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     Abstract— Malware is one of the most serious security 

threats on the Internet today. The threat is increasing in a 

greater pace with the intensive use of networks and Internet in 

our day-to-day activities. The most recent reports emphasize 

that the invention of malicious software is rapidly increasing. 

Over the last decade, a number of studies have been made on 

malware and their countermeasures. Researchers and 

manufacturers are making great efforts to invent effective 

malware detection methods to produce anti-malware systems for 

better protection of computers and networks. In this paper, a 

detailed study has been conducted on malware taxonomy and 

the approaches made by the researchers to improve anti-

malware or malware detection systems, giving emphasis on 

signature-based and data mining based techniques in malware 

detection. Thus, it provides an up-to-date comparative reference 

to the researchers and developers of malware detection systems. 

   

Keywords—Malware, anti-malware, malware detection 

systems, data mining, Signature-based. 

I.  INTRODUCTION  

     Software which is specifically designed to disrupt or 

damage a computer system is known as malware. Malware is 

short for “malicious software” - computer programs designed 

to infiltrate and damage computers without the users consent. 

It is code or software that is specifically designed to damage, 

disrupt, steal, or in general inflict some other “bad” or 

illegitimate action on data, hosts, or networks. Malware 

creators or malware writers started off writing malware in the 

early 1980’s. Until the late 1990’s most of the malwares were 

just pranks made up in order to annoy users and to see how 

far a malware could spread but, in the late 1990’s and early 

2000’s, as the internet had become everyone’s tool for 

communication, marketing, business and banking, the 

malware writers and hackers began to put their talent to more 

professional and sometimes criminal use. Today many 

experts believe the amount of malicious software being 

released on the web might actually surpass the release of 

valid software. 

     The term malware includes viruses, worms, Trojan 

Horses, rootkits, spyware, adware, keyloggers, botnet and 

more. To get an overview of the difference between all these 

types of threats and the way they work, it makes sense to 

divide them into groups [1]. 

A. Viruses and worms - the contagious threat 

    Viruses and worms are defined by their behaviour – 

malicious software designed to spread without the user’s 

knowledge. A virus infects legitimate software and when this 

software is used by the computer owner it spreads the virus – 

so viruses need you to act before they can spread. Computer 

worms, on the other hand, spread without user action. Both 

viruses and worms can carry a so-called “payload” – 

malicious code designed to do damage. A virus is a type of 

malware that propagates by inserting a copy of itself into and 

becoming part of another program. It spreads from one 

computer to another, leaving infections as it travels. Almost 

all viruses are attached to an executable file, when the file is 

executed; the viral code is executed as well. Viruses spread 

when the software or document they are attached to is 

transferred from one computer to another using the network, 

a disk, file sharing, or infected e-mail attachments. Unlike 

viruses, worms are standalone softwares and do not require a 

host program or human help to propagate. To spread, worms 

either exploit vulnerability on the target system or use some 

kind of social engineering to trick users into executing them 

[1]. 

B. Trojans, rootkits and adware – the masked threat 

     Trojans and rootkits are grouped together as they both 

seek to conceal attacks on computers. Trojan Horses are 

malignant pieces of software pretending to be benign 

applications. Users therefore download them thinking they 

will get a useful piece of software and instead end up with a 

malware infected computer. Rootkits are a masking technique 

for malware, but do not contain damaging software. Rootkit 

techniques were invented by virus writers to conceal 

malware, so it could go unnoticed by antivirus detection and 

removal programs. Trojan is named after the wooden horse 

the Greeks used to infiltrate Troy. It is a harmful piece of 

software that looks legitimate. Users are typically tricked into 

loading and executing it on their systems. After it is activated, 

it can achieve any number of attacks on the host, from 

irritating the user (popping up windows or changing 

desktops) to damaging the host (deleting files, stealing data, 

or activating and spreading other malware, such as viruses). 

