
A Study on Malware Taxonomy and Malware

Detection Techniques

Satya Narayan Tripathy1, S. K. Das2, Brojo Kishore Mishra3, Om Prakash Samantray4
1,2,4Department of Computer Science, Berhampur University, Berhampur, India.

3C. V. Raman College of Engineering, Bhubaneswar, India.

 Abstract— Malware is one of the most serious security

threats on the Internet today. The threat is increasing in a

greater pace with the intensive use of networks and Internet in

our day-to-day activities. The most recent reports emphasize

that the invention of malicious software is rapidly increasing.

Over the last decade, a number of studies have been made on

malware and their countermeasures. Researchers and

manufacturers are making great efforts to invent effective

malware detection methods to produce anti-malware systems for

better protection of computers and networks. In this paper, a

detailed study has been conducted on malware taxonomy and

the approaches made by the researchers to improve anti-

malware or malware detection systems, giving emphasis on

signature-based and data mining based techniques in malware

detection. Thus, it provides an up-to-date comparative reference

to the researchers and developers of malware detection systems.

Keywords—Malware, anti-malware, malware detection

systems, data mining, Signature-based.

I. INTRODUCTION

 Software which is specifically designed to disrupt or

damage a computer system is known as malware. Malware is

short for “malicious software” - computer programs designed

to infiltrate and damage computers without the users consent.

It is code or software that is specifically designed to damage,

disrupt, steal, or in general inflict some other “bad” or

illegitimate action on data, hosts, or networks. Malware

creators or malware writers started off writing malware in the

early 1980’s. Until the late 1990’s most of the malwares were

just pranks made up in order to annoy users and to see how

far a malware could spread but, in the late 1990’s and early

2000’s, as the internet had become everyone’s tool for

communication, marketing, business and banking, the

malware writers and hackers began to put their talent to more

professional and sometimes criminal use. Today many

experts believe the amount of malicious software being

released on the web might actually surpass the release of

valid software.

 The term malware includes viruses, worms, Trojan

Horses, rootkits, spyware, adware, keyloggers, botnet and

more. To get an overview of the difference between all these

types of threats and the way they work, it makes sense to

divide them into groups [1].

A. Viruses and worms - the contagious threat

 Viruses and worms are defined by their behaviour –

malicious software designed to spread without the user’s

knowledge. A virus infects legitimate software and when this

software is used by the computer owner it spreads the virus –

so viruses need you to act before they can spread. Computer

worms, on the other hand, spread without user action. Both

viruses and worms can carry a so-called “payload” –

malicious code designed to do damage. A virus is a type of

malware that propagates by inserting a copy of itself into and

becoming part of another program. It spreads from one

computer to another, leaving infections as it travels. Almost

all viruses are attached to an executable file, when the file is

executed; the viral code is executed as well. Viruses spread

when the software or document they are attached to is

transferred from one computer to another using the network,

a disk, file sharing, or infected e-mail attachments. Unlike

viruses, worms are standalone softwares and do not require a

host program or human help to propagate. To spread, worms

either exploit vulnerability on the target system or use some

kind of social engineering to trick users into executing them

[1].

B. Trojans, rootkits and adware – the masked threat

 Trojans and rootkits are grouped together as they both

seek to conceal attacks on computers. Trojan Horses are

malignant pieces of software pretending to be benign

applications. Users therefore download them thinking they

will get a useful piece of software and instead end up with a

malware infected computer. Rootkits are a masking technique

for malware, but do not contain damaging software. Rootkit

techniques were invented by virus writers to conceal

malware, so it could go unnoticed by antivirus detection and

removal programs. Trojan is named after the wooden horse

the Greeks used to infiltrate Troy. It is a harmful piece of

software that looks legitimate. Users are typically tricked into

loading and executing it on their systems. After it is activated,

it can achieve any number of attacks on the host, from

irritating the user (popping up windows or changing

desktops) to damaging the host (deleting files, stealing data,

or activating and spreading other malware, such as viruses).

Trojans are also known to create back doors to give malicious

users access to the system. Unlike viruses and worms,

Trojans do not reproduce by infecting other files nor do they

self-replicate. Trojans must spread through user interaction

such as opening an e-mail attachment or downloading and

running a file from the Internet. Adware or Advertising-

supported software automatically plays, displays or

downloads advertisements to a computer after malicious

software is installed or application is used. This kind of code

is also embedded into free software. The most common

source of adware programs are free games, Peer to peer

clients like Kazaa, Bearshare etc [1].

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

TITCON-2015 Conference Proceedings

Volume 3, Issue 16

Special Issue - 2015

1

C. Spyware and keyloggers – the financial threat

 Spyware and keyloggers are malware used in malicious

attacks like identity theft, phishing and social engineering -

threats designed to steal money from unknowing computer

users, businesses and banks. Spyware is a collective term

used for software which monitors or gathers personal

information about the user like ,the pages frequently visited,

email address, credit card no, key pressed by user etc. It

enters a system when free or trial software is downloaded and

installed without the user’s knowledge. It changes the settings

of yours browser and adds abdominal browser toolbars [2].

II. MALWARE ANALYSIS TECHNIQUE

 Malware analysis is necessary to develop effective

malware detection technique. It is the process of analyzing

the purpose and functionality of a malware, so the goal of

malware analysis is to understand how a specific piece of

malware works so that defenses can be built to protect the

organization’s network. There are three types of malware

analysis which achieve the same goal of explaining, how

malware works, their effects on the system but the tools, time

and skills required to perform the analysis are very different.

