Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
TITCON-2015 Conference Proceedings

A Study on Malware Taxonomy and Malware
Detection Techniques

Satya Narayan Tripathy?, S. K. Das?, Brojo Kishore Mishra®, Om Prakash Samantray*

124Department of Computer Science, Berhampur University, Berhampur, India.
3C. V. Raman College of Engineering, Bhubaneswar, India.

Abstract— Malware is one of the most serious security
threats on the Internet today. The threat is increasing in a
greater pace with the intensive use of networks and Internet in
our day-to-day activities. The most recent reports emphasize
that the invention of malicious software is rapidly increasing.
Over the last decade, a number of studies have been made on
malware and their countermeasures. Researchers and
manufacturers are making great efforts to invent effective
malware detection methods to produce anti-malware systems for
better protection of computers and networks. In this paper, a
detailed study has been conducted on malware taxonomy and
the approaches made by the researchers to improve anti-
malware or malware detection systems, giving emphasis on
signature-based and data mining based techniques in malware
detection. Thus, it provides an up-to-date comparative reference
to the researchers and developers of malware detection systems.

Keywords—Malware, anti-malware, malware detection

systems, data mining, Signature-based.

I. INTRODUCTION

Software which is specifically designed to disrupt or
damage a computer system is known as malware. Malware is
short for “malicious software” - computer programs designed
to infiltrate and damage computers without the users consent.
It is code or software that is specifically designed to damage,
disrupt, steal, or in general inflict some other “bad” or
illegitimate action on data, hosts, or networks. Malware
creators or malware writers started off writing malware in the
early 1980’s. Until the late 1990’s most of the malwares were
just pranks made up in order to annoy users and to see how
far a malware could spread but, in the late 1990’s and early
2000’s, as the internet had become everyone’s tool for
communication, marketing, business and banking, the
malware writers and hackers began to put their talent to more
professional and sometimes criminal use. Today many
experts believe the amount of malicious software being
released on the web might actually surpass the release of
valid software.

The term malware includes viruses, worms, Trojan
Horses, rootkits, spyware, adware, keyloggers, botnet and
more. To get an overview of the difference between all these
types of threats and the way they work, it makes sense to
divide them into groups [1].

A. Viruses and worms - the contagious threat

Viruses and worms are defined by their behaviour —
malicious software designed to spread without the user’s
knowledge. A virus infects legitimate software and when this

software is used by the computer owner it spreads the virus —
so viruses need you to act before they can spread. Computer
worms, on the other hand, spread without user action. Both
viruses and worms can carry a so-called “payload” —
malicious code designed to do damage. A virus is a type of
malware that propagates by inserting a copy of itself into and
becoming part of another program. It spreads from one
computer to another, leaving infections as it travels. Almost
all viruses are attached to an executable file, when the file is
executed; the viral code is executed as well. Viruses spread
when the software or document they are attached to is
transferred from one computer to another using the network,
a disk, file sharing, or infected e-mail attachments. Unlike
viruses, worms are standalone softwares and do not require a
host program or human help to propagate. To spread, worms
either exploit vulnerability on the target system or use some
kind of social engineering to trick users into executing them
[1].

B. Trojans, rootkits and adware — the masked threat

Trojans and rootkits are grouped together as they both
seek to conceal attacks on computers. Trojan Horses are
malignant pieces of software pretending to be benign
applications. Users therefore download them thinking they
will get a useful piece of software and instead end up with a
malware infected computer. Rootkits are a masking technique
for malware, but do not contain damaging software. Rootkit
techniques were invented by virus writers to conceal
malware, so it could go unnoticed by antivirus detection and
removal programs. Trojan is named after the wooden horse
the Greeks used to infiltrate Troy. It is a harmful piece of
software that looks legitimate. Users are typically tricked into
loading and executing it on their systems. After it is activated,
it can achieve any number of attacks on the host, from
irritating the user (popping up windows or changing
desktops) to damaging the host (deleting files, stealing data,
or activating and spreading other malware, such as viruses).
Trojans are also known to create back doors to give malicious
users access to the system. Unlike viruses and worms,
Trojans do not reproduce by infecting other files nor do they
self-replicate. Trojans must spread through user interaction
such as opening an e-mail attachment or downloading and
running a file from the Internet. Adware or Advertising-
supported software automatically plays, displays or
downloads advertisements to a computer after malicious
software is installed or application is used. This kind of code
is also embedded into free software. The most common
source of adware programs are free games, Peer to peer
clients like Kazaa, Bearshare etc [1].

Volume 3, | ssue 16

Published by, www.ijert.org 1



Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
TITCON-2015 Conference Proceedings

C. Spyware and keyloggers — the financial threat

Spyware and keyloggers are malware used in malicious
attacks like identity theft, phishing and social engineering -
threats designed to steal money from unknowing computer
users, businesses and banks. Spyware is a collective term
used for software which monitors or gathers personal
information about the user like ,the pages frequently visited,
email address, credit card no, key pressed by user etc. It
enters a system when free or trial software is downloaded and
installed without the user’s knowledge. It changes the settings
of yours browser and adds abdominal browser toolbars [2].

I1. MALWARE ANALYSIS TECHNIQUE

Malware analysis is necessary to develop effective
malware detection technique. It is the process of analyzing
the purpose and functionality of a malware, so the goal of
malware analysis is to understand how a specific piece of
malware works so that defenses can be built to protect the
organization’s network. There are three types of malware
analysis which achieve the same goal of explaining, how
malware works, their effects on the system but the tools, time
and skills required to perform the analysis are very different.

