Vol. 7 Issue 05, May-2018

A Study on Performance of Locally Available Marine Clay as Landfill Liner

Abishek Kumar A.A **Assistant Professor** Civil Engineering Department Adi Shankara Institute of engineering & Technology Kalady, Ernakulam, Kerala, India

Megha Mohanan B.Tech Student. Civil Engineering Department Adi Shankara Institute of engineering & Technology Kalady, Ernakulam, Kerala, India

Haritha R Nair B.Tech Student, Civil Engineering Department Adi Shankara Institute of engineering & Technology Kalady, Ernakulam, Kerala, India

Revathy Daskuttan B.Tech Student, Civil Engineering Department Adi Shankara Institute of engineering & Technology Kalady, Ernakulam, Kerala, India

Rosmin K Jose B.Tech Student, Civil Engineering Department Adi Shankara Institute of engineering & Technology Kalady, Ernakulam, Kerala, India

Abstract— A large amount of Municipal Solid Waste is produced due to rapid urbanization and industrialisation. There for there is an urgent necessity of improve planning and implementation of comprehensive MSW management. Landfilling is the efficient and economical method of solid waste management. The main components of engineered landfills are Liner system at the base and sides of the landfill. Which prevent migration of leachate or gas to the surrounding soil. Usually the liner system is made of locally available clayey soil. Natural clay is often fractured and cracked. Hence it is necessary to improve it's properties. Thus we conduct study to analyse the performance of marine clay treated with fly ash and GGBS. The infuence of fly ash and GGBS on the permeability, strength and dispersion characterstics were analysed and a best proportion for fly ash and GGBS is selected.

Keywords—Municipal solid waste; Leachate; Permeability.

I. INTRODUCTION

One of the major problems facing urban communities is the efficient and long term disposal of Municipal Solid Waste (MSW). Consequences of interaction of waste with the ecosystem include health hazards such as viral, bacterial, and protozoan infections, infectious diarrhea, salmonellosis and shigellosis. Fat and oil components of waste may produce polycyclic aromatic hydrocarbons these may be washed into the soil by rain thereby contaminating the surface and groundwater source. The interactions of humic acids with soils may weaken their strength and suitability as engineering construction materials. Waste management methods such as burning, recycling, reuse, reduction, incineration, composting etc. have been practiced to generation. menace of waste advancements in these modern technologies to increase employment of energy and materials recovery, effective

method for the safe disposal of municipal solid waste is an environmental challenge.

Landfills the more attractive method of disposal of MSW due to it's less investment, if a suitable disposal area can be found. The basic philosophy of this method is that the waste which will not become stable with time will be treated as "Stored" and not "Disposed". Waste containment can be effected through engineered design in which a basal lining system and a cover system isolate the waste dump from the hydrological cycle. Leachate collection system and gas collection system collects the products of reactions inside a waste dump. A waste containment facility so designed and constructed is termed as an "Engineered Landfill". At high temperatures complex biochemical reactions takes place with waste decomposition that may lead to increased pH releasing products of decomposition in both liquid and gaseous form. Landfill gas consists of Methane, Carbon Dioxide with presence of Hydrogen. It's travelling through the ground should be control within a landfill site using interceptor and collector drains. The leachate needs to be contained and collected to prevent pollution of the ground and groundwater. To avoid this suitable liner system has to be provided so that these liners can prevent the percolation of the leachate to the surrounding soil.

A landfill liner is a low permeable barrier, which is laid down under engineered landfill sites. Until it deteriorates, the liner retards migration of leachate, and its toxic constituents, into underlying aquifers or nearby rivers, causing spoliation of the local water. Generally the linear consists of a layer of compacted clay with a minimum required thickness and a maximum allowable hydraulic conductivity, overlaid by a high density polythelene geomembrane. Geotextile, Geosynthetic clay linear and Geonet are also in use.

In this study, soil from Vyttilla is used. Here the study deals with the potential use of Marine clay as landfill liner. The marine clay is mixed with Fly ash and GGBSto improve its geotechnical characteristics and that character of the mix is checked to use as a landfill liner. Also the feasibility of the liner soil against the leachate water is checked and the effect of leachate on soil properties is studied. Also the dispersion characteristics of the liner soil are checked. The infuence of flyash and ggbs on the permeability, strength and dispersion characteristics were analysed and a best proportion for fly ash and GGBS is selected.