A. Static analysis

 Analysis of the infected file without executing it is known

as static analysis. It is also known as code analysis. It is the

process of analyzing the program by examining it i.e.

software code of malware is observed to gain the knowledge

of how malware’s functions work. In this technique reverse

engineering is performed by using disassemble tool,

decompile tool, debugger, source code analyzer tools such as

IDA Pro and Ollydbg in order to understand structure of

malware [3]. In this approach, we extract low-level

information such as Control Flow Graphs (CFGs), Data-Flow

Graphs (DFGs) and System call analysis. This information

can be gathered by disassembling or decompiling the infected

file using different tools as mentioned earlier. Before

program is executed, static information is found in the

executable including header data and the sequence of bytes is

used to determine whether it is malicious. Disassembly

technique is one of the techniques of static analysis. With

static analysis executable file is disassembled using

disassembling tools like XXD, Hex dump, NetWide

command, to get the assembly language program file. From

this file the opcode is extracted as a feature to statically

analyze the application behaviour to detect the malware [5].

Sometimes analyzing the infected file in a different

environment to avoid auto execution of the malware is better.

Using static analysis we get fast, safe and low false positives

and we trace all paths, which helps in terms of getting a lot of

information to analyze. On the other hand static analysis may

fail in analyzing unknown malware that uses code

obfuscation techniques.

B. Dynamic analysis

 It is also called as behavioral analysis. Analysis of

infected file during its execution is known as dynamic

analysis [4]. Infected files are analyzed in simulated

environment like a virtual machine, simulator, emulator,

sandbox etc. [1]. After that malware researchers use

SysAnalyzer, Process Explorer, ProcMon, RegShot, and other

tools to identify the general behaviour of file [3]. In dynamic

analysis the file is detected after executing it in real

environment, during execution of file its system interaction,

its behaviour and effect on the machine are monitored. The

advantage of dynamic analysis is that it accurately analyses

the known as well as unknown, new malware. It’s easy to

detect unknown malware also it can analyze the obfuscated,

polymorphic malware by observing their behaviour but this

analysis technique is more time consuming. It requires as

much time as to prepare the environment for malware

analysis such as virtual machine environment or sandboxes

[5]. Dynamic analysis fails to detect activities of interest if

the target changes its behavior depending on trigger

conditions such as existence of a specific file or specific day

as only a single execution path may be examined for each

attempt.

C. Hybrid analysis

 This technique is proposed to overcome the limitations of

static and dynamic analysis techniques. It firstly analyses the

signature specification of any malware code & then combines

it with the other behavioral parameters for enhancement of

complete malware analysis. Due to this approach hybrid

analysis overcomes the limitations of both static and dynamic

analysis [1].

III. MALWARE DETECTION METHODS

 Malware detection techniques are used to detect the

malware and prevent the computer system from being

infected, protecting it from potential information loss and

system compromise. They can be categorized into signature-

based detection, heuristic-based detection, specification-

based and data mining based detection as shown in figure 1.

Figure 1: Types of malware detection Methods

A. Signature-Based Detection

 It is also called as Misuse detection. It maintains the

database of signature and detects malware by comparing

pattern against the database. The signatures are created by

examining the disassembled code of malware binary.

Disassembled code is analyzed and features are extracted.

These features are used in constructing the signature of

particular malware family. A library of known code

signatures is updated and refreshed constantly by the

antivirus software vendor so this technique can detect the

known instances of malware accurately. The main advantages

of this technique is that it can detect known instances of

malware accurately, less amount of resources are required to

detect the malware and it mainly focus on signature of attack.

The major drawback is that it can’t detect the new, unknown

instances of malware as no signature is available for such

type of malware.

Malware detection Methods

Signature

Based
Heuristic

Based

Specification

Based

Data Mining

Based

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

TITCON-2015 Conference Proceedings

Volume 3, Issue 16

Special Issue - 2015

2

B. Heuristic-Based Detection

 It is also called as behaviour or anomaly-based detection.

The main purpose is to analyze the behaviour of known or

unknown malwares. Behavioral parameter includes various

factors such as source or destination address of malware,

types of attachments, and other countable statistical features.

It usually occurs in two phases: Training phase and detection

phase. During training phase the behaviour of system is

observed in the absence of attack and machine learning

technique is used to create a profile of such normal

behaviour. In detection phase this profile is compared against

the current behaviour and differences are considered as

potential attacks [6]. The advantage of this technique is that it

can detect known as well as new, unknown instances of

malware and it focuses on the behaviour of system to detect

unknown attack. The disadvantage of this technique is that it

needs to update the data describing the system behaviour and

the statistics in normal profile but it tends to be large. It need

more resources like CPU time, memory and disk space and

level of false positive is high.

C. Specification-Based Detection

 It is derivative of behaviour-based detection that tries to

overcome the typical high false alarm rate associated with it.

Specification based detection relies on program specifications

that describe the intended behaviour of security critical

programs [6]. It involves monitoring program executions and

detecting deviation of their behaviour from the specification,

rather than detecting the occurrence of specific attack

patterns. This technique is similar to anomaly detection but

the difference is that instead of relying on machine learning

techniques, it will be based on manually developed

specifications that capture legitimate system behaviour [6].

The advantage of this technique is that it can detect known

and unknown instances of malware and level of false positive

is low but level of false negative is high and not as effective

as behaviour based detection in detecting new attacks;

especially in network probing and denial of service attacks.

Development of detailed specification is time consuming.

D. Data mining based detection

 From last decade data mining has been the main focus of

many malware researcher for detecting the new, unknown

malwares; they have added data mining as a fourth proposed

malware detection technique. In 2001 Schultz [7] first

introduced the idea of applying the data mining and machine

learning method for the detection of new, unknown malware

based on their respective binary codes. Then different studies

have been conducted for detection of different malwares.