A. Static analysis

Analysis of the infected file without executing it is known
as static analysis. It is also known as code analysis. It is the
process of analyzing the program by examining it i.e.
software code of malware is observed to gain the knowledge
of how malware’s functions work. In this technique reverse
engineering is performed by using disassemble tool,
decompile tool, debugger, source code analyzer tools such as
IDA Pro and Ollydbg in order to understand structure of
malware [3]. In this approach, we extract low-level
information such as Control Flow Graphs (CFGs), Data-Flow
Graphs (DFGs) and System call analysis. This information
can be gathered by disassembling or decompiling the infected
file using different tools as mentioned earlier. Before
program is executed, static information is found in the
executable including header data and the sequence of bytes is
used to determine whether it is malicious. Disassembly
technique is one of the techniques of static analysis. With
static analysis executable file is disassembled using
disassembling tools like XXD, Hex dump, NetWide
command, to get the assembly language program file. From
this file the opcode is extracted as a feature to statically
analyze the application behaviour to detect the malware [5].
Sometimes analyzing the infected file in a different
environment to avoid auto execution of the malware is better.
Using static analysis we get fast, safe and low false positives
and we trace all paths, which helps in terms of getting a lot of
information to analyze. On the other hand static analysis may
fail in analyzing unknown malware that uses code
obfuscation techniques.

B. Dynamic analysis

It is also called as behavioral analysis. Analysis of
infected file during its execution is known as dynamic
analysis [4]. Infected files are analyzed in simulated
environment like a virtual machine, simulator, emulator,

sandbox etc. [1]. After that malware researchers use
SysAnalyzer, Process Explorer, ProcMon, RegShot, and other
tools to identify the general behaviour of file [3]. In dynamic
analysis the file is detected after executing it in real
environment, during execution of file its system interaction,
its behaviour and effect on the machine are monitored. The
advantage of dynamic analysis is that it accurately analyses
the known as well as unknown, new malware. It’s easy to
detect unknown malware also it can analyze the obfuscated,
polymorphic malware by observing their behaviour but this
analysis technique is more time consuming. It requires as
much time as to prepare the environment for malware
analysis such as virtual machine environment or sandboxes
[5]. Dynamic analysis fails to detect activities of interest if
the target changes its behavior depending on trigger
conditions such as existence of a specific file or specific day
as only a single execution path may be examined for each
attempt.

C. Hybrid analysis

This technique is proposed to overcome the limitations of
static and dynamic analysis techniques. It firstly analyses the
signature specification of any malware code & then combines
it with the other behavioral parameters for enhancement of
complete malware analysis. Due to this approach hybrid
analysis overcomes the limitations of both static and dynamic
analysis [1].

I11. MALWARE DETECTION METHODS

Malware detection techniques are used to detect the
malware and prevent the computer system from being
infected, protecting it from potential information loss and
system compromise. They can be categorized into signature-
based detection, heuristic-based detection, specification-
based and data mining based detection as shown in figure 1.

Malware detection Methods

/v ] \

Signature Heuristic Specification Data Mining
Based Based Based Based

Figure 1: Types of malware detection Methods

A. Signature-Based Detection

It is also called as Misuse detection. It maintains the
database of signature and detects malware by comparing
pattern against the database. The signatures are created by
examining the disassembled code of malware binary.
Disassembled code is analyzed and features are extracted.
These features are used in constructing the signature of
particular malware family. A library of known code
signatures is updated and refreshed constantly by the
antivirus software vendor so this technique can detect the
known instances of malware accurately. The main advantages
of this technique is that it can detect known instances of
malware accurately, less amount of resources are required to
detect the malware and it mainly focus on signature of attack.
The major drawback is that it can’t detect the new, unknown
instances of malware as no signature is available for such
type of malware.

Volume 3, | ssue 16

Published by, www.ijert.org 2



Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
TITCON-2015 Conference Proceedings

B. Heuristic-Based Detection

It is also called as behaviour or anomaly-based detection.
The main purpose is to analyze the behaviour of known or
unknown malwares. Behavioral parameter includes various
factors such as source or destination address of malware,
types of attachments, and other countable statistical features.
It usually occurs in two phases: Training phase and detection
phase. During training phase the behaviour of system is
observed in the absence of attack and machine learning
technique is used to create a profile of such normal
behaviour. In detection phase this profile is compared against
the current behaviour and differences are considered as
potential attacks [6]. The advantage of this technique is that it
can detect known as well as new, unknown instances of
malware and it focuses on the behaviour of system to detect
unknown attack. The disadvantage of this technique is that it
needs to update the data describing the system behaviour and
the statistics in normal profile but it tends to be large. It need
more resources like CPU time, memory and disk space and
level of false positive is high.

C. Specification-Based Detection

It is derivative of behaviour-based detection that tries to
overcome the typical high false alarm rate associated with it.
Specification based detection relies on program specifications
that describe the intended behaviour of security critical
programs [6]. It involves monitoring program executions and
detecting deviation of their behaviour from the specification,
rather than detecting the occurrence of specific attack
patterns. This technique is similar to anomaly detection but
the difference is that instead of relying on machine learning
techniques, it will be based on manually developed
specifications that capture legitimate system behaviour [6].
The advantage of this technique is that it can detect known
and unknown instances of malware and level of false positive
is low but level of false negative is high and not as effective
as behaviour based detection in detecting new attacks;
especially in network probing and denial of service attacks.
Development of detailed specification is time consuming.

