
A Survey of user Privacy for Android Applications

Based on Permission Analysis and Permission

Removal

Pushpa S

M.Tech 2nd semester

Department of CSE

City Engineering College

 Mukesh Kamath

Associate professor

Department of CSE

City Engineering College

Abstract—

Android mobile devices are becoming a popular

alternative to computers. The rise in the number of tasks

performed on mobile devices means sensitive information is

stored on the devices. Since the openness of android platform

leads to a mess of privacy leaks and property damages of users

and Android devices are a potential vector for criminal

exploitation. This research proposes the use of permission

analysis and permission removal for android application. The

existing research on user privacy on android devices can be

classified as android modifications; these solutions often require

operating systems modifications which significantly reduce their

potential. The proposed research for permission analysis is based

on the detection system which is incorporated with computer

terminals as well as mobile terminals and can detect the

permission information of Apps and check the sensitive

permission. In addition, the detect system can provide a

secondary judgment of APPs to guarantee the information and

property security of the users. The proposed research for the

permission removal is based on the reverse engineering process.

This process is used to remove an app’s permission to a resource.

The repackaged app will run on all devices the original app

supported. Our findings that are based on a study of seven

popular social networking apps for Android mobile devices

indicate that the difficulty of permissions removal may vary

between types of permissions and how well-integrated a

permission is within an app.

Keywords: Android platform; Permission analysis; Permission

removal

I.

INTRODUCTION

Android is an open source mobile operating system

developed based on Linux system. Introduced by Google and

its open handset alliance [10]. Android has been widely used

in mobile phones, tablet PCs, laptops and other smart mobile

devices. Paying bills, banking, ordering items online and

others can now be done entirely on a smartphone .With the

increase in the amount of sensitive information stored on a

mobile device, user privacy becomes an important. As mobile

device usage increases in ubiquity and capability, so will the

need for increased security and privacy. Android dominates

the mobile market. Because of the open source characteristic

and market openness property of Android, Android is

convenient for individual to release APPs development freely.

Everything has two sides, on

one hand, Android provides

developers with the convenience of APPs development. On

the other hand, it also means a convenience to criminals due to

the lack of effective supervision mechanism on the publisher.

The ordinary user’slack of safety knowledge is

easy to

download and install this

malicious software, which may

lead

to the leak of the user’s privacy information. The

Google Play

Store uses a blacklist style of accepting

Android applications

(“apps”) that is all apps are accepted unless they are reported

by users. Android relies on its permissions system in order to

reduce the risk of a malicious app on a device. A user can

manually check the list of permissions required by the app

upon installation as a method to determine if it is a legitimate

app.

II.

RELATED WORKS

2.1 Android structure

Android apps are stored and distributed within an

Android Application Package File (APK), a ZIP format file.

Apps are commonly installed via the Google Play Store

platform, which contains hundreds of thousands of apps

created by third-party programmers and companies. Apps are

generally unmoderated, and Google uses Google Bouncer [1],

an in-house developed anti-malware application, to scan all

submitted apps. The use of the Google Play Store allows

automatic selection of appropriate app installation packages

based on the device that is installing the app.

2.2 APK File Structure

An APK contains at a minimum, the directories and

files shown in Figure 1. This AndroidManifest.xml file is most

important. This is stored in a binary XML format and must be

converted to a plain text format before becoming human-

readable. This file contains information such as the minimum

Android version the app was designed for, the main activity

(which is launched upon opening the app) and other details

important to the basic functionality of an Android app.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

1

Figure 1: Overview of an APK files

structure.

Most importantly for our purposes, it contains declarations of

the Android permissions the app requires. Another file that

will be used within this research is the classes.dex file, which

contains the binary code of the app

compiled to Dalvik byte

code [2].Programmers are free to add as many directories and

files as needed to fulfill their requirements. Due to the

inclusion of the manifest filedetailing every file contained

within an app, the structure is quite flexible.

Android apps are required to go through the application

signing process before they can be installed onto a device. By

default an Android system will not install an application if it is

unsigned. This includes both physical and emulated Android

systems. For an organisation that releases Android apps, there

is a single private key used to sign all their applications. By

signing different applications with the same private key, they

are able to share code and data as Android considers them to

be within the same process [3].

