

A Study on Structural Characteristics of Sisal Fibre Reinforced Concrete

Mr. Mithun K¹, R.M. Mahalinge Gowda. ², H.S Suresh Chandra³,

¹ Assistant Professor, Dept of Civil Engineering, KIT, Tiptur

² Professor & Head of the Dept., PESCE, Mandya

³ Principal, MRIT, Mandya

Abstract- Concrete is strong in compression but weak in tension. So we will provide the reinforcement to the concrete. Majorly steel is used as the reinforcement. Many of the researches are in progress to find a substitute to this material. Many investigations proposed artificial fibres. The study focuses on the compressive strength, split tensile strength, performance of the blended concrete containing Na₂CO₃ treated sisal fibre. In this project study of Na₂CO₃ treated sisal fibres for 5 days on the strength parameters normal concrete had been carried out by varying percentages of 0%, 0.5%, 1%, 1.5% and 2% for M30 grade of concrete design by using IS10262-2009. Concrete cubes and cylinder are tested at the age of 7, 14, and 28 days of curing. From the experimental investigations, it has been observed that, the optimum percentage of Na₂CO₃ treated sisal fibre is 1% for M30 grade.

Keywords- Natural fibre reinforced cement (NFRC), Sisal, Manufactured sand, Sodium carbonate (NA₂C0₃)

I. INTRODUCTION

The use of unconventional building materials (green materials) is rapidly increasing for the construction of sustainable buildings. Special attention is given to concrete blocks reinforced by vegetable fibers, which stand out because of their low cost and large availability in many emerging countries. Vegetable fibers enhance the mechanical properties of concrete, control opening and propagation of cracks, usually increase tensile strength, toughness and ductility of the elements in which they are used, allowing relatively large deformations without any loss of integrity.

Many authors investigated how adding vegetable fibers to building materials affects their mechanical properties: exhaustive reviews on this subject have recently been carried out by Pacheco-Torgal and Jalali and by Ardanuy et al. . According to these surveys, cellulosic or vegetable fibers enhance the mechanical, thermal and physical performances of cement-based composites when added to the cementitious matrix, as they increase their flexural strength, toughness and impact resistance, reduce shrinkage on drying and thermal conductivity, and increase sound absorption.

Natural fibres, on the other hand, can improve the sustainability of cement composites by being renewable and are considerably less costly. There has been a growing interest in recent years in utilizing natural fibres in low-cost construction. Natural fibre-reinforced concrete (NFRC)

constitutes a new and distinct group of building materials which exhibit almost the same performance as that of conventional concrete composites reinforced with metallic, organic or synthetic fibres. Due to the high alkalinity of concrete it as always is susceptible to acid attack. Hence in this investigation an attempt was made in order to know the behaviour of standard concrete of M30 grade specimen curing with acid such as Na₂CO₃. The most aggressive chemicals that affect the long term durability of concrete structures are the chlorides and sulphate. This paper presents results of the durability characteristics properties of M30 grade of with and without supplementary cementing materials.

Previous research revealed that sisal fibre reinforced concrete has improved the characteristics of concrete such as strength, durability, and workability. The addition of the fiber in small amounts will increase the tensile strength .addition of fibers not only increases the tensile strength but also increases the bound strength, decreases permeability. Toughness of concrete also increases by the addition of the fiber[1]. The result obtained by Jianqiang wei [2] showed that . Na₂CO₃ surface treatment for seven days were shown to have the potential of improving the durability of sisal fibers with less potential hazards. Fibers were treated with alkali solutions to partially remove the lignin, hemicelluloses and other residues from the fiber surface [3].

Therefore as a research effort on the development of green materials in civil engineering, this paper describes an experimental study of a improve the corrosion resistance of sisal fiber in the alkali environment of concrete and the durability of natural fiber reinforced-concrete in aggressive environment by Na₂CO₃ treated for varies percentage of sisal fiber. Mechanical behavior of the fibers is determined for the Na₂CO₃ treated sisal fiber

II MATERIALS AND PRODUCTION METHOD

A. Materials

1. Cement

Cement is a blend of composites completed by burning limestone & clay composed at very high temperature ranging from 1400 to 1600oc.53 grade Ordinary Portland cement is used as binder, a substance used for construction that sets, hardens and adheres to other materials, binding them together. The different grades of cement is used they are, 33, 43, 53 grade. The cement specific gravity of cement

=3.15 Initial setting time=30minutes.