D. Data mining based detection

From last decade data mining has been the main focus of
many malware researcher for detecting the new, unknown
malwares; they have added data mining as a fourth proposed
malware detection technique. In 2001 Schultz [7] first
introduced the idea of applying the data mining and machine
learning method for the detection of new, unknown malware
based on their respective binary codes. Then different studies
have been conducted for detection of different malwares.
Data mining helps in analyzing the data, with automated
statistical analysis techniques, by identifying meaningful
patterns or correlations. The results from this analysis can be
summarized into useful information and can be used for
prediction. Machine learning algorithms are used for
detecting patterns or relations in data, which are further used
to develop a classifier [8]. The common method of applying
the data mining technique for malware detection is to start
with generating a feature sets. These feature sets include
instruction sequence, API/System call sequence, hexadecimal
byte code sequence (n-gram) etc. The numbers of extracted

features are very high so various text categorization
techniques are applied to select consistent features and
generate the training and test feature sets. Then classification
algorithms are applied on the consistent training feature set to
generate and train the classifier and test feature set is
examined by using these trained classifiers. The performance
of each classifier is evaluated by identifying the rate of False
Positive, False Negative, True Positive, True Negative and
calculate the TPR, FPR, Recall, precision and F1-measure.
The survey of various feature selection technique &
classification technique used for data mining is presented in
[9]. The advantage of data mining based detection is that
detection rate is high as compared to signature based
detection method [7]. It detects the known as well as
unknown, new instances of malware.

IV. MALWARE DETECTION TECHNIQUES

Signature based and behavior based malware detection
methods have some disadvantages. Hence, heuristic malware
detection methods are proposed to overcome these
disadvantages. Heuristic malware detection methods use data
mining and machine learning techniques to learn the behavior
of an executable file. e.g. as the first attempt, Naive Bayes
and Multi Naive Bayes were presented by Schultz et al. [10]
to classify malware and benign files. Perceptibly, these ML
techniques require some features representing the input
instance in the way that can be used for classification. Some
of the features used for malware detection are, API
(Application Programming Interface) calls, CFG (Control
Flow Graph), N-Gram, Opcode and Hybrid features.

Almost all programs send their requests to the Operating
System using API calls. Hence, the behavior of a piece of
code like malware can easily be reflected using API
sequences. Hofmeyr et al. [11] were among the first ones who
regarded API call sequences as a feature of a malware. They
introduced an anomaly detection method based on system call
sequences. Normal behavior profiles were made using short
sequences of system calls. Hamming distance was used for
matching sequences; also a threshold used to determine
anomalies. Typically, large Hamming distance value reported
as anomalies. Later, an extensive research on malware
detection using API calls was done by Bergeron et al. [12],
Sekar et al. [13], Sung et al. [14], etc. In 2007, based on the
analysis of Windows API execution sequences called by
Portable Executable (PE) files, Ye et al. [15] proposed
Intelligent Malware Detection System (IMDS) using Object
Oriented Association (OOA) mining based classification. To
generate efficient OOA rules for classification, an OOA-Fast-
FP Growth algorithm is adapted. In spite of its good
performance in malware detection, IMDS has few demerits
such as, Handling the large set of generated rules to build the
classifier and finding effective rules to classify new file
samples. To overcome these problems, Ye et al. [16] used
post processing techniques of associative classification. At
first they applied Chi-squared testing [17] and insignificant
rule pruning, followed by database coverage based on the
Chi-square measure rule ranking mechanism and Pessimistic
error estimation. They finally, performed prediction by
selecting the best first rule. They incorporate IDCPF [16] into
existing IMDS system and called the new system CIMDS. It

Volume 3, | ssue 16

Published by, www.ijert.org 3



Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
TITCON-2015 Conference Proceedings

was the first attempt on using post processing techniques of
associative classification in malware detection. Jeong and Lee
[18] used system call sequences for both malicious and
benign executables to build a topological graph which is
called code graph. For every binary program this graph is
extracted and is compared with the code graph of malicious
and benign programs. Based on this comparison, a program is
classified as malware or benign. Due to these large sized
graphs, Lee et al. [19] classified API calls to 128 groups, so
the code graph reduced. Ye et al. [20] proposed an
interpretable classifier based on the analysis of API calls by a
PE file for detecting malware from large and imbalanced gray
list. They have studied around 8,000,000 malware and benign
files with 100,000 samples from the gray list collected from
lab of King Soft Corporation and built effective associative
classifier based on several different post processing
techniques including rule pruning and rule reordering. Then,
to make the classifier less sensitive to the imbalance dataset
and improve its performance, they developed the Hierarchical
Associative Classifier (HAC).

Forrest et al. [21] powered system calls to discriminate
between benign and UNIX processes. Hofmeyret al. [22]
build normal behavior of UNIX processes in terms of short
sequences of system calls. The Hamming distance is used to
determine how closely a system call sequence resembles
another. A threshold must be set to determine whether a
process is anomalous. Wepsi et al. [23] proposed an
improved version with variable length system call sequences.
A detection method based on the frequency of system calls
has been proposed by Sato et al. [24]. Manzoor et al. [25]
collect some Windows malicious executables from VX
Heavens [26] and their API call sequences are monitored by
API Monitor [27]. The DCA (Dendritic Cell Algorithm) [28-
30] is applied for detection. Later, Ahmed et al. [31] use
statistical features which extracted from both spatial
(arguments) and temporal (sequences) information available
in Windows API calls for malware detection. All these
methods use system calls or API calls to monitor program
behavior. However, the system call or API call sequences can
be manipulated by a crafty attacker to circumvent detection
[32-34]. Seifert et al. [35] compared three popular event-
based techniques that can monitor program behavior: user
mode APl hooking, kernel mode API hooking, and kernel
mode callbacks. Z. Fuyong et al. [36] proposed a novel
classification algorithm based on the idea of positive
selection, which is one of the important algorithms in
Artificial Immune Systems (AIS), inspired by positive
selection of T-cells. The proposed algorithm is applied to
learn and classify program behavior based on 1/0 Request
Packets (IRP). Their experiments proved that the proposed
algorithm outperforms Artificial Negative Selection classifier
(ANSC), Naive Bayes, Bayesian Networks, Support Vector
Machine, and Decision Tree. This algorithm can also be used
in general purpose classification problems not just two-class
but multi-class problems.