Data mining helps in analyzing the data, with automated

statistical analysis techniques, by identifying meaningful

patterns or correlations. The results from this analysis can be

summarized into useful information and can be used for

prediction. Machine learning algorithms are used for

detecting patterns or relations in data, which are further used

to develop a classifier [8]. The common method of applying

the data mining technique for malware detection is to start

with generating a feature sets. These feature sets include

instruction sequence, API/System call sequence, hexadecimal

byte code sequence (n-gram) etc. The numbers of extracted

features are very high so various text categorization

techniques are applied to select consistent features and

generate the training and test feature sets. Then classification

algorithms are applied on the consistent training feature set to

generate and train the classifier and test feature set is

examined by using these trained classifiers. The performance

of each classifier is evaluated by identifying the rate of False

Positive, False Negative, True Positive, True Negative and

calculate the TPR, FPR, Recall, precision and F1-measure.

The survey of various feature selection technique &

classification technique used for data mining is presented in

[9]. The advantage of data mining based detection is that

detection rate is high as compared to signature based

detection method [7]. It detects the known as well as

unknown, new instances of malware.

IV. MALWARE DETECTION TECHNIQUES

 Signature based and behavior based malware detection

methods have some disadvantages. Hence, heuristic malware

detection methods are proposed to overcome these

disadvantages. Heuristic malware detection methods use data

mining and machine learning techniques to learn the behavior

of an executable file. e.g. as the first attempt, Naïve Bayes

and Multi Naïve Bayes were presented by Schultz et al. [10]

to classify malware and benign files. Perceptibly, these ML

techniques require some features representing the input

instance in the way that can be used for classification. Some

of the features used for malware detection are, API

(Application Programming Interface) calls, CFG (Control

Flow Graph), N-Gram, Opcode and Hybrid features.

 Almost all programs send their requests to the Operating

System using API calls. Hence, the behavior of a piece of

code like malware can easily be reflected using API

sequences. Hofmeyr et al. [11] were among the first ones who

regarded API call sequences as a feature of a malware. They

introduced an anomaly detection method based on system call

sequences. Normal behavior profiles were made using short

sequences of system calls. Hamming distance was used for

matching sequences; also a threshold used to determine

anomalies. Typically, large Hamming distance value reported

as anomalies. Later, an extensive research on malware

detection using API calls was done by Bergeron et al. [12],

Sekar et al. [13], Sung et al. [14], etc. In 2007, based on the

analysis of Windows API execution sequences called by

Portable Executable (PE) files, Ye et al. [15] proposed

Intelligent Malware Detection System (IMDS) using Object

Oriented Association (OOA) mining based classification. To

generate efficient OOA rules for classification, an OOA-Fast-

FP Growth algorithm is adapted. In spite of its good

performance in malware detection, IMDS has few demerits

such as, Handling the large set of generated rules to build the

classifier and finding effective rules to classify new file

samples. To overcome these problems, Ye et al. [16] used

post processing techniques of associative classification. At

first they applied Chi-squared testing [17] and insignificant

rule pruning, followed by database coverage based on the

Chi-square measure rule ranking mechanism and Pessimistic

error estimation. They finally, performed prediction by

selecting the best first rule. They incorporate IDCPF [16] into

existing IMDS system and called the new system CIMDS. It

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

TITCON-2015 Conference Proceedings

Volume 3, Issue 16

Special Issue - 2015

3

was the first attempt on using post processing techniques of

associative classification in malware detection. Jeong and Lee

[18] used system call sequences for both malicious and

benign executables to build a topological graph which is

called code graph. For every binary program this graph is

extracted and is compared with the code graph of malicious

and benign programs. Based on this comparison, a program is

classified as malware or benign. Due to these large sized

graphs, Lee et al. [19] classified API calls to 128 groups, so

the code graph reduced. Ye et al. [20] proposed an

interpretable classifier based on the analysis of API calls by a

PE file for detecting malware from large and imbalanced gray

list. They have studied around 8,000,000 malware and benign

files with 100,000 samples from the gray list collected from

lab of King Soft Corporation and built effective associative

classifier based on several different post processing

techniques including rule pruning and rule reordering. Then,

to make the classifier less sensitive to the imbalance dataset

and improve its performance, they developed the Hierarchical

Associative Classifier (HAC).

 Forrest et al. [21] powered system calls to discriminate

between benign and UNIX processes. Hofmeyret al. [22]

build normal behavior of UNIX processes in terms of short

sequences of system calls. The Hamming distance is used to

determine how closely a system call sequence resembles

another. A threshold must be set to determine whether a

process is anomalous. Wepsi et al. [23] proposed an

improved version with variable length system call sequences.

A detection method based on the frequency of system calls

has been proposed by Sato et al. [24]. Manzoor et al. [25]

collect some Windows malicious executables from VX

Heavens [26] and their API call sequences are monitored by

API Monitor [27]. The DCA (Dendritic Cell Algorithm) [28-

30] is applied for detection. Later, Ahmed et al. [31] use

statistical features which extracted from both spatial

(arguments) and temporal (sequences) information available

in Windows API calls for malware detection. All these

methods use system calls or API calls to monitor program

behavior. However, the system call or API call sequences can

be manipulated by a crafty attacker to circumvent detection

[32–34]. Seifert et al. [35] compared three popular event-

based techniques that can monitor program behavior: user

mode API hooking, kernel mode API hooking, and kernel

mode callbacks. Z. Fuyong et al. [36] proposed a novel

classification algorithm based on the idea of positive

selection, which is one of the important algorithms in

Artificial Immune Systems (AIS), inspired by positive

selection of T-cells. The proposed algorithm is applied to

learn and classify program behavior based on I/O Request

Packets (IRP). Their experiments proved that the proposed

algorithm outperforms Artificial Negative Selection classifier

(ANSC), Naïve Bayes, Bayesian Networks, Support Vector

Machine, and Decision Tree. This algorithm can also be used

in general purpose classification problems not just two-class

but multi-class problems.