Trojans are also known to create back doors to give malicious 

users access to the system. Unlike viruses and worms, 

Trojans do not reproduce by infecting other files nor do they 

self-replicate. Trojans must spread through user interaction 

such as opening an e-mail attachment or downloading and 

running a file from the Internet. Adware or Advertising-

supported software automatically plays, displays or 

downloads advertisements to a computer after malicious 

software is installed or application is used. This kind of code 

is also embedded into free software. The most common 

source of adware programs are free games, Peer to peer 

clients like Kazaa, Bearshare etc [1]. 
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C. Spyware and keyloggers – the financial threat 

     Spyware and keyloggers are malware used in malicious 

attacks like identity theft, phishing and social engineering - 

threats designed to steal money from unknowing computer 

users, businesses and banks. Spyware is a collective term 

used for software which monitors or gathers personal 

information about the user like ,the pages frequently visited, 

email address, credit card no, key pressed by user etc. It 

enters a system when free or trial software is downloaded and 

installed without the user’s knowledge. It changes the settings 

of yours browser and adds abdominal browser toolbars [2]. 

II. MALWARE ANALYSIS TECHNIQUE 

     Malware analysis is necessary to develop effective 

malware detection technique. It is the process of analyzing 

the purpose and functionality of a malware, so the goal of 

malware analysis is to understand how a specific piece of 

malware works so that defenses can be built to protect the 

organization’s network. There are three types of malware 

analysis which achieve the same goal of explaining, how 

malware works, their effects on the system but the tools, time 

and skills required to perform the analysis are very different. 

A. Static analysis 

     Analysis of the infected file without executing it is known 

as static analysis. It is also known as code analysis. It is the 

process of analyzing the program by examining it i.e. 

software code of malware is observed to gain the knowledge 

of how malware’s functions work. In this technique reverse 

engineering is performed by using disassemble tool, 

decompile tool, debugger, source code analyzer tools such as 

IDA Pro and Ollydbg in order to understand structure of 

malware [3]. In this approach, we extract low-level 

information such as Control Flow Graphs (CFGs), Data-Flow 

Graphs (DFGs) and System call analysis. This information 

can be gathered by disassembling or decompiling the infected 

file using different tools as mentioned earlier.  Before 

program is executed, static information is found in the 

executable including header data and the sequence of bytes is 

used to determine whether it is malicious. Disassembly 

technique is one of the techniques of static analysis. With 

static analysis executable file is disassembled using 

disassembling tools like XXD, Hex dump, NetWide 

command, to get the assembly language program file. From 

this file the opcode is extracted as a feature to statically 

analyze the application behaviour to detect the malware [5]. 

Sometimes analyzing the infected file in a different 

environment to avoid auto execution of the malware is better. 

Using static analysis we get fast, safe and low false positives 

and we trace all paths, which helps in terms of getting a lot of 

information to analyze. On the other hand static analysis may 

fail in analyzing unknown malware that uses code 

obfuscation techniques. 

B. Dynamic analysis 

     It is also called as behavioral analysis. Analysis of 

infected file during its execution is known as dynamic 

analysis [4]. Infected files are analyzed in simulated 

environment like a virtual machine, simulator, emulator, 

sandbox etc. [1]. After that malware researchers use 

SysAnalyzer, Process Explorer, ProcMon, RegShot, and other 

tools to identify the general behaviour of file [3]. In dynamic 

analysis the file is detected after executing it in real 

environment, during execution of file its system interaction, 

its behaviour and effect on the machine are monitored. The 

advantage of dynamic analysis is that it accurately analyses 

the known as well as unknown, new malware. It’s easy to 

detect unknown malware also it can analyze the obfuscated, 

polymorphic malware by observing their behaviour but this 

analysis technique is more time consuming. It requires as 

much time as to prepare the environment for malware 

analysis such as virtual machine environment or sandboxes 

[5]. Dynamic analysis fails to detect activities of interest if 

the target changes its behavior depending on trigger 

conditions such as existence of a specific file or specific day 

as only a single execution path may be examined for each 

attempt.   