2.3

Android Permissions

System

Android uses a permissions-based approach to user

privacy and security. Each app runs in its own virtual machine

process, separate from all other apps currently running. Each

Android app has a unique “Linux” User ID (POSIX). Two

apps with different

IDs cannot run in the same process [4].

This sandbox approach ensures that app data cannot leak to

other apps.Before installation of an app;

a user is presented

with a list of permissions the app requires. A user can only

accept all permissions the app requires and install the app or

cancel the installation completely. These permissions are

defined by the AndroidManifest.xml file noted above,

contained within the APK file in the root directory. An

Android app’s list of permissions is a reflection of the

functionality of that particular app.

A heavily over-privileged

app [an app with too many permission requests]

can act as a

deterrent to users due to the long, potentially suspicious list of

permissions requested. As of Android version 4.2.2, the

Android

OS has over 120 permissions [5]. Many of these

permissions, though, have little effect on the privacy concerns

of an Android smartphone user and are called normal

permissions.“Dangerous” permissions, on the other hand, are

requested upon installation and explicitly defined in the

AndroidManifest.xml file [6]. Figure 2 gives an example of a

dangerous permission; the highlighted row shows that the app

requests access to the user’s contacts.

Figure 2. Example of AndroidManifest.xml.

2.4 Android specific security mechanisms

Android system supports multi-platform operation,

which uses the version of the kernel of Linux 2.6, and uses

Dalvik virtual machine as an APP runtime environment.

Android system has a layered architecture [11]. The bottom to

the top, there are five layers, which are the Linux kernel, the

local library, the Android runtime environment, the APP

framework and the APP. During designing and developing the

Android operating system, Google not only inherits the

designing idea of Linux, but also sets a corresponding security

mechanism in each layer.Google also sets two kinds of

Android specific security mechanisms: signature and APP

permission control.

2.5

Signature mechanism

All Android APPs must have a digital certificate, due

to that the system will not install an APP that doesn’t have a

digital certificate. Unlike other platforms, Android APP

signature not only indicates the publisher of the APK, but also

provides validation of the integrity and reliability of the

program. For those who attempt to tamper with the APK file,

the system will force them to re-sign the APK. Under the

condition that the author's signature private key does not leak,

the fake signature is almost impossible exactly the same as

that of the original signature which has uniqueness. Signature

mechanism plays a protective role in the APP update. Only

under the circumstance that the two signatures are exactly the

same, system allows the update operation. Otherwise the

system will prohibit this update to further protect

the security

of the system.

2.6 APP permission control mechanism

Permission control is the key of Android APPs

security mechanism. Android deals with security problems by

means of implementation of security policies based on

permission control, i.e., using permission control to restrict the

APP installation, so that the APP can only access API and

resources within the permission. Androiddefines 135 kinds of

thesystem permissions which are divided into four protection

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

2

levels [5], which are normal, dangerous, signature and

signatureOrSystem, respectively. All the permissions and

related functions can be seen in the development document of

the Android system [12].

By default, Android APPs don’t have any permission.

Permissions involved in the APP runtime need to be declared

in the label of uses-permission in the AndroidManifest.xml of

APK file. At the time of installation, Android APP package

manager will prompt the user of the application of the APP

permissions only

with the authorization of the user, the

installation can begin, and otherwise, installation will be

cancelled. After successful installation, the system will answer

the requests for program to access resources according to the

solidification permission information when APP runs. If there

are corresponding permissions, access successes; otherwise

the APP will be forced to shut down by system. The specific

process is shown in figure 3.

Figure 3. Permission statement and validation process when APP installs and
runs.

Android permission mechanism exists obvious safety defects,

i.e., when permissions are authorized to the APP by the user,

the authorization will followed the APP though its whole life

and cannot

be removed even though

the source program is

deleted[13], which will lead to potential security flaws. To

reduce this risk, it is required that the user has the ability to

distinguish permissions information to decide whether

authorize or not when APP is installed. There is no doubt that

it is rather difficult for ordinary users. For the hidden safe

troubles that may be caused by the permissions mechanism,

the Android system gives only sketchy permissions prompt

interface during APP installation, as shown in figure 4.