II. MATERIALS AND PROPERTIES

A. Marine Clay

Clay samples are collected from a construction site at Vyttilla, from a depth of 0.5m to 2m. Soil in this region is black coloured highly compressible soil with high organic content. The soil was dried and sieved. Marine soil found to be greenish or bluish in colour with fine stripes of organic matter.

TABLE I. PROPERTIES OF MARINE CLAY

TABLE I. PROPERTIES	
Properties	Values
Specific gravity	2.19
Liquid lmit (%)	43
Maximum dry density	1.467 g/cc
Optimum moisture content	24%
Permeability (m/sec)	2.414 X 10 ⁻⁶
Unconfined Compressive Strength (kN/m2)	38.753
Uniformity Co-efficient	7.38
Co-efficient of Curvature	0.54
Free Swell Index	20%
Degree of Expensiveness	Low

B. Fly Ash (FA)

Fly ash used was collected from a Ready Mix Plant, Edayar. Fly ash is a waste produced from coal-fired power generating stations and is readily available inexpensive, compared with cement and lime and need to be safely disposed. In this study class F Fly ash is used.

TABLE 2. PROPERTIES OF FLYASH

Properties	Values
Specific gravity	2.26
Liquid limit (%)	26.5
Uniformity coefficient	2.78
Co-efficient of curvature	0.93

C. GGBS

Ground Granulated Blast Furnace Slag was collected from a Ready Mix Plant, Edayar. Blast furnace slag is produced as a by-product during the manufacture of iron in a blast furnace. Blast furnace slag has a glassy, disordered, crystalline structure, which is responsible for producing a cementing effect.

TABLE 3. PROPERTIES OF GGBS

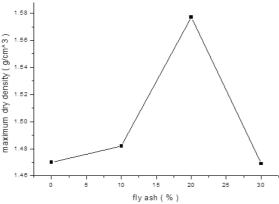
Properties	Values
Specific gravity	2.88
Liquid limit (%)	49
Uniformity coefficient	1.45
Co-efficient of curvature	0.766

III. EXPERIMENTAL PROGRAM

A. Preparation of Samples

Samples are prepared by mixing Marine clay with fly ash and GGBS .Firstly Marine clay is mixed with the fly ash, where the fly ash content is 0%, 10%, 20%, &30% by the weight of the soil. Then Optimum fly ash content is fixed based on strength and permeability test results. After selecting Optimum fly ash content, 0-12.5% GGBS is added to the above Optimum fly ash mix and optimum GGBS percentage is found out using strength and permeability test values. Dispersion characterstics for the selected soil- FA – GGBS mix are tested. Tests are conducted for normal and synthetic leachate water prepared.

The sample preparations and conducting experiments are done according to ASTM and IS specifications


- Standard Proctor Tests
- Unconfined Compression Test
- Hydraulic conductivity Test
- Crumb Test
- Double Hydrometer Test RESULTS AND DISCUSSIONS

A. Effect of Fly ash

a) Effect of Fly ash In Compaction Characteristics of Marine clay

TABLE 4. EFFECT OF FLY ASH IN COMPACTION CHARACTERISTICS OF MARINE

Flyash Content	OMC (%)	MDD (g/cc)
0	24	1.467
10	21	1.47
20	18	1.482
30	20	1 469

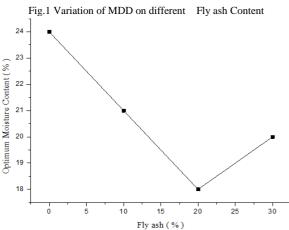


Fig.2 Variation of OMC on different Fly ash Content

Maximum Dry Density increases with increase in flyash content and Optimum Moisture Content reduces on addition of fly ash upto 20% FA content .