2. M-Sand

The rock crushed to the required grain size distribution is termed as manufactured sand (M- sand).in order to arrive at the required grain size crushed in a special rock crusher and some of the crushed materials is washed to remove fines. The M-sand used as a fine aggregate. Thus, increased quality and durability of concrete. M-Sand is cubical in shape and is manufactured using technology like High Carbon steel hit rock.

3. Fine aggregate

Manufactured sand is also called as mechanical sand. It possesses similar properties as similar grading as per the river sand. Due to this reason, manufactured sand normal sand. Mechanical sand contains can be used in the region where normal sand limited in availability.

4. Sodium carbonate solution

Utilizing the water absorption of sisal fibre, Na_2Co_3 solution was introduced to soak the dry fibre. After treatment in sodium carbonate saturated solution for seven days, there will be a large number of Na^+ and Co^{32-} ions deposited on the fibre surface. When fibres are added to fresh concrete, there will be a chemical reaction on the fibre surface, due to the Ca^{2+} in the cement.

5. Sisal fiber

Sisal fibre is species of Agava sisilana. The material is mainly used for applications like rope manufacture in marine and construction industry. As it possesses high strength compared to other fibre materials, this fibre is selected for the present research work. Concrete paste is done with the help of cement, filler materials, aggregates is prepared. Here, Sisal Fibres are used as reinforcing agent for cement.

B. Production of specimens

Basic material tests were conducted the materials such as cement, fine aggregates, coarse aggregates and fibers. Based on the materials test values cement, fine aggregate, coarse aggregate and sisal fiber using IS10262-2009 we design for M30 grade concrete. In order to improving the degradation resistance of sisal fibers are immersed in Na_2Co_3 solution for 5 days. With varying percentage of Na_2Co_3 treated sisal fibers such as 0%,0.5%,1.0%,1.5%&2.0%.cubes and cylinders are casted for 7 days,14 days and 28 days. Compressive strength and tensile strength are determined for the above casted cubes &cylinders

Based on the compressive and tensile strength, we will find out the optimum dosage of Na_2Co_3 treated sisal fibers. Durability tests are conducted for the Na_2Co_3 treated sisal fibers cubes and cylinders. The durability tests are acid test, sulphate attack test and chloride test.

C. Result And Discussion

Preliminary test results are given below Table 1. Physical Properties of cement

Sl.No	Test Conducted	Result
1	Fineness	1.587%
2	Normal consistency of cement	35%
3	Initial setting time of cement	55min
4	Final setting time of cement	600min
5	Specific Gravity	2.9

Table 2. Physical properties of Fine Aggregate

Sl.No	Test conducted	Result
1	Specific Gravity	2.7
2	Water Absorption	4.8%

Table 3. Physical properties of Coarse Aggregate

Sl.No	Test conducted	Result
1	Specific Gravity	2.65
2	Water Absorption	1%

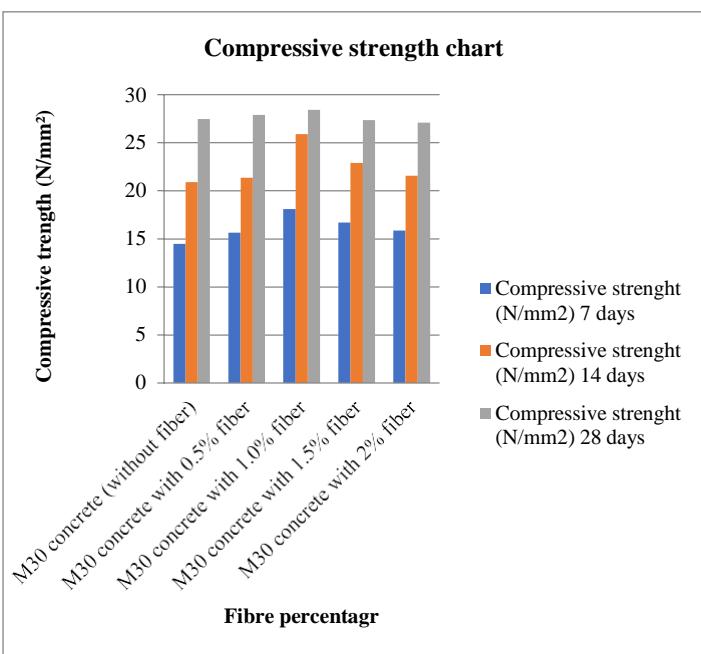
Table 3. Sieve analysis of Fine Aggregates

IS sieves	Weight retained	Cum. weight retained	% retained	%passing
10	0	0	0	100
4.75	0	0	0	100
2.36	8	8	0.4	99.6
1.18	448	456	22.8	77.8
0.60	540	996	49.8	50.2
0.30	704	1700	85	15
0.15	236	1936	96.8	3.2
pan	64	2000	100	0