C. Hybrid analysis 

     This technique is proposed to overcome the limitations of 

static and dynamic analysis techniques. It firstly analyses the 

signature specification of any malware code & then combines 

it with the other behavioral parameters for enhancement of 

complete malware analysis. Due to this approach hybrid 

analysis overcomes the limitations of both static and dynamic 

analysis [1]. 

III. MALWARE DETECTION METHODS 

     Malware detection techniques are used to detect the 

malware and prevent the computer system from being 

infected, protecting it from potential information loss and 

system compromise. They can be categorized into signature-

based detection, heuristic-based detection, specification-

based and data mining based detection as shown in figure 1. 

 

 

 

 

 

 
Figure 1: Types of malware detection Methods 

A. Signature-Based Detection 

     It is also called as Misuse detection. It maintains the 

database of signature and detects malware by comparing 

pattern against the database. The signatures are created by 

examining the disassembled code of malware binary.   

Disassembled code is analyzed and features are extracted. 

These features are used in constructing the signature of 

particular malware family. A library of known code 

signatures is updated and refreshed constantly by the 

antivirus software vendor so this technique can detect the 

known instances of malware accurately. The main advantages 

of this technique is that it can detect known instances of 

malware accurately, less amount of resources are required to 

detect the malware and it mainly focus on signature of attack. 

The major drawback is that it can’t detect the new, unknown 

instances of malware as no signature is available for such 

type of malware. 

Malware detection Methods 

Signature 

Based  
Heuristic 

Based 

Specification  

Based 

Data Mining 

Based 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

TITCON-2015 Conference Proceedings

Volume 3, Issue 16

Special Issue - 2015

2



B. Heuristic-Based Detection 

     It is also called as behaviour or anomaly-based detection. 

The main purpose is to analyze the behaviour of known or 

unknown malwares. Behavioral parameter includes various 

factors such as source or destination address of malware, 

types of attachments, and other countable statistical features. 

It usually occurs in two phases: Training phase and detection 

phase. During training phase the behaviour of system is 

observed in the absence of attack and machine learning 

technique is used to create a profile of such normal 

behaviour. In detection phase this profile is compared against 

the current behaviour and differences are considered as 

potential attacks [6]. The advantage of this technique is that it 

can detect known as well as new, unknown instances of 

malware and it focuses on the behaviour of system to detect 

unknown attack. The disadvantage of this technique is that it 

needs to update the data describing the system behaviour and 

the statistics in normal profile but it tends to be large. It need 

more resources like CPU time, memory and disk space and 

level of false positive is high. 

C. Specification-Based Detection 

     It is derivative of behaviour-based detection that tries to 

overcome the typical high false alarm rate associated with it. 

Specification based detection relies on program specifications 

that describe the intended behaviour of security critical 

programs [6]. It involves monitoring program executions and 

detecting deviation of their behaviour from the specification, 

rather than detecting the occurrence of specific attack 

patterns. This technique is similar to anomaly detection but 

the difference is that instead of relying on machine learning 

techniques, it will be based on manually developed 

specifications that capture legitimate system behaviour [6]. 

The advantage of this technique is that it can detect known 

and unknown instances of malware and level of false positive 

is low but level of false negative is high and not as effective 

as behaviour based detection in detecting new attacks; 

especially in network probing and denial of service attacks. 

Development of detailed specification is time consuming. 

D. Data mining based detection 

     From last decade data mining has been the main focus of 

many malware researcher for detecting the new, unknown 

malwares; they have added data mining as a fourth proposed 

malware detection technique. In 2001 Schultz [7] first 

introduced the idea of applying the data mining and machine 

learning method for the detection of new, unknown malware 

based on their respective binary codes. Then different studies 

have been conducted for detection of different malwares. 