M. K. Shankarapani et al. [37] presented detection
algorithms that can help the antivirus community to ensure a
variant of a known malware can still be detected without the
need of creating a signature; a similarity analysis (based on
specific quantitative measures) is performed to produce a

matrix of similarity scores that can be utilized to determine
the likelihood that a piece of code under inspection contains a
particular malware. They presented two techniques such as,
Static Analyzer for Vicious Executables (SAVE) and
Malware Examiner using disassembled Code (MEDIC).
MEDIC uses assembly calls for analysis and SAVE uses API
calls (Static API call sequence and Static API call set) for
analysis. They showed that assembly can be superior to API
calls as it allows a more detailed comparison of executables.
On the other hand, API calls can be superior to Assembly for
its speed and its smaller signature. Their two proposed
techniques are implemented in SAVE and MEDIC and
experimentally proved that both these proposed techniques
can provide a better detection performance against obfuscated
malware.

An OpCode (Operational Code) is the part of a ML
instruction that identifies the operation to be executed. More
specifically, instructions of a program are defined as a pair
composed of an operational code and an operand or a list of
operands. The most significant research on Opcode has been
done by Bilar [38]. He showed the ability of single Opcode to
use as a feature in malware detection. To this end, he proved
that Opcode can be used as a powerful representation for
executable files. Santos et al.[39] presented various type of
malware detection techniques based on Opcode sequences. In
their first work, they presented an approach focused on
detecting obfuscated malware variants using the appearance
frequency of Opcode sequences in order to build a
representation of executable files. To do so, they had applied
the disassembly process on exe files and built an opcode
profile containing a list of Opcodes from the generated
assembly files and then they computed the relevance of each
Opcode based on the frequency of appearance of each of
them in both datasets (i.e. malware and benign dataset) using
mutual information[40]. Finally they used Weighted Term
Frequency (WTF) [41] to make suitable feature vector
extracted from executables. They used this feature vector in
order to detect obfuscated malware variants and to this end
they calculated the Cosine similarity measure between two
feature vectors (i.e. new instance feature vector and malware
variants feature vector). Afterward, in the next work, Santos
et al. [41] presented a new feature extraction method based
on Opcode sequences [41] and trained several machine
learning classifiers by embedding the extracted features. As
we know, the machine learning based classifiers requires high
number of samples for each of the concept classes they try to
detect and it is quite difficult to obtain this amount of labeled
data in real world. So, Santos et al., in their next research,
proposed several methods to eliminate this limitation such as
Collective classification [42], Single class learning [43], and
Semi supervised learning [44]. Runwal et al. [45] proposed a
new approach based on Opcodes and used this method for
detecting unknown and also metamorphic malware families
based on a simple graph similarity measurement. They
extracted Opcodes from both file types (i.e. malware and
benign), count the number of each pair Opcodes appeared in
them and based on the numbers, make a graph of Opcodes
and after that can predict the maliciousness of a new
executable by calculating the similarity of graph obtained
from the executable and both file types and finally the file

Volume 3, | ssue 16

Published by, www.ijert.org 4



Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
TITCON-2015 Conference Proceedings

will be classified as a class which is more similar to Shabtai
et al. [46] tried to detect unknown malicious codes by
applying classification techniques on Opcode patterns. They
created a dataset of malicious and benign executables for the
Windows operating system. After disassembling the
executables, they calculated the normalized term frequency
(TF) and TF Inverse Document Frequency (TF-IDF)
representations as a feature for each file. Finally, they used
several classical classification techniques such as Support
Vector Machine (SVM), Logistic Regression (LR), Artificial
Neural Networks (ANN) etc. to evaluate the proposed feature
selection method.

N-Grams are all substrings of a larger string with a length
of N [46]. For example, the string “VIRUS”, can be
segmented into several 3-grams: “VIR”, “IRU”, “RUS” and
so on. Over the past decade, several researches have been
motivated on the detection of unknown malware based on its
binary code content. Schultz et al. [10] were the first who
introduced the idea of applying ML techniques for detection
of diverse malwares based on their own binary codes. Three
different feature extraction methods were engaged: features
mined from the PE section, expressive plain-text strings that
are encoded in executables, and byte sequence features.
Tesauro et al. [48] were the first who try to use N-Grams as a
feature for malware detection domain. They used N-Grams to
detect Boot Sector Viruses using Artificial Neural Networks
(ANN). A Boot Sector Virus is a malware variant which
infects DOS Boot Sector or Master Boot Record (MBR).
When a system has infected, the MBR is usually ruined and
the computer boot order is change. The N-Grams was
selected from most frequent sections in malware and benign
executables. They used a specific feature reduction algorithm
such that each malware must consist of at least four N-Grams
from existing N-Grams set. Tesauro et al. [49], in their next
study, used N-Grams to build several classifiers based on
ANN and also used a specific voting strategy to achieve final
results. In that research a simple threshold value was used to
reduce the number of N-Grams. Abou-Assaleh et al. [47],
presented a framework that uses the Common N-Gram
method and the K-Nearest-Neighbor (KNN) classifier for
malware detection. For both classes (i.e. malicious and
benign) a delegate profile was built. A new instance was
matched with the profiles of both classes and was assigned to
the most similar one. Kotler and Maloof [50] used byte N-
Gram representation to detect unknown malware. Though the
vector of N-Gram features was binary, presenting the
attendance or nonattendance of a feature in the file. In an
extension of their previous study, Kolter and Maloof [51]
classified malware into several families based on the
functions in their respective payload attempting to
approximate their capability to detect malicious codes based
on their subject dates. Cai et al. [52] conducted several
experiments in which they evaluated the mixtures of seven
feature selection techniques, three classifiers, and byte N-
Gram size. Recently, Moskovitch et al. [53] published the
results of a research which used an imbalance data set
characterized by byte N-Grams. Moreover, a research of the
imbalance problem was illustrated.