 M. K. Shankarapani et al. [37] presented detection

algorithms that can help the antivirus community to ensure a

variant of a known malware can still be detected without the

need of creating a signature; a similarity analysis (based on

specific quantitative measures) is performed to produce a

matrix of similarity scores that can be utilized to determine

the likelihood that a piece of code under inspection contains a

particular malware. They presented two techniques such as,

Static Analyzer for Vicious Executables (SAVE) and

Malware Examiner using disassembled Code (MEDiC).

MEDiC uses assembly calls for analysis and SAVE uses API

calls (Static API call sequence and Static API call set) for

analysis. They showed that assembly can be superior to API

calls as it allows a more detailed comparison of executables.

On the other hand, API calls can be superior to Assembly for

its speed and its smaller signature. Their two proposed

techniques are implemented in SAVE and MEDiC and

experimentally proved that both these proposed techniques

can provide a better detection performance against obfuscated

malware.

 An OpCode (Operational Code) is the part of a ML

instruction that identifies the operation to be executed. More

specifically, instructions of a program are defined as a pair

composed of an operational code and an operand or a list of

operands. The most significant research on Opcode has been

done by Bilar [38]. He showed the ability of single Opcode to

use as a feature in malware detection. To this end, he proved

that Opcode can be used as a powerful representation for

executable files. Santos et al.[39] presented various type of

malware detection techniques based on Opcode sequences. In

their first work, they presented an approach focused on

detecting obfuscated malware variants using the appearance

frequency of Opcode sequences in order to build a

representation of executable files. To do so, they had applied

the disassembly process on exe files and built an opcode

profile containing a list of Opcodes from the generated

assembly files and then they computed the relevance of each

Opcode based on the frequency of appearance of each of

them in both datasets (i.e. malware and benign dataset) using

mutual information[40]. Finally they used Weighted Term

Frequency (WTF) [41] to make suitable feature vector

extracted from executables. They used this feature vector in

order to detect obfuscated malware variants and to this end

they calculated the Cosine similarity measure between two

feature vectors (i.e. new instance feature vector and malware

variants feature vector). Afterward, in the next work, Santos

et al. [41] presented a new feature extraction method based

on Opcode sequences [41] and trained several machine

learning classifiers by embedding the extracted features. As

we know, the machine learning based classifiers requires high

number of samples for each of the concept classes they try to

detect and it is quite difficult to obtain this amount of labeled

data in real world. So, Santos et al., in their next research,

proposed several methods to eliminate this limitation such as

Collective classification [42], Single class learning [43], and

Semi supervised learning [44]. Runwal et al. [45] proposed a

new approach based on Opcodes and used this method for

detecting unknown and also metamorphic malware families

based on a simple graph similarity measurement. They

extracted Opcodes from both file types (i.e. malware and

benign), count the number of each pair Opcodes appeared in

them and based on the numbers, make a graph of Opcodes

and after that can predict the maliciousness of a new

executable by calculating the similarity of graph obtained

from the executable and both file types and finally the file

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

TITCON-2015 Conference Proceedings

Volume 3, Issue 16

Special Issue - 2015

4

will be classified as a class which is more similar to Shabtai

et al. [46] tried to detect unknown malicious codes by

applying classification techniques on Opcode patterns. They

created a dataset of malicious and benign executables for the

Windows operating system. After disassembling the

executables, they calculated the normalized term frequency

(TF) and TF Inverse Document Frequency (TF-IDF)

representations as a feature for each file. Finally, they used

several classical classification techniques such as Support

Vector Machine (SVM), Logistic Regression (LR), Artificial

Neural Networks (ANN) etc. to evaluate the proposed feature

selection method.

 N-Grams are all substrings of a larger string with a length

of N [46]. For example, the string “VIRUS”, can be

segmented into several 3-grams: “VIR”, “IRU”, “RUS” and

so on. Over the past decade, several researches have been

motivated on the detection of unknown malware based on its

binary code content. Schultz et al. [10] were the first who

introduced the idea of applying ML techniques for detection

of diverse malwares based on their own binary codes. Three

different feature extraction methods were engaged: features

mined from the PE section, expressive plain-text strings that

are encoded in executables, and byte sequence features.

Tesauro et al. [48] were the first who try to use N-Grams as a

feature for malware detection domain. They used N-Grams to

detect Boot Sector Viruses using Artificial Neural Networks

(ANN). A Boot Sector Virus is a malware variant which

infects DOS Boot Sector or Master Boot Record (MBR).

When a system has infected, the MBR is usually ruined and

the computer boot order is change. The N-Grams was

selected from most frequent sections in malware and benign

executables. They used a specific feature reduction algorithm

such that each malware must consist of at least four N-Grams

from existing N-Grams set. Tesauro et al. [49], in their next

study, used N-Grams to build several classifiers based on

ANN and also used a specific voting strategy to achieve final

results. In that research a simple threshold value was used to

reduce the number of N-Grams. Abou-Assaleh et al. [47],

presented a framework that uses the Common N-Gram

method and the K-Nearest-Neighbor (KNN) classifier for

malware detection. For both classes (i.e. malicious and

benign) a delegate profile was built. A new instance was

matched with the profiles of both classes and was assigned to

the most similar one. Kotler and Maloof [50] used byte N-

Gram representation to detect unknown malware. Though the

vector of N-Gram features was binary, presenting the

attendance or nonattendance of a feature in the file. In an

extension of their previous study, Kolter and Maloof [51]

classified malware into several families based on the

functions in their respective payload attempting to

approximate their capability to detect malicious codes based

on their subject dates. Cai et al. [52] conducted several

experiments in which they evaluated the mixtures of seven

feature selection techniques, three classifiers, and byte N-

Gram size. Recently, Moskovitch et al. [53] published the

results of a research which used an imbalance data set

characterized by byte N-Grams. Moreover, a research of the

imbalance problem was illustrated.