Data mining helps in analyzing the data, with automated 

statistical analysis techniques, by identifying meaningful 

patterns or correlations. The results from this analysis can be 

summarized into useful information and can be used for 

prediction. Machine learning algorithms are used for 

detecting patterns or relations in data, which are further used 

to develop a classifier [8]. The common method of applying 

the data mining technique for malware detection is to start 

with generating a feature sets. These feature sets include 

instruction sequence, API/System call sequence, hexadecimal 

byte code sequence (n-gram) etc. The numbers of extracted 

features are very high so various text categorization 

techniques are applied to select consistent features and 

generate the training and test feature sets. Then classification 

algorithms are applied on the consistent training feature set to 

generate and train the classifier and test feature set is 

examined by using these trained classifiers. The performance 

of each classifier is evaluated by identifying the rate of False 

Positive, False Negative, True Positive, True Negative and 

calculate the TPR, FPR, Recall, precision and F1-measure. 

The survey of various feature selection technique & 

classification technique used for data mining is presented in 

[9]. The advantage of data mining based detection is that 

detection rate is high as compared to signature based 

detection method [7]. It detects the known as well as 

unknown, new instances of malware. 

IV. MALWARE DETECTION TECHNIQUES 

     Signature based and behavior based malware detection 

methods have some disadvantages. Hence, heuristic malware 

detection methods are proposed to overcome these 

disadvantages.  Heuristic malware detection methods use data 

mining and machine learning techniques to learn the behavior 

of an executable file. e.g. as the first attempt, Naïve Bayes 

and Multi Naïve Bayes were presented by Schultz et al. [10] 

to classify malware and benign files. Perceptibly, these ML 

techniques require some features representing the input 

instance in the way that can be used for classification. Some 

of the features used for malware detection are, API 

(Application Programming Interface) calls, CFG (Control 

Flow Graph), N-Gram, Opcode and Hybrid features. 

     Almost all programs send their requests to the Operating 

System using API calls. Hence, the behavior of a piece of 

code like malware can easily be reflected using API 

sequences. Hofmeyr et al. [11] were among the first ones who 

regarded API call sequences as a feature of a malware. They 

introduced an anomaly detection method based on system call 

sequences. Normal behavior profiles were made using short 

sequences of system calls. Hamming distance was used for 

matching sequences; also a threshold used to determine 

anomalies. Typically, large Hamming distance value reported 

as anomalies. Later, an extensive research on malware 

detection using API calls was done by Bergeron et al. [12], 

Sekar et al. [13], Sung et al. [14], etc. In 2007, based on the 

analysis of Windows API execution sequences called by 

Portable Executable (PE) files, Ye et al. [15] proposed 

Intelligent Malware Detection System (IMDS) using Object 

Oriented Association (OOA) mining based classification. To 

generate efficient OOA rules for classification, an OOA-Fast-

FP Growth algorithm is adapted. In spite of its good 

performance in malware detection, IMDS has few demerits 

such as, Handling the large set of generated rules to build the 

classifier and finding effective rules to classify new file 

samples. To overcome these problems, Ye et al. [16] used 

post processing techniques of associative classification. At 

first they applied Chi-squared testing [17] and insignificant 

rule pruning, followed by database coverage based on the 

Chi-square measure rule ranking mechanism and Pessimistic 

error estimation. They finally, performed prediction by 

selecting the best first rule. They incorporate IDCPF [16] into 

existing IMDS system and called the new system CIMDS. It 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

TITCON-2015 Conference Proceedings

Volume 3, Issue 16

Special Issue - 2015

3



was the first attempt on using post processing techniques of 

associative classification in malware detection. Jeong and Lee 

[18] used system call sequences for both malicious and 

benign executables to build a topological graph which is 

called code graph. For every binary program this graph is 

extracted and is compared with the code graph of malicious 

and benign programs. Based on this comparison, a program is 

classified as malware or benign. Due to these large sized 

graphs, Lee et al. [19] classified API calls to 128 groups, so 

the code graph reduced. Ye et al. [20] proposed an 

interpretable classifier based on the analysis of API calls by a 

PE file for detecting malware from large and imbalanced gray 

list. They have studied around 8,000,000 malware and benign 

files with 100,000 samples from the gray list collected from 

lab of King Soft Corporation and built effective associative 

classifier based on several different post processing 

techniques including rule pruning and rule reordering. Then, 

to make the classifier less sensitive to the imbalance dataset 

and improve its performance, they developed the Hierarchical 

Associative Classifier (HAC). 