Control Flow Graph (CFG) is a graph that represents the
control flow of programs and are widely used in the analysis

of software and have been studied for many years [54], [55],
[56]. CFG is a directed graph, where each node represents a
statement of the program and each edge represents control
flow between the statements (i.e. what happens after what).
Statements may be assignments, copy statements, branches
etc. In Figure 4 we can see an example of a generated CFG
for Chernobyl malware. In [57], authors performed a set of
normalization operation after disassembling an executable
program for reducing effects of mutation techniques and
unveiling the flow connections between benign and malicious
code. Then they generate corresponding CFG for the
program. CFG compared against the CFG of a normalized
malware in order to know whether CFG contains a sub graph
which is isomorphic to CFG of the normalized one. Thus, the
problem of detecting malware is changed to the sub-graph
isomorphism problem. Zhao [58] proposed a detection
method based on features of the control flow graph for PE
files. At first, he created CFG for each executable file. Then,
he used features which extracted from CFG as the train data.
These features are information about nodes, edges and sub
graphs. After feature selection, some data mining algorithm
have been used for classification based on these features such
as Decision Tree [59], Bagging [60] and Random Forest [61].
Bonfante et al. [62] used CFG as a signature for malware
detection. As we mentioned, CFG is composed of nodes and
edges and as we know each assembler consists of four types
of instruction: non-conditional jumps (jmp), conditional
jumps (jec), function calls (call) and function returns (ret).
They abstract any contiguous sequence of instructions in a
node named “inst”, and after that the end of the program
comes in a node named “end”. So, they defined six types of
node: jmp, jcc, call, ret, inst and end. They build CFG based
on these types. Then, they reduce these nodes in this way: for
any node of kind inst or jmp, they removed the node from the
graph and linked all its predecessors to its unique successor.
After reduction, they used this graph as a signature for each
file. B. Anderson et al. [63] introduced a novel malware
detection algorithm based on the analysis of graphs
constructed from dynamically collected instruction traces of
the target executable. These graphs represent Markov chains,
where the vertices are the instructions and the transition
probabilities are estimated by the data contained in the trace.
They used a combination of graph kernels to create a
similarity matrix between the instruction trace graphs. The
resulting graph kernel measures similarity between graphs on
both local and global levels. Finally, the similarity matrix is
sent to a support vector machine to perform classification.
They used the data representation to perform classification in
graph space rather than using n-gram data.

Due to the rapid production of malware and the desperate
need for human effort to extract some kinds of signature, the
signature based approach is a tedious solution; thus, an
intelligent malware detection system is required to deal with
new malware threats. Most of intelligent detection systems
utilize some data mining methods in order to distinguish
malware from normal programs. Rey et al. [64] proposed a
data mining techniques for malware detection based on an
automation of signature extraction for viruses. Viruses were
executed in secured environment to infect decoy programs.
Candidate signature of variable length is produced by

Volume 3, | ssue 16

Published by, www.ijert.org 5



Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
TITCON-2015 Conference Proceedings

analyzing the infected region in these programs that remains
invariant from on program to another. Signatures with lowest
estimated false positive probabilities were choosen as best
signatures. Then a simple approximation formula can be used
to estimate the probability of a long sequence by combining
the measured frequencies of the shorter sequences from
which it is composed. To measure algorithm’s effectiveness,
candidate signatures are generated and their estimated and
actual probabilities are compared. Then Tesauro et al. [65]
extended the n-grams analysis to detect boot sector viruses
using neural networks. The n-grams were selected based
upon the frequencies of occurrence in viral and benign
programs. Then they continued their work and used n-grams
as features to build multiple neural network classification and
adopted a voting strategy to predict the final outcome. Wang
et al. [66] proposed a method which uses data mining as
detection category to classify various file types based upon
their fileprints. An n-gram analysis method was used and the
distribution of n-grams in a file was used as its fileprint. The
distribution was given by byte value frequency distribution
and standard deviation. These fileprints represented the
normal profile of the files and were compared against
fileprints taken at a later time using simplified Mahalanobis
distance. A large distance indicated a different n-gram
distribution and hence maliciousness. Schultz et al. [68]
proposed a static misuse detection method using data mining
as detection category where strings data were used to fit a
naive-Bayes classifier while n-grams were used to train a
multi naive Bayes classifier with a voting strategy. Dataset
partitioning and 6-Naive-Bayes classifier trained on each
partition of data. They used different feature classifiers that
do not pose a fair comparison among the classifiers. Naive-
Bayes using strings gave the best accuracy in their model.
Extending the same idea, Schultz et al. [69] created MEF,
Malicious Email Filter, that integrated the scheme described
in [68] into a Unix email server where a large dataset
containing 3301 malicious and benign program was used to
train and test a Naive-Bayes classifier. For feature reduction,
the dataset was partitioned into 16 subsets. Each subset is
differently trained on a different classifier and a voting
strategy was used to obtain final outcome. InSeon Yoo [67]
proposed a static misuse detection using data mining where
they used Self Organizing Maps (SOM). N-grams are
extracted from the infected programs and SOM’s were
trained on this data. They claimed that each Virus has its own
DNA like character that changes the SOM projection of the
program that it infects. The method looks for change in the
SOM projection as a result of Virus infection. Hence, it is
able to detect Polymorphic and metamorphic malwares.
Shahzad et al. [70] carried out a forensic analysis of Linux
executable and linkable format (ELF) files to find out
different features that have the potential to discriminate
malicious executables from benign ones. They selected
features’ set of 383 features that are extracted from ELF
headers and quantified the classification potential of features
using information gain and then removed redundant features
by employing pre-processing filters. Finally, they performed
evaluation among classical rule-based machine learning
classifiers—RIPPER, PART, C4.5 Rules, and decision tree
J48—and bio inspired classifiers—cAnt Miner, UCS, XCS,