 Control Flow Graph (CFG) is a graph that represents the

control flow of programs and are widely used in the analysis

of software and have been studied for many years [54], [55],

[56]. CFG is a directed graph, where each node represents a

statement of the program and each edge represents control

flow between the statements (i.e. what happens after what).

Statements may be assignments, copy statements, branches

etc. In Figure 4 we can see an example of a generated CFG

for Chernobyl malware. In [57], authors performed a set of

normalization operation after disassembling an executable

program for reducing effects of mutation techniques and

unveiling the flow connections between benign and malicious

code. Then they generate corresponding CFG for the

program. CFG compared against the CFG of a normalized

malware in order to know whether CFG contains a sub graph

which is isomorphic to CFG of the normalized one. Thus, the

problem of detecting malware is changed to the sub-graph

isomorphism problem. Zhao [58] proposed a detection

method based on features of the control flow graph for PE

files. At first, he created CFG for each executable file. Then,

he used features which extracted from CFG as the train data.

These features are information about nodes, edges and sub

graphs. After feature selection, some data mining algorithm

have been used for classification based on these features such

as Decision Tree [59], Bagging [60] and Random Forest [61].

Bonfante et al. [62] used CFG as a signature for malware

detection. As we mentioned, CFG is composed of nodes and

edges and as we know each assembler consists of four types

of instruction: non-conditional jumps (jmp), conditional

jumps (jcc), function calls (call) and function returns (ret).

They abstract any contiguous sequence of instructions in a

node named “inst”, and after that the end of the program

comes in a node named “end”. So, they defined six types of

node: jmp, jcc, call, ret, inst and end. They build CFG based

on these types. Then, they reduce these nodes in this way: for

any node of kind inst or jmp, they removed the node from the

graph and linked all its predecessors to its unique successor.

After reduction, they used this graph as a signature for each

file. B. Anderson et al. [63] introduced a novel malware

detection algorithm based on the analysis of graphs

constructed from dynamically collected instruction traces of

the target executable. These graphs represent Markov chains,

where the vertices are the instructions and the transition

probabilities are estimated by the data contained in the trace.

They used a combination of graph kernels to create a

similarity matrix between the instruction trace graphs. The

resulting graph kernel measures similarity between graphs on

both local and global levels. Finally, the similarity matrix is

sent to a support vector machine to perform classification.

They used the data representation to perform classification in

graph space rather than using n-gram data.

 Due to the rapid production of malware and the desperate

need for human effort to extract some kinds of signature, the

signature based approach is a tedious solution; thus, an

intelligent malware detection system is required to deal with

new malware threats. Most of intelligent detection systems

utilize some data mining methods in order to distinguish

malware from normal programs. Rey et al. [64] proposed a

data mining techniques for malware detection based on an

automation of signature extraction for viruses. Viruses were

executed in secured environment to infect decoy programs.

Candidate signature of variable length is produced by

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

TITCON-2015 Conference Proceedings

Volume 3, Issue 16

Special Issue - 2015

5

analyzing the infected region in these programs that remains

invariant from on program to another. Signatures with lowest

estimated false positive probabilities were choosen as best

signatures. Then a simple approximation formula can be used

to estimate the probability of a long sequence by combining

the measured frequencies of the shorter sequences from

which it is composed. To measure algorithm’s effectiveness,

candidate signatures are generated and their estimated and

actual probabilities are compared. Then Tesauro et al. [65]

extended the n-grams analysis to detect boot sector viruses

using neural networks. The n-grams were selected based

upon the frequencies of occurrence in viral and benign

programs. Then they continued their work and used n-grams

as features to build multiple neural network classification and

adopted a voting strategy to predict the final outcome. Wang

et al. [66] proposed a method which uses data mining as

detection category to classify various file types based upon

their fileprints. An n-gram analysis method was used and the

distribution of n-grams in a file was used as its fileprint. The

distribution was given by byte value frequency distribution

and standard deviation. These fileprints represented the

normal profile of the files and were compared against

fileprints taken at a later time using simplified Mahalanobis

distance. A large distance indicated a different n-gram

distribution and hence maliciousness. Schultz et al. [68]

proposed a static misuse detection method using data mining

as detection category where strings data were used to fit a

naive-Bayes classifier while n-grams were used to train a

multi naive Bayes classifier with a voting strategy. Dataset

partitioning and 6-Naive-Bayes classifier trained on each

partition of data. They used different feature classifiers that

do not pose a fair comparison among the classifiers. Naive-

Bayes using strings gave the best accuracy in their model.

Extending the same idea, Schultz et al. [69] created MEF,

Malicious Email Filter, that integrated the scheme described

in [68] into a Unix email server where a large dataset

containing 3301 malicious and benign program was used to

train and test a Naive-Bayes classifier. For feature reduction,

the dataset was partitioned into 16 subsets. Each subset is

differently trained on a different classifier and a voting

strategy was used to obtain final outcome. InSeon Yoo [67]

proposed a static misuse detection using data mining where

they used Self Organizing Maps (SOM). N-grams are

extracted from the infected programs and SOM’s were

trained on this data. They claimed that each Virus has its own

DNA like character that changes the SOM projection of the

program that it infects. The method looks for change in the

SOM projection as a result of Virus infection. Hence, it is

able to detect Polymorphic and metamorphic malwares.