Table 4. Sieve analysis of coarse Aggregates

IS sieve s	Weight retained	Cumulae percentae retained	Percent age finer	Cumulati ve finer
26.5				
20	352	17.6	82.4	82.4
16	1118	73.5	26.5	108.9
12.5	385	92.7	7.3	116.2
10	106	98	2	118.2
6.3	34	99.7	0.3	118.5
4.75	2.385	99.819	0.181	118.681
Pan	3.615	100	0	118.681

Table 5. Mix Proportions

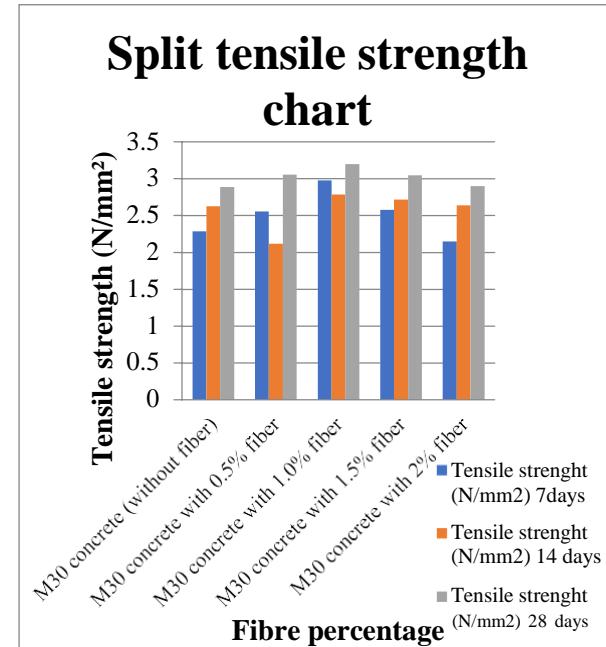

Materials	Quantity (kg/m ³)
Fine Aggregate	653.5
Coarse Aggregate	1043.46
Cement	438
water	240.5 lit

Mix proportion ratio

W/C ratio	Cement	Fine aggregate	Coarse aggregate
0.54	1.0	1.49	2.38

Table 6. overall results of compressive strength values

Mix designation M30	Compressive strength (N/mm ²)		
	7 days	14 days	28 days
	days	days	days
0% fibre	14.49	20.91	27.46
0.5% fibre	15.66	21.37	27.89
1.0% fibre	18.11	25.89	28.44
.5% fibre	16.70	22.89	27.37
2% fibre	15.89	21.56	27.11



From the above bar chart it was observed that, the compressive strength test results of sisal fibre reinforced concrete, the sisal fibres are added to the concrete in varying percentage of 0%, 0.5%, 1%,

1.5% and 2% of Na₂co₃ treated sisal fibres for 7, 14 and 28 days are represented in table and its graphical representation as shown in figure. Result shows that with added 0.5% sisal fibre to the concrete compressive strength is 27.89N/mm² at the age f 28 days, 1% of sisal fibre added the compressive strength is 28.44N/mm², 1.5% of sisal fibre added the compressive strength is 28.78N/mm² and 2% of sisal fibre added the compressive strength is 27.11N/mm². From the above test results it has been observed the compressive strength of concrete goes on increases up to 1% and then further increasing the percentage of fibre decreases the compressive strength of concrete

.Table 7. Overall results of Tensile strength values

Mix designation M30	Tensile strength (N/mm ²)		
	7 days	14 days	28 days
0% fibre	2.29	2.63	2.89
0.5% fibre	2.56	2.12	3.06
1.0% fibre	2.98	2.79	3.20
1.5% fibre	2.58	2.72	3.05
2% fibre	2.15	2.64	2.90

From the above bar chart it was observed that, the From the test results it has been observed that for M30 grade concrete the split tensile strength at the age of 7, 14 and 28 days are represented

in table and its graphical representation as shown in figure. Result shows that with added 0.5% sisal fibre to the concrete tensile strength is 3.06N/mm² at the age of 28 days, 1% of sisal fibre added the tensile strength is 3.20N/mm², 1.5% of sisal fibre added the tensile strength is 3.05N/mm² and 2% of sisal fibre added the tensile strength is 2.90N/mm². From the above test results it has been

observed the tensile strength of concrete goes on increases up to 1% and then further increasing the percentage of fibre decreases the tensile strength of concrete.