and GAssist—to select the best classifier for their system.
They have evaluated their approach on an available collection
of 709 Linux malware samples from vx heavens and
offensive computing. Their experiments show that ELF-
Miner provides more than 99% detection accuracy with less
than 0.1% false alarm rate. M. Eskandari et al. [71] presented
a novel hybrid approach, HDM-Analyzer which takes
advantages of dynamic and static analysis methods for rising
speed while preserving the accuracy in a reasonable level.
HDM-Analyzer is able to predict the majority of decision
making points by utilizing the statistical information which is
gathered by dynamic analysis; therefore, there is no execution
overhead. The importance was given to the process of
incorporating the accuracy advantage of dynamic analysis
into static analysis in order to augment the accuracy of static
analysis. In fact, the execution overhead has been tolerated in
learning phase; thus, it does not impose on feature extraction
phase which is performed in scanning operation. They
experimentally demonstrated that HDM-Analyzer attains
better overall accuracy and time complexity than static and
dynamic analysis methods.

V. CONCLUSION

In this survey a series of malware detection techniques have
been presented. We have presented signature based detection
and data mining based detection techniques using different
types of features like API, N-Grams, Opcode and control
flow graph. Data Mining is a vast area used in variety of
applications that requires data analysis. Now a day’s data
mining techniques plays an important role in malware
detection systems. Different data mining techniques like
Classification, Clustering and Association rules are
frequently used to acquire information about malware as well
as intrusions by observing network data. Still the research on
data mining techniques in malware detection is going on and
this survey might help the researchers for some extent.
Similarly, Detection of malware’s changing their signatures
frequently has posed many open research issues. Challenge
lies in the development of good disassembler, similarity
analysis algorithm so that the variants of malware’s can be
detected in shorter time there by reducing the computation
overhead.

REFERENCES

[1] Kirti Mathur, Saroj Hiranwal, A Survey on Techniques in Detection
and Analyzing Malware Executables, International Journal of
Advanced Research in Computer Science and Software Engineering,
ISSN: 2277 128X, Volume 3, Issue 4, April 2013.

[2] Vinod P. V.Laxmi,M.S.Gaur: Survey on Malware Detection Methods,
3rd Hackers” Workshop on Computer and Internet Security,
Department of Computer Science and Engineering, Prabhu Goel
Research Centre for Computer & Internet security, 1T, Kanpur, pp-74-
79, March,2009.

[3] Pham Van Hung, An approach to fast malware classification with
machine learning technique, Keio University, 5322 Endo Fujisawa
Kanagawa 252-0882 JAPAN, 2011.

[4] Ammar Ahmed E. Elhadi, Mohd Aizaini Maarof and Ahmed Hamza
Osman, Malware detection Based on Hybrid Signature Behaviour
Application Programming Interface Call Graph, American Journal of
Applied Sciences 9 (3): 283-288, 2012, ISSN 1546-9239, 2012,
Science Publications.

Volume 3, | ssue 16

Published by, www.ijert.org 6



Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
TITCON-2015 Conference Proceedings

[5]

(6]

(7

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

Ravindar Reddy Ravula. Classification of Malware using Reverse
Engineering and Data mining Techniques, Thesis-Master of Science,
University of Akron, August 2011.

Robiah Y, Siti Rahayu S., Mohd Zaki M, Shahrin S., Faizal M. A,
Marliza R.,A New Generic Taxonomy on Hybrid Malware Detection
Technique, (IJCSIS)International Journal of Computer Science and
Information Security, Vol. 5, No. 1, 2009.

Matthew G. Schultz, Eleazar Eskin, Erez Zadok, and Salvatore J.
Stolfo, Data Mining Methods for Detection of New Malicious
Executables, in Proceedings of the Symposium on Security and
Privacy, 2001, pp. 3849.

Raja Khurram Shahzad, Niklas Lavesson, Henric Johnson, Accurate
Adware Detection using Opcode Sequence extraction, in Proc. of the
6th International Conference on Availability, Reliability and Security
(ARES11),Prague, Czech Republic. IEEE, 2011, pp. 189-195.

Sunita Beniwal, Jitender Arora, Classification and Feature Selection
Techniques in Data Mining, International Journal of Engineering
Research & Technology (IJERT),Vol. 1 Issue 6, August — 2012, ISSN:
2278-0181.

M. Schultz, E. Eskin, E. Zadok, and S. Stolfo, ” Data mining methods
for detection of new malicious executables.” In IEEE Symposium on
Security and Privacy, pages 38-49. IEEE COMPUTER SOCIETY,
2001.

S. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls.” Journal of Computer Security, pp. 151-180,
1998.

J. Bergeron, M. Debbabi, J. Desharnais, M. M. Erhioui, and N. Tawbi,
“Static detection of malicious code in executable programs.” Int. J. Of
Req. Eng., 2001.

