
signature not only indicates the publisher of the APK, but also
provides validation of the integrity and reliability of the
program. For those who attempt to tamper with the APK file,
the system will force them to re-sign the APK. Under the
condition that the author's signature private key does not leak,
the fake signature is almost impossible exactly the same as
that of the original signature which has uniqueness. Signature
mechanism plays a protective role in the APP update. Only
under the circumstance that the two signatures are exactly the
same, system allows the update operation. Otherwise the
system will prohibit this update to further protect the security
of the system.

2.6 APP permission control mechanism

Permission control is the key of Android APPs
security mechanism. Android deals with security problems by
means of implementation of security policies based on
permission control, i.e., using permission control to restrict the
APP installation, so that the APP can only access APl and
resources within the permission. Androiddefines 135 kinds of
thesystem permissions which are divided into four protection

Volume 3, | ssue 27

Published by, www.ijert.org 2

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCRT S-2015 Conference Proceedings

levels [5], which are normal, dangerous, signature and
signatureOrSystem, respectively. All the permissions and
related functions can be seen in the development document of
the Android system [12].

By default, Android APPs don’t have any permission.
Permissions involved in the APP runtime need to be declared
in the label of uses-permission in the AndroidManifest.xml of
APK file. At the time of installation, Android APP package
manager will prompt the user of the application of the APP
permissions only with the authorization of the user, the
installation can begin, and otherwise, installation will be
cancelled. After successful installation, the system will answer
the requests for program to access resources according to the
solidification permission information when APP runs. If there
are corresponding permissions, access successes; otherwise
the APP will be forced to shut down by system. The specific
process is shown in figure 3.

Installation

package APK

v

Permission statement (androidmanifest.xml)

refuse

Installation
failed

User
authorization

Distribution of UID
and GID curing

permission
information -

Installation success

Not have

Runtime

Check the permission

permission Access failed

validation

information

Access success

Figure 3. Permission statement and validation process when APP installs and
runs.

Android permission mechanism exists obvious safety defects,
i.e., when permissions are authorized to the APP by the user,
the authorization will followed the APP though its whole life
and cannot be removed even though the source program is
deleted[13], which will lead to potential security flaws. To
reduce this risk, it is required that the user has the ability to
distinguish permissions information to decide whether
authorize or not when APP is installed. There is no doubt that
it is rather difficult for ordinary users. For the hidden safe
troubles that may be caused by the permissions mechanism,

the Android system gives only sketchy permissions prompt
interface during APP installation, as shown in figure 4.
Permission entry in this interface is incomplete, which makes
the ordinary users confused and headache. But with the
purpose to use the APP, users usually grant permissions to the
APP, which results in the wide spread of malicious software’s.
Though some of the mobile phone housekeeper software’s,
such as king soft mobile guards, ten cent security housekeeper,
can provide query of permissions information of the APP , it is
too rough to show accurate information. In addition, if the
APP is connected to the Internet to upgrade, the new version
may apply for the new permissions in the update. Therefore,
helping users understand the various permissions information
of APPs and helping them judge selection and constantly
monitoring permissions information and upgrade situation
become very important.

v Your lecation

v Your persanal information

v Network communication
Stecage

Phone cally

|

Figure 4. Permissions prompt interface when APP installed in the simulator
Android2.3.3

1. ARCHITECTURE

3.1Architecture for permissions detection system

A permission detection system which is combined
with PC and mobile phone side is proposed. The system can
detect permission information of installed APPs and the
uninstalled APK file in advance. The system architecture
shown in figure 5 consists of two modules: permissions on the
basis of decompilation module and permissions on the basis of
the PackageManager module, among which, the second one
can be deeply divided into two parts: extracting the
corresponding permissions for each APP according to the list
of APPs, and listing the permissions; monitoring all the APPs
that using a specific sensitive permission according to a
number of sensitive permissions, and listing APPs. By
combining the two monitoring functions, the system can help
users understand the permissions deeply and constantly
monitor the APP permission information so that it can help

Volume 3, | ssue 27

Published by, www.ijert.org 3

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCRT S-2015 Conference Proceedings

guarantee the safetyof the system, and protect users' privacy
information security.

Uninstalled APK Installed APK

Permission module based
on package Manager

Permission module based on

the decompilation
Extract Extract
permission applications
according according to
to permission
application

Figure 5. Architecture of detection system

V. METHODOLOGY

4.1 Permissions Selection

Before a permission request is to be removed, it must
first be selected to be removed. When selecting a permission
to remove or block, it must not affect the major functions of an
app. For example, social networking apps require Internet
access in order to function; as such the “INTERNET”
permission is required. Testing an app without Internet access
can be done simply by disabling all Internet connections. The
aim, therefore, is to remove dangerous permissions from an
app that should not be required. As such, the permissions that
are most commonly requested by apps but also not necessarily
required are considered for removal.

The AndroidManifest.xml file obtained can then be
read with any plain-text editor. Figure 6 outlines our proposed
app permissions selection process. The first step is for the user
to determine whether the app requires this permission. The
second step determines whether the app actually requires this
permission in order to function. For example, a mapping app
will require location resources such as the GPS system in
order to function. A note keeping app, on the other hand, has
no obvious need for such information. The next two steps will
determine whether the permission is harmless and feasible to
be removed from the app. For example, many app permissions
allow an app to access sensitive information such as contact
information, phone logs, IMEI numbers, and SMS. A user
may choose to expressly disallow a particular permission even
when the app has well defined justifications. The feasibility of
removing an app’s permission is considered. Some apps may
be so heavily integrated with a certain resource that it may not
run without it.