Permission entry in this interface is incomplete, which makes

the ordinary users confused and headache. But with the

purpose to use the APP, users usually grant permissions to the

APP, which results in the wide spread of malicious software’s.

Though some of the mobile phone housekeeper software’s,

such as king soft

mobile guards, ten cent

security housekeeper,

can provide query of permissions information of the APP , it is

too rough to show accurate information. In addition, if the

APP is connected to the Internet to upgrade, the new version

may apply for the new permissions in the update. Therefore,

helping users understand the various permissions information

of APPs and helping them judge selection and constantly

monitoring permissions information and upgrade situation

become very important.

Figure 4. Permissions prompt interface when APP installed in the simulator

Android2.3.3

III.

ARCHITECTURE

3.1Architecture for permissions detection system

A permission detection system which is combined

with PC and mobile phone side is proposed. The system can

detect permission information of installed APPs and the

uninstalled APK file in advance. The system architecture

shown in figure 5

consists of two modules: permissions on the

basis of decompilation module and permissions on the basis of

the PackageManager module, among which, the second one

can be deeply divided into two parts: extracting the

corresponding permissions for each APP according to the list

of APPs, and listing the permissions; monitoring all the APPs

that using a specific sensitive permission according to a

number of sensitive permissions, and listing APPs. By

combining the two monitoring functions, the system can help

users understand the permissions deeply and constantly

monitor the APP permission information so that it can help

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

3

guarantee the safetyof the system, and protect users' privacy

information security.

Figure 5. Architecture

of detection system

IV.

METHODOLOGY

4.1 Permissions Selection

Before a permission request is to be removed, it must

first be selected to be removed. When selecting a permission

to remove or block, it must not affect the major functions of an

app. For example, social networking apps require Internet

access in order to function; as such the “INTERNET”

permission is required. Testing an app without Internet access

can be done simply by disabling all Internet connections. The

aim, therefore, is to remove dangerous permissions from an

app that should not be required. As such, the permissions that

are most commonly requested by apps but also not necessarily

required are considered for removal.

The AndroidManifest.xml file obtained can then be

read with any plain-text editor. Figure 6 outlines our proposed

app permissions selection process. The first step is for the user

to determine whether the app requires this permission. The

second step determines whether the app actually requires this

permission in order to function. For example, a mapping app

will require location resources such as the GPS system in

order to function. A note keeping app, on the other hand, has

no obvious need for such information. The next two steps will

determine whether the permission is harmless and feasible to

be removed from the app. For example, many app permissions

allow an app to access sensitive information such as contact

information, phone logs, IMEI numbers, and SMS. A user

may choose to expressly disallow a particular permission even

when the app has well defined justifications. The feasibility of

removing an app’s permission is considered. Some apps may

be so heavily integrated with

a certain resource that it may not

run without it.

Figure 6. Permissions selection process

4.2 Permissions Removal

Permissions removal is used in order to improve user

privacy on Android devices. Permissions removal is the

process wherein an app’s package installer is reverse

engineered to removeunnecessary or privacy-intruding

permissions. The benefit of this method is

that the app can be

installed on any version of Android that supports the

unmodified app. This means no additional third party software

or rooted/custom Android OS is required which may have

been an additional privacy/security risk. A

major downside to

this method is the time required to properly remove one or

more permissions and address dependencies within the app. It

may not be possible to fully remove an Android permission’s

dependencies as the app’s coded functionality may be too

tightly integrated. For example, removing both coarse and fine

locations from a turn-by-turn navigation app would not be

useful or even viable due to the nature of the app. Another

challenge with this method is that due to the digital signature

verification in Android -

the modified app is not signed with

the original key and hence cannot be updated over the official

version of the app installed on the device.

This means a completely new installation of the app is

required in order for this app to be updated on the (one)

device.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

4

Figure 7. Ideal permissions removal process

Figure 7

shows the ideal method of manual permissions

removal to be performed on an Android app. The reason this

method is considered ideal is that this process results in the

entire app’s source code being readable and modifiable in

Java. An app is first decompiled using a decompilation tool –

in our case, APK Multi Tool is used [7]. Decompilation results

in several files, as shown, with importance placed on the

“smali” code files and AndroidManifest.xml file.