     Forrest et al. [21] powered system calls to discriminate 

between benign and UNIX processes. Hofmeyret al. [22] 

build normal behavior of UNIX processes in terms of short 

sequences of system calls. The Hamming distance is used to 

determine how closely a system call sequence resembles 

another. A threshold must be set to determine whether a 

process is anomalous. Wepsi et al. [23] proposed an 

improved version with variable length system call sequences. 

A detection method based on the frequency of system calls 

has been proposed by Sato et al. [24]. Manzoor et al. [25] 

collect some Windows malicious executables from VX 

Heavens [26] and their API call sequences are monitored by 

API Monitor [27]. The DCA (Dendritic Cell Algorithm) [28-

30] is applied for detection. Later, Ahmed et al. [31] use 

statistical features which extracted from both spatial 

(arguments) and temporal (sequences) information available 

in Windows API calls for malware detection. All these 

methods use system calls or API calls to monitor program 

behavior. However, the system call or API call sequences can 

be manipulated by a crafty attacker to circumvent detection 

[32–34]. Seifert et al. [35] compared three popular event-

based techniques that can monitor program behavior: user 

mode API hooking, kernel mode API hooking, and kernel 

mode callbacks. Z. Fuyong et al. [36] proposed a novel 

classification algorithm based on the idea of positive 

selection, which is one of the important algorithms in 

Artificial Immune Systems (AIS), inspired by positive 

selection of T-cells. The proposed algorithm is applied to 

learn and classify program behavior based on I/O Request 

Packets (IRP). Their experiments proved that the proposed 

algorithm outperforms Artificial Negative Selection classifier 

(ANSC), Naïve Bayes, Bayesian Networks, Support Vector 

Machine, and Decision Tree. This algorithm can also be used 

in general purpose classification problems not just two-class 

but multi-class problems. 

    M. K. Shankarapani et al. [37] presented detection 

algorithms that can help the antivirus community to ensure a 

variant of a known malware can still be detected without the 

need of creating a signature; a similarity analysis (based on 

specific quantitative measures) is performed to produce a 

matrix of similarity scores that can be utilized to determine 

the likelihood that a piece of code under inspection contains a 

particular malware. They presented two techniques such as, 

Static Analyzer for Vicious Executables (SAVE) and 

Malware Examiner using disassembled Code (MEDiC). 

MEDiC uses assembly calls for analysis and SAVE uses API 

calls (Static API call sequence and Static API call set) for 

analysis. They showed that assembly can be superior to API 

calls as it allows a more detailed comparison of executables. 

On the other hand, API calls can be superior to Assembly for 

its speed and its smaller signature. Their two proposed 

techniques are implemented in SAVE and MEDiC and 

experimentally proved that both these proposed techniques 

can provide a better detection performance against obfuscated 

malware. 