b) Effect of Flyash on the unconfined compressive strength of Marine Soil

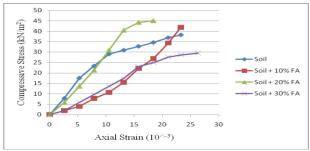


Fig.3 Stress Strain Curve for soil with different Fly ash Content

TABLE 5. VARIATION OF UCC ON DIFFERENT FLYASH CONTENT

Flyash Content (%)	UCC (kn/m²)
0	38.153
10	41.88
20	45.087
30	29.508

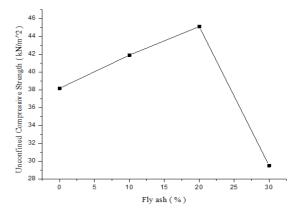


Fig.4 Variation Of UCC On Different Fly Ash Content

The unconfined compressive strength of marine soil increases with increase in flyash content up to 20% FA content and then decreases.

c) Effect of flyash on the hydraulic conductivity of marine soil

TABLE 6. EFFECT OF FLYASH ON THE HYDRAULIC CONDUCTIVITY OF COCHIN MARINE SOIL

Flyash content	K value (m/sec)
0	2.414*10^-6
10	1.057*10^-7
20	5.141*10^-8
30	4.925*10^-7

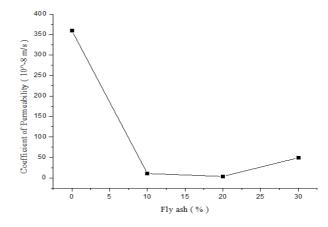


Fig.5 Effect of flyash on the hydraulic conductivity of marine clay

on the optimum moisture content. Inclusion of GGBS in the clay reduce the maximum dry density and increase

Fly ash content of 20 % is able to reduce K value to $5.141*10^-8$ m/sec, whereas for plain soil it is $2.414*10^-6$ m/sec.

B. Effect of GGBS

Optimum value of fly ash was found to be 20%. So samples of soil + 20% flyash is taken and different percentage of ggbs was added and samples are prepared. Then strength and permeability test was conducted and optimum percentage of GGBS is found out.

a) Effect of GGBS in Compaction Characteristics of marine soil + 20% FA mix

TABLE 7. VARIATION OF OMC AND MDD ON DIFFERENT GGBS CONTENT

GGBS CONTENT (%)	OMC (%)	MDD (g/cc)
0	18	1.577
2.5	21	1.575
5	23	1.551
7.5	27	1.508
10	29	1.502
12.5	24	1.504

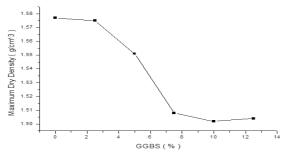


Fig.6 Variation of MDD on different GGBS Content

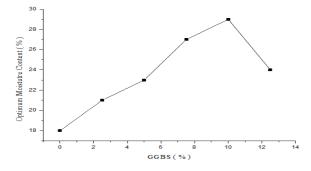


Fig.7 Variation of OMD on different GGBS Content

Soil amendment with GGBS also resulted in changes in both the optimum water content and the maximum dry density. It is marginal quite evident from inclusion of GGBS in the soil does not have any significant effect on the maximum dry density as well as

b) Effect of GGBS on the unconfined compressive strength of marine soil

optimum moisture content.

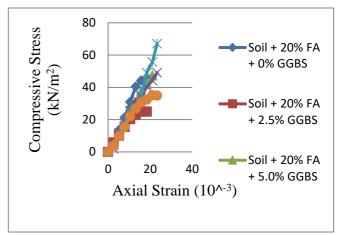


Fig.8 Stress Strain Curve for soil +20% FA with different GGBS Content

TABLE 8. VARIATION OF UCC ON DIFFERENT GGBS CONTENT

GGBS CONTENT (%)	UCC (kN/m²)
0	45.087
2.5	55.068
5	25.901
7.5	49.094
10	67.044
12.5	34.911

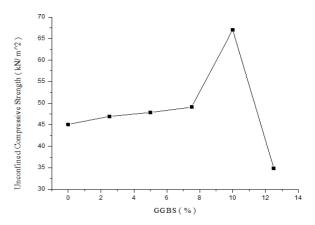


Fig.9Variation of UCS on different GGBS Content

GGBS content of 10% is able to give a strength of 67.044 kN/m2. From the figures, it can be observed that the unconfined compressive strength of Marine clay increases with increase in GGBS content. After reaching the peak stress, marine soil amended with 20% flyash and GGBSshows a sudden and drastic reduction in strength.