The smali code files are the source code of the particular

Android app in a human readable format. The problem with

this format is that it is difficult to read and debug

apps; the

language is complicated and hard to understand. As this is the

case, the smali code files are then converted to a single .dex or

Dalvik Executable file using a tool called smali/baksmali [8].

This results in a .jar file, simply a Java archive file containing

Java classes which can be read and extracted

to .java files

using JD-GUI [9]. At this point, changes to the app can be

easily made by modifying its Java files. The

plain text

AndroidManifest.xml file can now be read and modified using

any plain texteditor. Removing the highlighted row in Figure 2

would effectively render the app unable to read contacts data

from the Android device, but may render the app unusable due

to instability issues.

Due to this, sourcecode changes must be made in order to

result in a usable app that cannot access contacts data. After

the source code changes are made, the app must be converted

back into smali code in order for the recompilation process to

be successful. The smali/baksmali software package is used

once again to convert the Java code to smali code. APK Multi

Tool is then

used to recompile and sign the repackaged app.

The result should be a working app installation package with

some resource access removed, thus improving user privacy.

V.

CONCLUSION

A detection system combined with PC and cell phone

side is proposed and demonstrated based on the analysis of

Android security mechanisms and the study of the potential

safety problems caused by the inherent defects on the Android

platform, such as the system rough permissions prompt

interface and the uneven ability of publisher of

APP., The

detection system can thoroughly detect permissions

information’s

of the installed APPs and uninstalled APKs in

advance. The monitoring system can not only give

understandable explanation in detail, but also provide users

with the function of screening on APPs with certain sensitive

permission. In addition, the system can also provide users

secondary warning and secondary judgement opportunities,

and help consumers improve their safety consciousness and

protect their privacy from unknown infringement. In the next,

we are going to take the overriding of Kernel of Linux into

consideration to restrain the APPS from applying for more

sensitive permissions, such as preventing certain APPs

connecting to the Internet or sending short messages, so that

we can eradicate the malicious software completely and

guarantee the users’ property and privacy.This leads onto a

further future work or research that could be undertaken where

this automated system would be implemented onto an Android

device. This would result in a self-functioning system that

could enhance the privacy of apps on the device.

REFERENCES

1)

O. Hou, 2012, “A Look at Google Bouncer”,
http://blog.trendmicro.com/trendlabs-security-intelligence/a-look-at-

google-bouncer/, accessed 14 April 2013

2)

Y. Zhou, X. Zhang, X. Jiang & V. Freeh, “Taming information-

stealing smartphone applications (on Android)”, TRUST 2011, pp. 93-

107.

3)

S. Bugiel, S. Heuser & AR. Sadeghi, myTunes: Semantically Linked

and User-Centric Fine-Grained Privacy Control on Android, Technical

Report TUD-CS-2012-0226, Center for Advanced Security Research
Darmstadt, 2012.

4)

A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev&CGlezer,

“GoogleAndroid: A Comprehensive Security Assessment”, IEEE
Security &

Privacy Magazine, vol. 8, no. 2, 2012, pp. 35-44.

5)

http://developer.android.com/reference/android/

Manifest.permission.html, accessed 14 June 2013

6)

http://developer.android.com/guide/topics/manifest /permission-

element.html, accessed 13 June 2013

7)

http://apkmultitool.com/, accessed 11 April 2013

8)

http://code.google.com/p/smali/, accessed 11 April 2013

9)

http://java.decompiler.free.fr/?q=jdgui, accessed 11 April 2013

10)

Android.Developers.http://developer.android.corn/guide/basics/what-is
android.html[EB/OL].March 2011.

11)

Sinascience and technology http://tech.sina.com.cn/it/

2013-05-

10/07478325514.shtml[EB/OL].May 2013.

12)

Google. Android Reference: Security and

Permissions.http://developer.android.com/guide/topics/security/securit

y.

Html [EB/OL].

13)

Minghua Liao, Liming

Zheng.The Security Mechanism Analysis and

Probe into the Solution of Androids[M]. Science Technology and

Engineering Vol.26, September 2011, pp.6350-6355.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

5

