Special Issue- 2016

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCRIT - 2016 Conference Proceedings

A Study on Risk Assesment in Software Design
Reusability

Chethana. S
Computer Science Department
Nmkrv Pu College For Women

Jayanagar 3" Block
Bangalore-560011

Abstract : Software reusability is commonly explained in
the software development disaster. When we try to apply the
solution to solve a problem, it becomes necessary to make the
work easy and simple. Software reuse has become important
in case of software design due to its possible benefit which
includes increased product quality and decrease product cost
and schedule. Software reuse is none other than the active
software or software components to construct a new software.
The idea of reuse is nothing but the skill to merge the software
concepts to form a larger unit of software. It improves the
quality and productivity of software production process. This
paper in brief gives the review of the current research status
in the field of software reuse and the research contributions.
Here several upcoming trends for research in software reuse
are examined[1].

INTRODUCTION :

Software reuse is a basic aspect of high quality
software. Efficient reuses of software products increases
the productivity by saving time and reduce the cost of
software development. The concept of reusing software
components is clear at the code level. The same concept is
difficult to analyze in the context of reusing designs.
Basically science and technology demands for a high
quality software for further enhancement.

TYPES OF REUSE:
a. Opportunistic reuse: Despite the fact that realizing
to begin a project, it is necessary to understand the different
existing components that can be reused.
b. Planned reuse: Here it is needed to design the
components so that they can be made reusable in future
development.

Opportunistic reuse can be classified as :

a. Internal reuse: It reuses its own components. This
might be a business decision. In this case the team takes
initiative to have a control over the component and
becomes critical to the project[2].

b. External reuse: A third party component which
choose a license. A third party licensing costs 1 to 20% of
what it would cost to develop internally. It is necessary to
consider the time to analyse and combine the
component.

Dr. G. N. Srinivasan
Professor3
Dept.Of Information Science
And Engineering R.V.Vidyaneketan
Post,Mysore Road
Bangalore-560059

Category of reuse in software engineering.

Application system reuse : the entire application system
can be reused. This can be done by interpreting it without
change into other system[3] (cots reuse) or by expanding
the application families.

Component reuse : components from sub systems to single
objects may be reused.

Object and functional reuse : software modules which
executes a well defined object or function can be reused.

SOFTWARE REUSE ADVANTAGES.

Increased dependability : Reuse software which has
been used and tested with in the systems working are more
dependable than the new software. The basic use of the
software leads to any design and allow implementation
faults. They are fixed, by further reducing the number of
failures when the software is reused.

Reduces process risk :In case if software is present, there
would be a dinama in the costs of reusing the software
rather than in the cost of development. This is a major
factor in case of project management where it reduces the
error in project cost estimation. This is true only when a
large software components such as subsystems are
reused[4].

Effective use of specialists: As a substitute of an
application specialists have done the same work on
different projects (3,4). These specialists can extend the
reusable software which summarizes their knowledge[5].

Standards compliance: Some models, such as interface
models, can be applied as a set of standard reusable
components. For example- if menus in a user interface are
employed by reusable components, hence all application
present the same menu formats to the users. It improves
dependability because users less likely make mistakes
when presented with a known interface.

Accelerated development: Fetching a system to market as
fast as possible is often more important than the over all
development cost. Reusing software can speed up the

Volume4, | ssue 27

Published by, www.ijert.org 1



Special Issue- 2016

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
NCRIT - 2016 Conference Proceedings

system production as both development and validation time
should be decreased.

Reuse challenges: In case the source code of a reused
software system or component is not present then
upholding cost may be increased as the reused elements of
the system may become increasingly incompatible with
system changes.

Lack of tool support: The cast tools sets may not sustain
with reuse. It may be complicated to integrate these tools
with a component library system. The software process
may be believed by these tools which may not take reuse
into account.

Not invented here -syndrome: some software engineers
occasionally choose to re write components as they
consider that they can improve on the reusable components.
Here writing the original software is more likely tested that
reusing other people’s software.

Creating and maintaining a component library: sustaining a
reusable component library and make sure that the software
developers can use this library may be expensive. Our
present methods for classifying, cataloguing and retrieving
the software components are undeveloped.

Finding, understanding and adapting reusable components:
A Software component has to be realized in a new
background. Engineers must be sure of finding a
component in the library and make use of a component
normally as a part of their development process.

The reuse landscape: Though reuse is considered as the
reuse of system components, there are dissimilar types of
reuse that may be used. Reuse is feasible at variety of
levels from simple functions to complete application
systems. It covers the range of portable reuse
techniques[6].

Reuse approaches: The specific ideas which arise across
applications are signified as design patterns which show
conceptual and existing objects and interactions.

Component based development: The systems are expanded
by combing the components. Which match to form a
component model standard.

Application framework: A group of conceptual and
existing classes are developed to create application
systems.

Legacy system wrapping: Legacy systems are covered by
defining an interface and by providing access to these
legacy systems through the interfaces[7].

Service —oriented systems: Systems are built up connecting
shared services that may be externally provided.

Application product line: An application type is a wide
spread common architecture which may be adapted in
different ways for different customers[8].

COTS integration: Systems are extended by combining the
existing application systems.

Configurable vertical applications: A basic system is
proposed to configure the needs of specific system
customers.

Program libraries: Class and function libraries apply
familiarly used abstractions which are available for reuse.

Program generators: A system generator creates awareness
of a scrupulous type of application which can generate
systems or system fragments in that domain[8].

Aspect-oriented software development: Shared components
are used in to an application at different places when the
program is complied[9,10].

CONCLUSION:

Software reuse is considered as a key to progress the
software development productivity and quality. There is lot
of research going on in case of software reuse as a part of
software development life cycle. This paper brings out the
important aspects of software reuse research. In this paper
it has been brought out the different types of reuse
approaches and challenges. Further research on software
reuse has to be addressed. Where it meets the needs of
industry and also the customers’ needs.

ACKNOWLEDGEMENTS:

I am grateful to my guide Dr. Srinivasan ,Sri Rashmi
for their support in bringing out this paper successfully. |
would especially thank Dr. Suchithra madam also for
giving her time and input.

REFERENCES:

[1] Tawfig.M.Abdelaz.Z, Yasmeen.N.Zada and Mohamed.A.Hagal
(2014) A structural approach to improve software design
reusability.

[2] Software engineering, VOL SE-12 ,no. 1 1994. Gert B (1988)
Morality, Oxford University press.

[3] Green R.M (1994) The Ethical Manager, Macmillia publishing.

[4] Gotterbam and Rogerson 1998, “The Ethics of Software Project
Management” in Ethics and Information Technology “.ed Gsan
Collste, New academic publisher,1998.

[5] Humphrey,W.A. Discipline of Software Engineering Addison
Wesely Longman, Reading Mass,1995.

[6] Linger R.A Clean room process Model @IEEE Software March
1994.PP 50-58.

[7] Smith 199 Co.U.Smith performance Engineering of Software
Systems, Reading ,M.A.Addison —Wesley 1990.

[8] Smith and Williams 2002 C.U.Smith, performance solutions : A
practical guide to creating responsive , scalable software , Boston
M.A, Addison Wesley 2002.

[9] Williams and Smith 2002 a.L.G.Williams and C.U.Smith
,’PASASM” A method for the performance Assessment of
Software Architectures” 2002.

[10] Sarbjeet Singh, Sukhvinder Singh,Gurpreet Singh.”Reusability of
the Software” vol 7-no, 14 2010.

Volume4, | ssue 27

Published by, www.ijert.org 2