     An OpCode (Operational Code) is the part of a ML 

instruction that identifies the operation to be executed. More 

specifically, instructions of a program are defined as a pair 

composed of an operational code and an operand or a list of 

operands. The most significant research on Opcode has been 

done by Bilar [38]. He showed the ability of single Opcode to 

use as a feature in malware detection. To this end, he proved 

that Opcode can be used as a powerful representation for 

executable files. Santos et al.[39]  presented various type of 

malware detection techniques based on Opcode sequences. In 

their first work, they presented an approach focused on 

detecting obfuscated malware variants using the appearance 

frequency of Opcode sequences in order to build a 

representation of executable files. To do so, they had applied 

the disassembly process on exe files and built an opcode 

profile containing a list of Opcodes from the generated 

assembly files and then they computed the relevance of each 

Opcode based on the frequency of appearance of each of 

them in both datasets (i.e. malware and benign dataset) using 

mutual information[40]. Finally they used Weighted Term 

Frequency (WTF) [41] to make suitable feature vector 

extracted from executables. They used this feature vector in 

order to detect obfuscated malware variants and to this end 

they calculated the Cosine similarity measure between two 

feature vectors (i.e. new instance feature vector and malware 

variants feature vector). Afterward, in the next work, Santos 

et al. [41] presented a new feature extraction method based 

on Opcode sequences [41] and trained several machine 

learning classifiers by embedding the extracted features. As 

we know, the machine learning based classifiers requires high 

number of samples for each of the concept classes they try to 

detect and it is quite difficult to obtain this amount of labeled 

data in real world. So, Santos et al., in their next research, 

proposed several methods to eliminate this limitation such as 

Collective classification [42], Single class learning [43], and 

Semi supervised learning [44]. Runwal et al. [45] proposed a 

new approach based on Opcodes and used this method for 

detecting unknown and also metamorphic malware families 

based on a simple graph similarity measurement. They 

extracted Opcodes from both file types (i.e. malware and 

benign), count the number of each pair Opcodes appeared in 

them and based on the numbers, make a graph of Opcodes 

and after that can predict the maliciousness of a new 

executable by calculating the similarity of graph obtained 

from the executable and both file types and finally the file 
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will be classified as a class which is more similar to Shabtai 

et al. [46] tried to detect unknown malicious codes by 

applying classification techniques on Opcode patterns. They 

created a dataset of malicious and benign executables for the 

Windows operating system. After disassembling the 

executables, they calculated the normalized term frequency 

(TF) and TF Inverse Document Frequency (TF-IDF) 

representations as a feature for each file. Finally, they used 

several classical classification techniques such as Support 

Vector Machine (SVM), Logistic Regression (LR), Artificial 

Neural Networks (ANN) etc. to evaluate the proposed feature 

selection method. 

     N-Grams are all substrings of a larger string with a length 

of N [46]. For example, the string “VIRUS”, can be 

segmented into several 3-grams: “VIR”, “IRU”, “RUS” and 

so on. Over the past decade, several researches have been 

motivated on the detection of unknown malware based on its 

binary code content. Schultz et al. [10] were the first who 

introduced the idea of applying ML techniques for detection 

of diverse malwares based on their own binary codes. Three 

different feature extraction methods were engaged: features 

mined from the PE section, expressive plain-text strings that 

are encoded in executables, and byte sequence features. 

Tesauro et al. [48] were the first who try to use N-Grams as a 

feature for malware detection domain. They used N-Grams to 

detect Boot Sector Viruses using Artificial Neural Networks 

(ANN). A Boot Sector Virus is a malware variant which 

infects DOS Boot Sector or Master Boot Record (MBR). 

When a system has infected, the MBR is usually ruined and 

the computer boot order is change. The N-Grams was 

selected from most frequent sections in malware and benign 

executables. They used a specific feature reduction algorithm 

such that each malware must consist of at least four N-Grams 

from existing N-Grams set. Tesauro et al. [49], in their next 

study, used N-Grams to build several classifiers based on 

ANN and also used a specific voting strategy to achieve final 

results. In that research a simple threshold value was used to 

reduce the number of N-Grams. Abou-Assaleh et al. [47], 

presented a framework that uses the Common N-Gram 

method and the K-Nearest-Neighbor (KNN) classifier for 

malware detection. For both classes (i.e. malicious and 

benign) a delegate profile was built. A new instance was 

matched with the profiles of both classes and was assigned to 

the most similar one. Kotler and Maloof [50] used byte N-

Gram representation to detect unknown malware. Though the 

vector of N-Gram features was binary, presenting the 

attendance or nonattendance of a feature in the file. In an 

extension of their previous study, Kolter and Maloof [51] 

classified malware into several families based on the 

functions in their respective payload attempting to 

approximate their capability to detect malicious codes based 

on their subject dates. Cai et al. [52] conducted several 

experiments in which they evaluated the mixtures of seven 

feature selection techniques, three classifiers, and byte N-

Gram size. Recently, Moskovitch et al. [53] published the 

results of a research which used an imbalance data set 

characterized by byte N-Grams. Moreover, a research of the 

imbalance problem was illustrated. 

