

A Study on Risk Assesment in Software Design

Reusability

Chethana. S
Computer Science Department

Nmkrv Pu College For Women

Jayanagar 3rd Block

Bangalore-560011

Dr. G. N. Srinivasan
Professor3

Dept.Of Information Science

And Engineering R.V.Vidyaneketan

Post,Mysore Road

Bangalore-560059

Abstract : Software reusability is commonly explained in

the software development disaster. When we try to apply the

solution to solve a problem, it becomes necessary to make the

work easy and simple. Software reuse has become important

in case of software design due to its possible benefit which

includes increased product quality and decrease product cost

and schedule. Software reuse is none other than the active

software or software components to construct a new software.

The idea of reuse is nothing but the skill to merge the software

concepts to form a larger unit of software. It improves the

quality and productivity of software production process. This

paper in brief gives the review of the current research status

in the field of software reuse and the research contributions.

Here several upcoming trends for research in software reuse

are examined[1].

INTRODUCTION :

Software reuse is a basic aspect of high quality

software. Efficient reuses of software products increases

the productivity by saving time and reduce the cost of

software development. The concept of reusing software

components is clear at the code level. The same concept is

difficult to analyze in the context of reusing designs.

Basically science and technology demands for a high

quality software for further enhancement.

TYPES OF REUSE:

a. Opportunistic reuse: Despite the fact that realizing

to begin a project, it is necessary to understand the different

existing components that can be reused.

b. Planned reuse: Here it is needed to design the

components so that they can be made reusable in future

development.

Opportunistic reuse can be classified as :

a. Internal reuse: It reuses its own components. This

might be a business decision. In this case the team takes

initiative to have a control over the component and

becomes critical to the project[2].

b. External reuse: A third party component which

choose a license. A third party licensing costs 1 to 20% of

what it would cost to develop internally. It is necessary to

consider the time to analyse and combine the

component.

Category of reuse in software engineering.

Application system reuse : the entire application system

can be reused. This can be done by interpreting it without

change into other system[3] (cots reuse) or by expanding

the application families.

Component reuse : components from sub systems to single

objects may be reused.

Object and functional reuse : software modules which

executes a well defined object or function can be reused.

SOFTWARE REUSE ADVANTAGES.

Increased dependability : Reuse software which has

been used and tested with in the systems working are more

dependable than the new software. The basic use of the

software leads to any design and allow implementation

faults. They are fixed, by further reducing the number of

failures when the software is reused.

Reduces process risk :In case if software is present, there

would be a dinama in the costs of reusing the software

rather than in the cost of development. This is a major

factor in case of project management where it reduces the

error in project cost estimation. This is true only when a

large software components such as subsystems are

reused[4].

Effective use of specialists: As a substitute of an

application specialists have done the same work on

different projects (3,4). These specialists can extend the

reusable software which summarizes their knowledge[5].

Standards compliance: Some models, such as interface

models, can be applied as a set of standard reusable

components. For example- if menus in a user interface are

employed by reusable components, hence all application

present the same menu formats to the users. It improves

dependability because users less likely make mistakes

when presented with a known interface.

Accelerated development: Fetching a system to market as

fast as possible is often more important than the over all

development cost. Reusing software can speed up the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRIT - 2016 Conference Proceedings

Volume 4, Issue 27

Special Issue - 2016

1

system production as both development and validation time

should be decreased.

Reuse challenges: In case the source code of a reused

software system or component is not present then

upholding cost may be increased as the reused elements of

the system may become increasingly incompatible with

system changes.

Lack of tool support: The cast tools sets may not sustain

with reuse. It may be complicated to integrate these tools

with a component library system. The software process

may be believed by these tools which may not take reuse

into account.

Not invented here -syndrome: some software engineers

occasionally choose to re write components as they

consider that they can improve on the reusable components.

Here writing the original software is more likely tested that

reusing other people’s software.

Creating and maintaining a component library: sustaining a

reusable component library and make sure that the software

developers can use this library may be expensive. Our

present methods for classifying, cataloguing and retrieving

the software components are undeveloped.

Finding, understanding and adapting reusable components:

A Software component has to be realized in a new

background. Engineers must be sure of finding a

component in the library and make use of a component

normally as a part of their development process.

The reuse landscape: Though reuse is considered as the

reuse of system components, there are dissimilar types of

reuse that may be used. Reuse is feasible at variety of

levels from simple functions to complete application

systems. It covers the range of portable reuse

techniques[6].

Reuse approaches: The specific ideas which arise across

applications are signified as design patterns which show

conceptual and existing objects and interactions.

Component based development: The systems are expanded

by combing the components. Which match to form a

component model standard.

Application framework: A group of conceptual and

existing classes are developed to create application

systems.

Legacy system wrapping: Legacy systems are covered by

defining an interface and by providing access to these

legacy systems through the interfaces[7].

Service –oriented systems: Systems are built up connecting

shared services that may be externally provided.

Application product line: An application type is a wide

spread common architecture which may be adapted in

different ways for different customers[8].

COTS integration: Systems are extended by combining the

existing application systems.

Configurable vertical applications: A basic system is

proposed to configure the needs of specific system

customers.

Program libraries: Class and function libraries apply

familiarly used abstractions which are available for reuse.

Program generators: A system generator creates awareness

of a scrupulous type of application which can generate

systems or system fragments in that domain[8].

Aspect-oriented software development: Shared components

are used in to an application at different places when the

program is complied[9,10].

CONCLUSION:

Software reuse is considered as a key to progress the

software development productivity and quality. There is lot

of research going on in case of software reuse as a part of

software development life cycle. This paper brings out the

important aspects of software reuse research. In this paper

it has been brought out the different types of reuse

approaches and challenges. Further research on software

reuse has to be addressed. Where it meets the needs of

industry and also the customers’ needs.

ACKNOWLEDGEMENTS:

I am grateful to my guide Dr. Srinivasan ,Sri Rashmi

for their support in bringing out this paper successfully. I

would especially thank Dr. Suchithra madam also for

giving her time and input.

REFERENCES:

[1] Tawfig.M.Abdelaz.Z, Yasmeen.N.Zada and Mohamed.A.Hagal

(2014) A structural approach to improve software design

reusability.
[2] Software engineering, VOL SE-12 ,no. 1 1994. Gert B (1988)

Morality, Oxford University press.

[3] Green R.M (1994) The Ethical Manager, Macmillia publishing.
[4] Gotterbam and Rogerson 1998, “The Ethics of Software Project

Management” in Ethics and Information Technology “.ed Gsan

Collste, New academic publisher,1998.
[5] Humphrey,W.A. Discipline of Software Engineering Addison

Wesely Longman, Reading Mass,1995.

[6] Linger R.A Clean room process Model @IEEE Software March
1994.PP 50-58.

[7] Smith 199 Co.U.Smith performance Engineering of Software

Systems, Reading ,M.A.Addison –Wesley 1990.
[8] Smith and Williams 2002 C.U.Smith, performance solutions : A

practical guide to creating responsive , scalable software , Boston

M.A, Addison Wesley 2002.

[9] Williams and Smith 2002 a.L.G.Williams and C.U.Smith

,”PASASM” A method for the performance Assessment of
Software Architectures” 2002.

[10] Sarbjeet Singh, Sukhvinder Singh,Gurpreet Singh.”Reusability of

the Software” vol 7-no, 14 2010.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRIT - 2016 Conference Proceedings

Volume 4, Issue 27

Special Issue - 2016

2