III. CONCLUSION

- Natural fibers are considered as possible replacement for synthetic fiber in fiber/polymer composite. Natural fibers have significant advantages over synthetic fibers, in terms of the positive environmental impact, low cost, low density and their biodegradability.
- In this Paper Na₂CO₃ treated sisal fibres on the strength parameters normal concrete had been carried out by varying percentages of 0%, 0.5%, 1%, 1.5%and 2% for M30 grade of concrete design by using IS10262-2009.
- From the experimental investigation 1% of Na₂CO₃ treated sisal fibre is added to concrete. The compression strength is increased up to 3.5% than the conventional concrete.
- From this experimental investigation 1% of Na₂CO₃ treated sisal fibre is added to concrete. The split tensile strength is increased up to 11% than the conventional concrete.
- When adding 0.5% and 1% of fibre content, compressive strength and tensile strength of sisal fibre reinforced concrete will increase. When 1.5% and 2% of sisal fibre was added strength will decrease.
- A layer consisting of calcium carbonate sediments, which protects the internals of a fibre from the strong alkali solution formed in the cement hydration process and also improve their corrosion resistance and durability and hence reduces the detrimental effects of Na⁺ ions on concrete.
- From the test results, 1% concentration of sisal fibre is found to be the optimum dosage for this experimental investigation.

ACKNOWLEDGEMENT

I thank my institution PESCE, Mandya for giving me an opportunity for experiencing research procedures. This would be helpful for publishing paper in future. I thank our principal Dr. H. V. Ravindra and Head of the Civil Engineering Department Dr. R.M. Mahalinge Gowda. for giving laboratory facilities to conduct experiments. I am grateful to my research guide Dr. R.M. Mahalinge Gowda and co-guide Dr. H.S Suresh Chandra. For their immense support and encouragement throughout the research procedures. Finally, I would like to thank my friends and staffs of civil engineering department for help and support.

REFERENCE

- [1] K. V. Sabarish, K. Dhanasekar, R. Manikandan, R. Ancil, R. Venkat raman and P. Selva surender, A "Strength And Durability Evaluation Of Sisal Fibre Reinforced Concrete", International journals of civil engineering Volume 8, Issue 9, September 2017 ISSN : 2348-8352.
- [2] Wei J, Meyer C. Improving degradation resistance of sisal fiber in concrete through fiber surface treatment. Applied Surface Science. 2014 Jan 15;289:511-23.
- [3] B.A.C.H. Esmeraldo Milena, A. José, E.B. Freitas, et al., Dwarf-green coconutfibers: a versatile natural renewable raw bioresource, BioResources 4 (2010)2478–2501.
- [4] Z.H.G.C. Yang, J.J. Li, et al., Relation of modification and tensile properties of sisal fiber, Acta Sci. Nat. Univ. Sunyatseki 35 (1996) 53–57.
- [5] Izquierdo IS, Izquierdo OS, Ramalho MA, Taliercio A. "Sisal fiber reinforced hollow concrete blocks for structural applications: Testing and modeling". Construction and Building Materials. 2017 Oct 1; 151:98-112.
- [6] Mr.R.Pradeep, Ms.G.Janaranjani, Mr.S.Arjun, Mr.M.Balakumar, Mr.S.Sabarirathan, A "Study on Mechanical Properties of Sisal Fiber Reinforced Concrete", International journals of civil engineering 2017 March ISSN : 2348- 8352.
- [7] Kornienko K, Frączek E, Pytlak E, Adamski M. "Mechanical properties of geopolymer composites reinforced with natural fibers". Procedia Engineering. 2016 Dec 31; 151:388- 93.
- [8] Sen T, Paul A. "Confining concrete with sisal and jute FRP as alternatives for CFRP and GFRP". International Journal of Sustainable Built Environment. 2015 Dec 31;4(2):248-64.
- [9] Torgal FP, Jalali S. "Natural fiber reinforced concrete". Fibrous and composite materials for civil engineering applications. 2011 Feb 3:154-67.
- [10] Natali A, Manzi S, Bignozzi MC. "Novel fiber-reinforced composite materials based on sustainable geopolymer matrix". Procedia engineering. 2011 Jan 1; 21:1124-31.
- [11] de Andrade Silva F, Chawla N, de Toledo Filho RD. "Tensile behavior of high performance natural (sisal) fibers". Composites Science and Technology. 2008 Dec 31;68(15):3438-43.
- [12] Izquierdo IS, Izquierdo OS, Ramalho MA, Taliercio A. "Sisal fiber reinforced hollow concrete blocks for structural applications: Testing and modeling". Construction and Building Materials. 2017 Oct 1; 151:98-112.