     Control Flow Graph (CFG) is a graph that represents the 

control flow of programs and are widely used in the analysis 

of software and have been studied for many years [54], [55], 

[56]. CFG is a directed graph, where each node represents a 

statement of the program and each edge represents control 

flow between the statements (i.e. what happens after what). 

Statements may be assignments, copy statements, branches 

etc. In Figure 4 we can see an example of a generated CFG 

for Chernobyl malware. In [57], authors performed a set of 

normalization operation after disassembling an executable 

program for reducing effects of mutation techniques and 

unveiling the flow connections between benign and malicious 

code. Then they generate corresponding CFG for the 

program. CFG compared against the CFG of a normalized 

malware in order to know whether CFG contains a sub graph 

which is isomorphic to CFG of the normalized one. Thus, the 

problem of detecting malware is changed to the sub-graph 

isomorphism problem. Zhao [58] proposed a detection 

method based on features of the control flow graph for PE 

files. At first, he created CFG for each executable file. Then, 

he used features which extracted from CFG as the train data. 

These features are information about nodes, edges and sub 

graphs. After feature selection, some data mining algorithm 

have been used for classification based on these features such 

as Decision Tree [59], Bagging [60] and Random Forest [61]. 

Bonfante et al. [62] used CFG as a signature for malware 

detection. As we mentioned, CFG is composed of nodes and 

edges and as we know each assembler consists of four types 

of instruction: non-conditional jumps (jmp), conditional 

jumps (jcc), function calls (call) and function returns (ret). 

They abstract any contiguous sequence of instructions in a 

node named “inst”, and after that the end of the program 

comes in a node named “end”. So, they defined six types of 

node: jmp, jcc, call, ret, inst and end. They build CFG based 

on these types. Then, they reduce these nodes in this way: for 

any node of kind inst or jmp, they removed the node from the 

graph and linked all its predecessors to its unique successor. 

After reduction, they used this graph as a signature for each 

file. B. Anderson et al. [63] introduced a novel malware 

detection algorithm based on the analysis of graphs 

constructed from dynamically collected instruction traces of 

the target executable. These graphs represent Markov chains, 

where the vertices are the instructions and the transition 

probabilities are estimated by the data contained in the trace. 

They used a combination of graph kernels to create a 

similarity matrix between the instruction trace graphs. The 

resulting graph kernel measures similarity between graphs on 

both local and global levels. Finally, the similarity matrix is 

sent to a support vector machine to perform classification. 

They used the data representation to perform classification in 

graph space rather than using n-gram data. 

     Due to the rapid production of malware and the desperate 

need for human effort to extract some kinds of signature, the 

signature based approach is a tedious solution; thus, an 

intelligent malware detection system is required to deal with 

new malware threats. Most of intelligent detection systems 

utilize some data mining methods in order to distinguish 

malware from normal programs. Rey et al. [64] proposed a 

data mining techniques for malware detection based on an 

automation of signature extraction for viruses. Viruses were 

executed in secured environment to infect decoy programs. 

Candidate signature of variable length is produced by 
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analyzing the infected region in these programs that remains 

invariant from on program to another. Signatures with lowest 

estimated false positive probabilities were choosen as best 

signatures. Then a simple approximation formula can be used 

to estimate the probability of a long sequence by combining 

the measured frequencies of the shorter sequences from 

which it is composed. To measure algorithm’s effectiveness, 

candidate signatures are generated and their estimated and 

actual probabilities are compared. Then Tesauro et al. [65] 

extended the n-grams analysis to detect boot sector viruses 

using neural networks. The n-grams were selected based 

upon the frequencies of occurrence in viral and benign 

programs. Then they continued their work and used n-grams 

as features to build multiple neural network classification and 

adopted a voting strategy to predict the final outcome. Wang 

et al. [66] proposed a method which uses data mining as 

detection category to classify various file types based upon 

their fileprints. An n-gram analysis method was used and the 

distribution of n-grams in a file was used as its fileprint. The 

distribution was given by byte value frequency distribution 

and standard deviation. These fileprints represented the 

normal profile of the files and were compared against 

fileprints taken at a later time using simplified Mahalanobis 

distance. A large distance indicated a different n-gram 

distribution and hence maliciousness. Schultz et al. [68] 