[Select APP |

Figure 6. Permissions selection process

4.2 Permissions Removal

Permissions removal is used in order to improve user
privacy on Android devices. Permissions removal is the
process wherein an app’s package installer is reverse
engineered to removeunnecessary or privacy-intruding
permissions. The benefit of this method is that the app can be
installed on any version of Android that supports the
unmodified app. This means no additional third party software
or rooted/custom Android OS is required which may have
been an additional privacy/security risk. A major downside to
this method is the time required to properly remove one or
more permissions and address dependencies within the app. It
may not be possible to fully remove an Android permission’s
dependencies as the app’s coded functionality may be too
tightly integrated. For example, removing both coarse and fine
locations from a turn-by-turn navigation app would not be
useful or even viable due to the nature of the app. Another
challenge with this method is that due to the digital signature
verification in Android - the modified app is not signed with
the original key and hence cannot be updated over the official
version of the app installed on the device.
This means a completely new installation of the app is
required in order for this app to be updated on the (one)
device.

Volume 3, | ssue 27

Published by, www.ijert.org

Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCRT S-2015 Conference Proceedings

Android
manifest. XML

[

[

File conversion
Smali code

\

Dexfile Key

File conversion
Jar file

Figure 7. Ideal permissions removal process

Directory/
file

Modified smali code

File to be

File conversion 7%
modified

Figure 7 shows the ideal method of manual permissions
removal to be performed on an Android app. The reason this
method is considered ideal is that this process results in the
entire app’s source code being readable and modifiable in
Java. An app is first decompiled using a decompilation tool —
in our case, APK Multi Tool is used [7]. Decompilation results
in several files, as shown, with importance placed on the
“smali” code files and AndroidManifest.xml file.

The smali code files are the source code of the particular
Android app in a human readable format. The problem with
this format is that it is difficult to read and debug apps; the
language is complicated and hard to understand. As this is the
case, the smali code files are then converted to a single .dex or
Dalvik Executable file using a tool called smali/baksmali [8].
This results in a .jar file, simply a Java archive file containing
Java classes which can be read and extracted to .java files
using JD-GUI [9]. At this point, changes to the app can be
easily made by modifying its Java files. The plain text
AndroidManifest.xml file can now be read and modified using
any plain texteditor. Removing the highlighted row in Figure 2
would effectively render the app unable to read contacts data
from the Android device, but may render the app unusable due
to instability issues.

Due to this, sourcecode changes must be made in order to
result in a usable app that cannot access contacts data. After
the source code changes are made, the app must be converted
back into smali code in order for the recompilation process to
be successful. The smali/baksmali software package is used
once again to convert the Java code to smali code. APK Multi
Tool is then used to recompile and sign the repackaged app.
The result should be a working app installation package with
some resource access removed, thus improving user privacy.

V. CONCLUSION

A detection system combined with PC and cell phone
side is proposed and demonstrated based on the analysis of
Android security mechanisms and the study of the potential
safety problems caused by the inherent defects on the Android
platform, such as the system rough permissions prompt
interface and the uneven ability of publisher of APP., The
detection system can thoroughly detect permissions
information’s of the installed APPs and uninstalled APKs in
advance. The monitoring system can not only give
understandable explanation in detail, but also provide users
with the function of screening on APPs with certain sensitive
permission. In addition, the system can also provide users
secondary warning and secondary judgement opportunities,
and help consumers improve their safety consciousness and
protect their privacy from unknown infringement. In the next,
we are going to take the overriding of Kernel of Linux into
consideration to restrain the APPS from applying for more
sensitive permissions, such as preventing certain APPs
connecting to the Internet or sending short messages, so that
we can eradicate the malicious software completely and
guarantee the users’ property and privacy.This leads onto a
further future work or research that could be undertaken where
this automated system would be implemented onto an Android
device. This would result in a self-functioning system that
could enhance the privacy of apps on the device.

REFERENCES

1) oO. Hou, 2012, “A Look at Google Bouncer”,
http://blog.trendmicro.com/trendlabs-security-intelligence/a-look-at-
google-bouncer/, accessed 14 April 2013

2) Y. Zhou, X. Zhang, X. Jiang & V. Frech, “Taming information-
stealing smartphone applications (on Android)”, TRUST 2011, pp. 93-
107.

3) S. Bugiel, S. Heuser & AR. Sadeghi, myTunes: Semantically Linked
and User-Centric Fine-Grained Privacy Control on Android, Technical
Report TUD-CS-2012-0226, Center for Advanced Security Research
Darmstadt, 2012.

4) A Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev&CGlezer,
“GoogleAndroid: A Comprehensive Security Assessment”, IEEE
Security & Privacy Magazine, vol. 8, no. 2, 2012, pp. 35-44.

5) http://developer.android.com/reference/android/
Manifest.permission.html, accessed 14 June 2013

6) http://developer.android.com/guide/topics/manifest
element.html, accessed 13 June 2013

7) http://apkmultitool.com/, accessed 11 April 2013

8) http://code.google.com/p/smali/, accessed 11 April 2013

9) http://java.decompiler.free.fr/?q=jdgui, accessed 11 April 2013

10) Android.Developers.http://developer.android.corn/guide/basics/what-is
android.htmI[EB/OL].March 2011.

11) Sinascience and technology http://tech.sina.com.cn/it/ 2013-05-
10/07478325514.shtmI[EB/OL].May 2013.

12) Google. Android Reference: Security and
Permissions.http://developer.android.com/guide/topics/security/securit
y. Html [EB/OL].

13) Minghua Liao, Liming Zheng.The Security Mechanism Analysis and
Probe into the Solution of Androids[M]. Science Technology and
Engineering VVol.26, September 2011, pp.6350-6355.

/permission-

Volume 3, | ssue 27

Published by, www.ijert.org 5