R. Sekar, M. Bendre, P. Bollineni, and D. Dhurjati, “A Fast
Automaton- Based Approach for Detecting Anomalous Program
Behaviors.” In IEEE Symposium on Security and Privacy, 2001.

A. H. Sung, J. Xu, P. Chavez, and S. Mukkamala, “Static Analyzer of
Vicious Executables.” In 20th Annual Computer Security Applications
Conference, pp. 326-334, 2004.

Y. Ye, D. Wang, T. Li, and D. Ye, “IMDS: Intelligent malware
detection system,” in Proc. ACM Int. Conf. Knowl. Discovery Data
Mining, pp. 1043-1047, 2007.

Y. Ye, T. Li, Q. Jiang, and Y. Wang, “CIMDS: adapting
postprocessing techniques of associative classification for malware
detection,” IEEE Trans. Syst., Man, Cybern. C, vol. 40, no. 3, pp. 298-
307, 2010.

W. Snedecor and W. Cochran, “Statistical Methods”, 8th ed. Iowa City,
IA: lowa State Univ. Press, 1989.

K. Jeong and H. Lee, “Code graph for malware detection. In
Information Networking.” ICOIN. International Conference on, Jan
2008.

J. Lee, K. Jeong, and H. Lee, “Detecting metamorphic malwares using
code graphs” In Proceedings of the ACM symposium on Applied
Computing, ser. New York, NY, USA: ACM, pp. 1970-1977, 2010.

Y. Ye, T. Li, K. Huang, Q. Jiang and Y. Chen, “Hierarchical
associative classifier (HAC) for malware detection from the large and
imbalanced gray list”. Journal of Intelligent Information Systems,
35(1), pp.1-20. 2010.

Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of
self forUnix processes. In: Proceedings of the IEEE Symposium on
Security and Privacy, pp. 120-128 (1996).

Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using
sequences of system calls. J. Comput. Secur. 6(3), 151-180 (1998).
Wespi, A., Dacier, M., Debar, H.: Intrusion detection using variable-
length audit trail patterns. In: Proceedings of the Recent Advances in
Intrusion Detection, pp. 110-129. Springer, France (2000).

Sato, I., Okazaki, Y., Goto, S.: An improved intrusion detection method
based on process profiling. IPSJ J. 43, 3316-3326 (2002).

Manzoor, S., Shafig, M.Z., Tabish, S.M., Faroog, M.: A sense of
‘danger’ for windows processes. In: ICARIS. LNCS, vol. 5666, pp.
220-233. Springer, Heidelberg (2009).

VX Heavens Virus Collection. http://vx.netlux.org/vl.php

API Monitor. http://www.rohitab.com/apimonitor.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Aickelin, U., Bentley, P., Cayzer, S., Kim, J., McLeod, J.: Danger
theory: the link between AIS and IDS? In: Proceedings of the ICARIS.
LNCS, vol. 2787, pp. 147-155, Springer, Heidelberg (2003).

Greensmith, J., Aickelin, U., Cayzer, S.: Introducing dendritic cells as a
novel immune-inspired algorithm for anomaly detection. In:
Proceedings of the ICARIS. LNCS, vol. 3627, pp. 153-167, pringer,
Heidelberg (2005).

Greensmith, J., Aickelin, U.: The deterministic dendritic cell algorithm.
In: Proceedings of the ICARIS. LNCS, vol. 5132, pp. 291- 303.
Springer, Heidelberg (2008).

Ahmed, F., Hameed, H., Shafig, M.Z., Faroog, M.: Using spatio-
temporal information in API calls with machine learning algorithms for
malware detection. In: Proceedings of the ACM Conference on
Computer and Communications Security, pp. 55-62 (2009).

Parampalli, C., Sekar, R., Johnson, R.: A practical mimicry attack
against powerful system-callmonitors. In: Proceedings of theACM
Symposium on Information, Computer andCommunications Security
(AsiaCCS), pp. 156-167, Japan (2008).

Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion
detection systems. In: Proceedings of the ACM Conference on
Computer and Communications Security (CCS), pp. 255-264. ACM
Press, New York (2002).

Oberheide, J.: Detecting and evading CWSandbox. http://jon.
oberheide.org/blog/2008/01/15/detecting-and-evading- wsandbox/
Seifert, C., Steenson, R., Welch, I., Komisarczuk, P., Endicott-
Popovsky, B.: Capture—a behavioral analysis tool for applications and
documents. Digit. Investig. 4(Suppl. 1), S23-S30 (2007).

Zhang Fuyong ,Qi Deyu: Run-time malware detection based on
positive selection. Springer 267-277(2011).

Madhu K. Shankarapani ,Subbu Ramamoorthy ,Ram S. Movva
,Srinivas Mukkamala: Malware detection  using assembly and API
call sequences. Springer J Comput Virol (2011) 7:107-119.

D. Bilar, “OpCodes as predictor for malware,” International Journal of
Electronic Security and Digital Forensics, vol. 1, no. 2, p. 156, 2007.

I. Santos, F. Brezo, J. Nieves, and Y. Penya, “Idea: OpCode-
sequencebased malware detection,”, Engineering Secure Software and
System, 2010.

C. Peng, H. Long and F. Ding, “Feature selection based on mutual
information: cri-teria of max-dependency, max-relevance, and
minredundancy.,” in IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2005.

I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas, “OpCode
sequences as representation of executables for data-mining-based
unknown malware detection,” Information Sciences, Aug. 2011.

1. Santos, C. Laorden, and P. Bringas, “Collective classification for
unknown malware detection,” Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security,
2011.