 Shahzad et al. [70] carried out a forensic analysis of Linux

executable and linkable format (ELF) files to find out

different features that have the potential to discriminate

malicious executables from benign ones. They selected

features’ set of 383 features that are extracted from ELF

headers and quantified the classification potential of features

using information gain and then removed redundant features

by employing pre-processing filters. Finally, they performed

evaluation among classical rule-based machine learning

classifiers—RIPPER, PART, C4.5 Rules, and decision tree

J48—and bio inspired classifiers—cAnt Miner, UCS, XCS,

and GAssist—to select the best classifier for their system.

They have evaluated their approach on an available collection

of 709 Linux malware samples from vx heavens and

offensive computing. Their experiments show that ELF-

Miner provides more than 99% detection accuracy with less

than 0.1% false alarm rate. M. Eskandari et al. [71] presented

a novel hybrid approach, HDM-Analyzer which takes

advantages of dynamic and static analysis methods for rising

speed while preserving the accuracy in a reasonable level.

HDM-Analyzer is able to predict the majority of decision

making points by utilizing the statistical information which is

gathered by dynamic analysis; therefore, there is no execution

overhead. The importance was given to the process of

incorporating the accuracy advantage of dynamic analysis

into static analysis in order to augment the accuracy of static

analysis. In fact, the execution overhead has been tolerated in

learning phase; thus, it does not impose on feature extraction

phase which is performed in scanning operation. They

experimentally demonstrated that HDM-Analyzer attains

better overall accuracy and time complexity than static and

dynamic analysis methods.

V. CONCLUSION

In this survey a series of malware detection techniques have

been presented. We have presented signature based detection

and data mining based detection techniques using different

types of features like API, N-Grams, Opcode and control

flow graph. Data Mining is a vast area used in variety of

applications that requires data analysis. Now a day’s data

mining techniques plays an important role in malware

detection systems. Different data mining techniques like

Classification, Clustering and Association rules are

frequently used to acquire information about malware as well

as intrusions by observing network data. Still the research on

data mining techniques in malware detection is going on and

this survey might help the researchers for some extent.

Similarly, Detection of malware’s changing their signatures

frequently has posed many open research issues. Challenge

lies in the development of good disassembler, similarity

analysis algorithm so that the variants of malware’s can be

detected in shorter time there by reducing the computation

overhead.

REFERENCES

[1] Kirti Mathur, Saroj Hiranwal, A Survey on Techniques in Detection

and Analyzing Malware Executables, International Journal of

Advanced Research in Computer Science and Software Engineering,
ISSN: 2277 128X, Volume 3, Issue 4, April 2013.

[2] Vinod P. V.Laxmi,M.S.Gaur: Survey on Malware Detection Methods,

3rd Hackers‟ Workshop on Computer and Internet Security,
Department of Computer Science and Engineering, Prabhu Goel

Research Centre for Computer & Internet security, IIT, Kanpur, pp-74-

79, March,2009.

[3] Pham Van Hung, An approach to fast malware classification with

machine learning technique, Keio University, 5322 Endo Fujisawa
Kanagawa 252-0882 JAPAN, 2011.

[4] Ammar Ahmed E. Elhadi, Mohd Aizaini Maarof and Ahmed Hamza

Osman, Malware detection Based on Hybrid Signature Behaviour
Application Programming Interface Call Graph, American Journal of

Applied Sciences 9 (3): 283-288, 2012, ISSN 1546-9239, 2012,

Science Publications.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

TITCON-2015 Conference Proceedings

Volume 3, Issue 16

Special Issue - 2015

6

[5] Ravindar Reddy Ravula. Classification of Malware using Reverse

Engineering and Data mining Techniques, Thesis-Master of Science,
University of Akron, August 2011.

[6] Robiah Y, Siti Rahayu S., Mohd Zaki M, Shahrin S., Faizal M. A.,
Marliza R.,A New Generic Taxonomy on Hybrid Malware Detection

Technique, (IJCSIS)International Journal of Computer Science and

Information Security, Vol. 5, No. 1, 2009.

[7] Matthew G. Schultz, Eleazar Eskin, Erez Zadok, and Salvatore J.

Stolfo, Data Mining Methods for Detection of New Malicious

Executables, in Proceedings of the Symposium on Security and
Privacy, 2001, pp. 3849.

[8] Raja Khurram Shahzad, Niklas Lavesson, Henric Johnson, Accurate
Adware Detection using Opcode Sequence extraction, in Proc. of the

6th International Conference on Availability, Reliability and Security

(ARES11),Prague, Czech Republic. IEEE, 2011, pp. 189-195.

[9] Sunita Beniwal, Jitender Arora, Classification and Feature Selection

Techniques in Data Mining, International Journal of Engineering

Research & Technology (IJERT),Vol. 1 Issue 6, August – 2012, ISSN:
2278-0181.

[10] M. Schultz, E. Eskin, E. Zadok, and S. Stolfo, ” Data mining methods
for detection of new malicious executables.” In IEEE Symposium on

Security and Privacy, pages 38-49. IEEE COMPUTER SOCIETY,

2001.

[11] S. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using

sequences of system calls.” Journal of Computer Security, pp. 151–180,

1998.

[12] J. Bergeron, M. Debbabi, J. Desharnais, M. M. Erhioui, and N. Tawbi,

“Static detection of malicious code in executable programs.” Int. J. Of
Req. Eng., 2001.

[13] R. Sekar, M. Bendre, P. Bollineni, and D. Dhurjati, “A Fast
Automaton- Based Approach for Detecting Anomalous Program

Behaviors.” In IEEE Symposium on Security and Privacy, 2001.