Effect of GGBS inclusion on the conductivity of marine soil + 20% Flyash

TABLE 9VARIATION OF K VALUE ON DIFFERENT GGBS CONTENT

GGBS CONTENT (%)	k VALUE (m/sec)
0	5.141*10^-8
2.5	3.967*10^-7
5	2.616*10^-7
7.5	7.642*10^-8
10	4.451*10^-8
12.5	9.651*10^-8

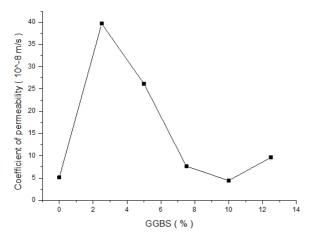


Fig.10 Variation of k value on different GGBS Content

K value of marine soil amended with 20% FA decreases with increase in GGBS content up to 10% and then increases.GGBS content of 10% is able to reduce the K value to 4.451*10^-8 m/sec.

C. Effects of Leachate Water on Properties of Liner

The landfill leachate is one kind of wastewater with high concentration of organic compounds, inorganic compounds and sometimes non-trivial level of toxic contaminants such as arsenic and chlorinated organic compounds.composition of the leachate generated depends on many factors namely type of waste, precipitation rates, temperature, food habits of general population etc.A synthetic Leachate with chemical composition as in table 10 is prepared and used.

TABLE 10: CHEMICAL COMPOUNDS USED IN SYNTHETIC LEACHATE

Unit	Quantity Used
mg/l	231
mg/l	66864
mg/l	2100
Ml	49
mg/l	20174
mg/l	1092
mg/l	10080
	mg/l mg/l mg/l Ml mg/l mg/l

Effect of Leachate Water on the Unconfined Compressive Strength of Soil.

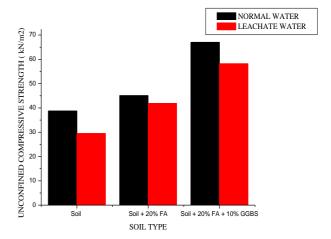


Fig..11 Effect of Leachate Water on the Unconfined Compressive Strength of Soil

Effect of Leachate Waterthehydraulic onconductivity of Soil

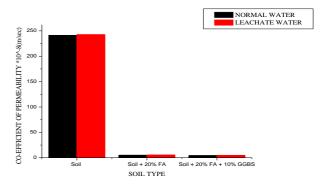


Fig..12 Effect of Leachate Water on the hydraulic conductivity of Soil

- D. Dispersion Test
- Dispersion Characteristics Based On Double Hydrometer Test

The Double hydrometer test was carried out as per ASTM standards. Test was carried out for soil,soil+20%FA and soil+20%FA+10%GGBS.

TABLE .11VARIATION IN DISPERSIVITY OF VARIOUS MIXES

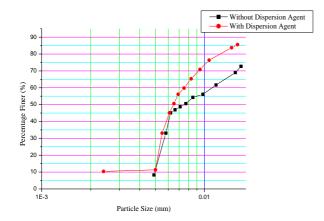


Fig..13 Double Hydrometer Test Results for Soil

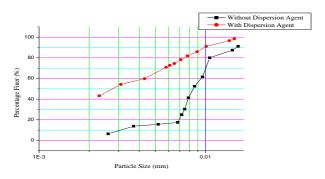


Fig..14 Double Hydrometer Test Results for Soil- 20% FA mix

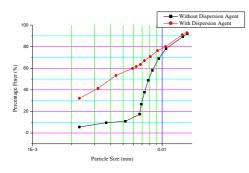


Fig..15Double Hydrometer Test Results for Soil- 20% FA + GGBS

TABLE .11VARIATION IN DISPERSIVITY OF VARIOUS MIXES

Mix	Dispersivity (%)	Classification
Soil	75.4	Dispersive
Soil + 20% FA	23.7	Non Dispersive
Soil + 20% FA + 10% GGBS	19.3	Non Dispersive

b) Dispersion Characteristics Based On Crumb Test

Crumb test gives a quick indication of dispersiveness of soil. Crumb test was carried out as per ASTM standards. For crumb test, sample of 15mm cubes were prepared.Sample compacted to its maximum dry density and optimum moisture content. observations are made at 2 minutes, 1 hour and 6 hour.