proposed a static misuse detection method using data mining 

as detection category where strings data were used to fit a 

naive-Bayes classifier while n-grams were used to train a 

multi naive Bayes classifier with a voting strategy. Dataset 

partitioning and 6-Naive-Bayes classifier trained on each 

partition of data. They used different feature classifiers that 

do not pose a fair comparison among the classifiers. Naive-

Bayes using strings gave the best accuracy in their model. 

Extending the same idea, Schultz et al. [69] created MEF, 

Malicious Email Filter, that integrated the scheme described 

in [68] into a Unix email server where a large dataset 

containing 3301 malicious and benign program was used to 

train and test a Naive-Bayes classifier. For feature reduction, 

the dataset was partitioned into 16 subsets. Each subset is 

differently trained on a different classifier and a voting 

strategy was used to obtain final outcome. InSeon Yoo [67] 

proposed a static misuse detection using data mining where 

they used Self Organizing Maps (SOM). N-grams are 

extracted from the infected programs and SOM’s were 

trained on this data. They claimed that each Virus has its own 

DNA like character that changes the SOM projection of the 

program that it infects. The method looks for change in the 

SOM projection as a result of Virus infection. Hence, it is 

able to detect Polymorphic and metamorphic malwares. 

     Shahzad et al. [70] carried out a forensic analysis of Linux 

executable and linkable format (ELF) files to find out 

different features that have the potential to discriminate 

malicious executables from benign ones. They selected 

features’ set of 383 features that are extracted from ELF 

headers and quantified the classification potential of features 

using information gain and then removed redundant features 

by employing pre-processing filters. Finally, they performed 

evaluation among classical rule-based machine learning 

classifiers—RIPPER, PART, C4.5 Rules, and decision tree 

J48—and bio inspired classifiers—cAnt Miner, UCS, XCS, 

and GAssist—to select the best classifier for their system. 

They have evaluated their approach on an available collection 

of 709 Linux malware samples from vx heavens and 

offensive computing. Their experiments show that ELF-

Miner provides more than 99% detection accuracy with less 

than 0.1% false alarm rate. M. Eskandari et al. [71] presented 

a novel hybrid approach, HDM-Analyzer which takes 

advantages of dynamic and static analysis methods for rising 

speed while preserving the accuracy in a reasonable level. 

HDM-Analyzer is able to predict the majority of decision 

making points by utilizing the statistical information which is 

gathered by dynamic analysis; therefore, there is no execution 

overhead. The importance was given to the process of 

incorporating the accuracy advantage of dynamic analysis 

into static analysis in order to augment the accuracy of static 

analysis.  In fact, the execution overhead has been tolerated in 

learning phase; thus, it does not impose on feature extraction 

phase which is performed in scanning operation. They 

experimentally demonstrated that HDM-Analyzer attains 

better overall accuracy and time complexity than static and 

dynamic analysis methods. 

V. CONCLUSION 

In this survey a series of malware detection techniques have 

been presented. We have presented signature based detection 

and data mining based detection techniques using different 

types of features like API, N-Grams, Opcode and control 

flow graph. Data Mining is a vast area used in variety of 

applications that requires data analysis. Now a day’s data 

mining techniques plays an important role in malware 

detection systems. Different data mining techniques like 

Classification, Clustering and Association rules are 

frequently used to acquire information about malware as well 

as intrusions by observing network data. Still the research on 

data mining techniques in malware detection is going on and 

this survey might help the researchers for some extent. 

Similarly, Detection of malware’s changing their signatures 

frequently has posed many open research issues. Challenge 

lies in the development of good disassembler, similarity 

analysis algorithm so that the variants of malware’s can be 

detected in shorter time there by reducing the computation 

overhead. 
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