[14] A. H. Sung, J. Xu, P. Chavez, and S. Mukkamala, “Static Analyzer of
Vicious Executables.” In 20th Annual Computer Security Applications

Conference, pp. 326–334, 2004.

[15] Y. Ye, D. Wang, T. Li, and D. Ye, “IMDS: Intelligent malware

detection system,” in Proc. ACM Int. Conf. Knowl. Discovery Data

Mining, pp. 1043–1047, 2007.

[16] Y. Ye, T. Li, Q. Jiang, and Y. Wang, “CIMDS: adapting

postprocessing techniques of associative classification for malware

detection,” IEEE Trans. Syst., Man, Cybern. C, vol. 40, no. 3, pp. 298-
307, 2010.

[17] W. Snedecor and W. Cochran, “Statistical Methods”, 8th ed. Iowa City,
IA: Iowa State Univ. Press, 1989.

[18] K. Jeong and H. Lee, “Code graph for malware detection. In

Information Networking.” ICOIN. International Conference on, Jan
2008.

[19] J. Lee, K. Jeong, and H. Lee, “Detecting metamorphic malwares using

code graphs” In Proceedings of the ACM symposium on Applied

Computing, ser. New York, NY, USA: ACM, pp. 1970-1977, 2010.

[20] Y. Ye, T. Li, K. Huang, Q. Jiang and Y. Chen, “Hierarchical
associative classifier (HAC) for malware detection from the large and

imbalanced gray list”. Journal of Intelligent Information Systems,
35(1), pp.1-20. 2010.

[21] Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of

self forUnix processes. In: Proceedings of the IEEE Symposium on
Security and Privacy, pp. 120–128 (1996).

[22] Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using
sequences of system calls. J. Comput. Secur. 6(3), 151–180 (1998).

[23] Wespi, A., Dacier, M., Debar, H.: Intrusion detection using variable-

length audit trail patterns. In: Proceedings of the Recent Advances in
Intrusion Detection, pp. 110–129. Springer, France (2000).

[24] Sato, I., Okazaki, Y., Goto, S.: An improved intrusion detection method
based on process profiling. IPSJ J. 43, 3316–3326 (2002).

[25] Manzoor, S., Shafiq, M.Z., Tabish, S.M., Farooq, M.: A sense of

‘danger’ for windows processes. In: ICARIS. LNCS, vol. 5666, pp.
220–233. Springer, Heidelberg (2009).

[26] VX Heavens Virus Collection. http://vx.netlux.org/vl.php

[27] API Monitor. http://www.rohitab.com/apimonitor.

[28] Aickelin, U., Bentley, P., Cayzer, S., Kim, J., McLeod, J.: Danger

theory: the link between AIS and IDS? In: Proceedings of the ICARIS.
LNCS, vol. 2787, pp. 147–155, Springer, Heidelberg (2003).

[29] Greensmith, J., Aickelin, U., Cayzer, S.: Introducing dendritic cells as a
novel immune-inspired algorithm for anomaly detection. In:

Proceedings of the ICARIS. LNCS, vol. 3627, pp. 153–167, pringer,

Heidelberg (2005).

[30] Greensmith, J., Aickelin, U.: The deterministic dendritic cell algorithm.

In: Proceedings of the ICARIS. LNCS, vol. 5132, pp. 291– 303.

Springer, Heidelberg (2008).

[31] Ahmed, F., Hameed, H., Shafiq, M.Z., Farooq, M.: Using spatio-

temporal information in API calls with machine learning algorithms for
malware detection. In: Proceedings of the ACM Conference on

Computer and Communications Security, pp. 55–62 (2009).

[32] Parampalli, C., Sekar, R., Johnson, R.: A practical mimicry attack
against powerful system-callmonitors. In: Proceedings of theACM

Symposium on Information, Computer andCommunications Security

(AsiaCCS), pp. 156–167, Japan (2008).

[33] Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion

detection systems. In: Proceedings of the ACM Conference on
Computer and Communications Security (CCS), pp. 255–264. ACM

Press, New York (2002).

[34] Oberheide, J.: Detecting and evading CWSandbox. http://jon.
oberheide.org/blog/2008/01/15/detecting-and-evading- wsandbox/

[35] Seifert, C., Steenson, R., Welch, I., Komisarczuk, P., Endicott-
Popovsky, B.: Capture—a behavioral analysis tool for applications and

documents. Digit. Investig. 4(Suppl. 1), S23–S30 (2007).

[36] Zhang Fuyong ,Qi Deyu: Run-time malware detection based on

positive selection. Springer 267–277(2011).

[37] Madhu K. Shankarapani ,Subbu Ramamoorthy ,Ram S. Movva
,Srinivas Mukkamala: Malware detection using assembly and API

call sequences. Springer J Comput Virol (2011) 7:107–119.

[38] D. Bilar, “OpCodes as predictor for malware,” International Journal of

Electronic Security and Digital Forensics, vol. 1, no. 2, p. 156, 2007.

[39] I. Santos, F. Brezo, J. Nieves, and Y. Penya, “Idea: OpCode-
sequencebased malware detection,”, Engineering Secure Software and

System , 2010.

[40] C. Peng, H. Long and F. Ding, “Feature selection based on mutual

information: cri-teria of max-dependency, max-relevance, and

minredundancy.,” in IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2005.

[41] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas, “OpCode

sequences as representation of executables for data-mining-based
unknown malware detection,” Information Sciences, Aug. 2011.

[42] I. Santos, C. Laorden, and P. Bringas, “Collective classification for
unknown malware detection,” Proceedings of the 6th ACM

Symposium on Information, Computer and Communications Security,

2011.