Sample Type	Time	Grade	Dispersivity
Soil	2min	2	Intermediate
	1hr	3	Dispersive
	6hr	3	Dispersive
Soil + 20% FA	2min	1	Non Dispersive
	1hr	2	Intermediate
	6hr	2	Intermediate
Soil + 20%	2min	1	Non Dispersive
FA + 10%	1hr	1	Non Dispersive
GGBS	6hr	1	Non Dispersive

Fig.16Visual observations of Soil at 6hrs

Fig..17Visual observations of Soil + 20% FA at 6hrs

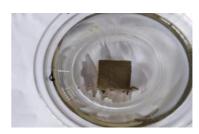


Fig..18Visual observations of Soil + 20% FA +10% GGBS at 6hrs

The addition of 20% flyash and 10%GGBS reduce dispersivity of soil and it is changed to non dispesive nature.

CONCLUSIONS

The strength, permeability, compaction and dispersion characteristics of soil amended with fly ash and GGBS was studied. The major conclusions drawn from the present study may be summarized as follows.

- The optimum percentage of Flyash was found to be 20% and that of GGBS to be 10%, based on strength and permeability characteristics.
- The addition of fly ash and GGBS cause significant decrease in the dispersion and permeability and increase in strength characteristics.
- Leachate water reduced the strength and increases the permeability characters of the soil.

Vol. 7 Issue 05, May-2018

- Dispersivity of soil greatly reduced by the addition of flyash. Further it was reduced with the addition of GGBS.
- Crumb test result show that the dispersion of soil can be reduced by the addition of fly ash and GGBS.

REFERENCES

- [1] Vipul Chakradhar, S.S Katoch (2016) "Study Of Fly Ash In Hydraulic Barriers In Landfills" International Journal of Advances in Science Engineering and Technology, ISSN: 2321-9009 Volume- 4, Issue-2, Apr.-2016.
- [2] Supriya Pal, Kalyan Adhikari, Somnath Mukherjee, and Sudipta Ghosh (2015) "Potential of Silty Clay Soil as an Attenuation Material for Containment of Phenolic Wastewater Outfall Site" International Journal of Environmental Science and Development, Vol. 6, No. 12, December 2015
- [3] Effect of Compaction conditions on the Hydraulic and Compressibility Behaviour of Fly Ash - Bentonite mixtures V.Siva Ravi Sankarl D.V.Niranjan "IOSR Journal of Mechanical and Civil Engineering" (IOSR-JMCE).
- [4] Abishek Kumar A. A, Meera Manuel "Strength and Dispersion Studies in Compacted Liner Soil" International Journal of Science and Research (IJSR).
- [5] Vipul Chakradhar, 2Dr. S.S Katoch "Study Of Fly Ash In Hydraulic Barriers In Landfills" International Refereed Journal of Engineering and Science (IRJES) Volume 5, Issue 4.
- [6] T. Muhsina, S. Chandrakara "Attenuation Characteristics Of Laterite- Fly Ash- Bentonite Mix As Liner" Indian Geotechnical Conference IGC2016.
- [7] Amina S M, Rani V "Evaluation of Fly Ash as Amended Liner and the Effect of Pore Fluids" International Research Journal of Engineering and Technology (IRJET) Volume: 04.
- [8] Utilization of GGBS and Lime to Improve the Compaction and Unconfined Strength Properties of Marine Clay Ranga Swamy1, Purushotham G Sarvade2, Deepak NayakAsian Journal of Engineering and Technology (ISSN: 2321 – 2462) Volume 03 – Issue 04, Special issue for ICETTAS'15 Asian.
- [9] Ground Granulated Blast Furnace Slag Amended Fly ash as an expansive soil stabilizer Anil Kumar Sharma1 and P.V. Sivapullaiah. January 2015
- [10] Consolidation Characteristics Of Treated Marine Clay For Foundation Soil Beds D. Koteswara R G.V.R. Prasada Raju K. Ashok Kumar International Journal of Engineering Science.