1. Santos, F. Brezo, B. Sanz, C. Laorden, and P. G. Bringas, “Using
opCode sequences in single-class learning to detect unknown
malware,” IET Information Security, vol. 5, no. 4, p. 220, 2011.

1. Santos, B. Sanz, and C. Laorden, “OpCode-sequence-based
semisupervised unknown malware detection,”, Computational
Intelligence in Security for Information Systems , 2011.

N. Runwal, R. M. Low, and M. Stamp, “OpCode graph similarity and
metamorphic detection,” Journal in Computer Virology, vol. 8, no. 1-2,
pp. 37-52, Apr. 2012.

A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y. Elovici,
“Detecting unknown malicious code by applying classification
techniques on OpCode patterns,” Security Informatics, vol. 1, no. 1, p.
1, 2012.

T. Abou-assaleh, N. Cercone, V. KelJ, and R. Sweidan, “N-gram-based
Detection of New Malicious Code,” no. 1, 2004.

G. B. S. Gerald, J. Tesauro, Jeffrey O. Kephart, “Neural Network for
Computer Virus Recognition.” IEEE Expert, 1996.

W. A. and G. Tesauro, “Automatically Generated Win32 Heuristic
Virus Detection,” in Virus Bulletin Conference, 2000.

Volume 3, | ssue 16

Published by, www.ijert.org 7



Special Issue- 2015

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
TITCON-2015 Conference Proceedings

[50]

[51]

[52]

[53]

[54]
[55]
[56]

[57]

(58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

M. M. Kolter JZ, “Learning to detect malicious executables in the
wild.” in roc of the 10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2006.

J. Z. Kolter and M. A. Maloof, “Learning to Detect and Classify
Malicious Executables in the Wild,” vol. 7, pp. 2721-2744, 2006.

T. J. Cai DM, M. Gokhale, “Comparison of feature selection and
classification algorithms in identifying malicious executables,” in
Computational Statistics and Data Analysis, 2007.

E. Y. Moskovitch, D. Stopel, C. Feher, N. Nissim and N. Japkowicz,
“Unknown malcode detection and the imbalance problem,” journal in
Computer Virology, 2009.

P. Jalote, "An Integrated Approach to Software Engineering", Springer,
New York, NY, 2005.

T. McCabe, "A complexity measure", IEEE Transactions on Software
Engineering SE-2(4): 308-320, 1976.
L. Tan, "TheWorst Case Execution Time Tool Challenge”, The
External Test, Technical report, 2006.

D. Bruschi, L. Martignoni and M. Monga “Detecting self-mutating
malware using control-flow graph matching,” In: Biischkes, R. And
Laskov, P. (eds) Detection of Intrusions and Malware & Vulnerability
Assessment, volume 4064 of LNCS, pp 129-143. Springer, Berlin.
2006.

Z. Zhao, “A virus detection scheme based on features of Control Flow
Graph.” 2nd International Conference on Artificial Intelligence,
Management Science and Electronic Commerce (AIMSEC), pages
943- 947, 2011.

T. M. Mitchell, “Machine learning and data mining,” Commun. ACM,
vol. 42, no. 11, 1999.

L. Breiman. “Bagging Predictors.” Machine Learning, 24(2):123-140,
1996.

L. Breiman. “Random Forests.” Machine Learning, 45(1):5-32, 2001.

G. Bonfante, M. Kaczmarek, J.Y. Marion. ‘‘Control Flow Graphs as
Malware Signatures.”” WTCV, May, 2007.

Blake Anderson, Daniel Quist, Joshua Neil, Curtis Storlie, Terran Lane
“Graph-based malware detection using dynamic analysis” J Comput
Virol (2011) 7:247-258, Springer-Verlag France 2011.

Je_rey O. Kephart and Bill Arnold. “Automatic Extraction of Computer
Virus Signatures.” In Proceedings of the 4th Virus Bulletin Internation
conference, pp. 178-184, 1994.

Gerald J. Tesauro, Je_rey O. Kephart, and Gregory B. Sorkin. “Neural
Network for Computer Virus Recognition.” IEEE Expert, 11(4):5-6,
1996.

K.Wang W. Li and, S. Stolfo, , and B. Herzog. “Fileprints: Identifying
File Types by n-gram Analysis.” In 6th IEEE Information Assurance
Workshop, 2005.

InSeon Yoo. “Visualizing windows executable viruses using self-
organizing maps.” In Proceedings of the 2004 ACM workshop on
Visualization and data mining for computer security, pp. 82-89, 2004.

Matthew G. Schultz, Eleazar Eskin, Erez Zadok, and Salvatore J.
Stolfo. “Data Mining Methods for Detection of New Malicious
Executables.” In Proceedings of the IEEE Symposium on Security and
Privacy, pp. 3849, 2001.

Matthew G. Schultz, Eleazar Eskin, Erez Zadok, Manasi
Bhattacharyya, and Salvatore J. Stolfo. “MEF: Malicious Email Filter:
A UNIX mail Filter That Detects Malicious Windows Executables.”
pp. 245-252, 2001.

Farrukh Shahzad , Muddassar Farooq “ELF-Miner: using structural
knowledge and data mining methods to detect new (Linux) malicious
executables.” Knowl Inf Syst, pp: 589-612, Springer-Verlag London
Limited 2011.

Mojtaba Eskandari , Zeinab Khorshidpour, Sattar Hashemi “HDM-
Analyser: a hybrid analysis approach based on data mining techniques
for malware detection” J Comput Virol Hack Tech (2013) 9:77-93
Springer-Verlag France 2013.

Volume 3, | ssue 16

Published by, www.ijert.org 8