[43] I. Santos, F. Brezo, B. Sanz, C. Laorden, and P. G. Bringas, “Using

opCode sequences in single-class learning to detect unknown

malware,” IET Information Security, vol. 5, no. 4, p. 220, 2011.

[44] I. Santos, B. Sanz, and C. Laorden, “OpCode-sequence-based

semisupervised unknown malware detection,”, Computational
Intelligence in Security for Information Systems , 2011.

[45] N. Runwal, R. M. Low, and M. Stamp, “OpCode graph similarity and
metamorphic detection,” Journal in Computer Virology, vol. 8, no. 1–2,

pp. 37–52, Apr. 2012.

[46] A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y. Elovici,
“Detecting unknown malicious code by applying classification

techniques on OpCode patterns,” Security Informatics, vol. 1, no. 1, p.

1, 2012.

[47] T. Abou-assaleh, N. Cercone, V. Ke�, and R. Sweidan, “N-gram-based

Detection of New Malicious Code,” no. 1, 2004.

[48] G. B. S. Gerald, J. Tesauro, Jeffrey O. Kephart, “Neural Network for

Computer Virus Recognition.” IEEE Expert, 1996.

[49] W. A. and G. Tesauro, “Automatically Generated Win32 Heuristic

Virus Detection,” in Virus Bulletin Conference, 2000.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

TITCON-2015 Conference Proceedings

Volume 3, Issue 16

Special Issue - 2015

7

[50] M. M. Kolter JZ, “Learning to detect malicious executables in the

wild.” in roc of the 10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2006.

[51] J. Z. Kolter and M. A. Maloof, “Learning to Detect and Classify
Malicious Executables in the Wild,” vol. 7, pp. 2721–2744, 2006.

[52] T. J. Cai DM, M. Gokhale, “Comparison of feature selection and

classification algorithms in identifying malicious executables,” in
Computational Statistics and Data Analysis, 2007.

[53] E. Y. Moskovitch, D. Stopel, C. Feher, N. Nissim and N. Japkowicz,
“Unknown malcode detection and the imbalance problem,” journal in

Computer Virology, 2009.

[54] P. Jalote, "An Integrated Approach to Software Engineering", Springer,
New York, NY, 2005.

[55] T. McCabe, "A complexity measure", IEEE Transactions on Software
Engineering SE-2(4): 308–320, 1976.

[56] L. Tan, "TheWorst Case Execution Time Tool Challenge", The

External Test, Technical report, 2006.

[57] D. Bruschi, L. Martignoni and M. Monga “Detecting self-mutating

malware using control-flow graph matching,” In: Büschkes, R. And
Laskov, P. (eds) Detection of Intrusions and Malware & Vulnerability

Assessment, volume 4064 of LNCS, pp 129–143. Springer, Berlin.

2006.

[58] Z. Zhao, “A virus detection scheme based on features of Control Flow

Graph.” 2nd International Conference on Artificial Intelligence,

Management Science and Electronic Commerce (AIMSEC), pages
943- 947, 2011.

[59] T. M. Mitchell, “Machine learning and data mining,” Commun. ACM,
vol. 42, no. 11, 1999.

[60] L. Breiman. “Bagging Predictors.” Machine Learning, 24(2):123–140,
1996.

[61] L. Breiman. “Random Forests.” Machine Learning, 45(1):5–32, 2001.

[62] G. Bonfante, M. Kaczmarek, J.Y. Marion. ‘‘Control Flow Graphs as

Malware Signatures.’’ WTCV, May, 2007.

[63] Blake Anderson, Daniel Quist, Joshua Neil, Curtis Storlie, Terran Lane
“Graph-based malware detection using dynamic analysis” J Comput

Virol (2011) 7:247–258, Springer-Verlag France 2011.

[64] Je_rey O. Kephart and Bill Arnold. “Automatic Extraction of Computer

Virus Signatures.” In Proceedings of the 4th Virus Bulletin Internation

conference, pp. 178–184, 1994.

[65] Gerald J. Tesauro, Je_rey O. Kephart, and Gregory B. Sorkin. “Neural

Network for Computer Virus Recognition.” IEEE Expert, 11(4):5–6,

1996.

[66] K.Wang W. Li and, S. Stolfo, , and B. Herzog. “Fileprints: Identifying

File Types by n-gram Analysis.” In 6th IEEE Information Assurance
Workshop, 2005.

[67] InSeon Yoo. “Visualizing windows executable viruses using self-

organizing maps.” In Proceedings of the 2004 ACM workshop on

Visualization and data mining for computer security, pp. 82–89, 2004.

[68] Matthew G. Schultz, Eleazar Eskin, Erez Zadok, and Salvatore J.
Stolfo. “Data Mining Methods for Detection of New Malicious

Executables.” In Proceedings of the IEEE Symposium on Security and

Privacy, pp. 38–49, 2001.

[69] Matthew G. Schultz, Eleazar Eskin, Erez Zadok, Manasi

Bhattacharyya, and Salvatore J. Stolfo. “MEF: Malicious Email Filter:
A UNIX mail Filter That Detects Malicious Windows Executables.”

pp. 245–252, 2001.

[70] Farrukh Shahzad , Muddassar Farooq “ELF-Miner: using structural
knowledge and data mining methods to detect new (Linux) malicious

executables.” Knowl Inf Syst, pp: 589–612, Springer-Verlag London

Limited 2011.

[71] Mojtaba Eskandari , Zeinab Khorshidpour, Sattar Hashemi “HDM-

Analyser: a hybrid analysis approach based on data mining techniques

for malware detection” J Comput Virol Hack Tech (2013) 9:77–93

Springer-Verlag France 2013.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

TITCON-2015 Conference Proceedings

Volume 3, Issue 16

Special Issue - 2015

8

