A Study Of Slow Increasing Functions And Their Applications To Some Sequences Of Integers

K. Santosh Reddy*
K. Madhusudhan Reddy and B. Chandra Sekhar
Vardhaman College of Engineering, Shamshabad, Hyderabad, Andhra Pradesh, India

Abstract

In this article we first define a slow increasing function. We investigate some basic properties of slow increasing function. In addition, several applications in some some sequences of integers using the theory of slow increasing functions.

KEYWORDS. Slow Increasing Functions, asymptotically equivalent, sequence of positive integers.

1. INTRODUCTION

Slow increasing functions are defined as follows.
1.1Definition. Let $f:[a, \infty) \rightarrow(0, \infty)$ be a continuously differentiable function such that $f^{\prime}>0$ and $\lim _{x \rightarrow \infty} f(x)=\infty$. Then f is said to be a slow increasing function (s.i.f. in short) if $\lim _{x \rightarrow \infty} \frac{x f^{\prime}(x)}{f(x)}=0$
Write $F=\{f: f$ is a s.i.f. $\}$.
1.2 Examples. (i) $f(x)=\log x, x>1$ is a s.i.f.

Note that $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \log x=\infty$ and $f^{\prime}(x)=\frac{1}{x}, \forall x>1$ and f^{\prime} is continuous
Moreover

$$
\lim _{x \rightarrow \infty} \frac{x f^{\prime}(x)}{f(x)}=\lim _{x \rightarrow \infty} \frac{1}{x} \times \frac{x}{\log x}=0
$$

(ii) $f(x)=\log \log x, x>e$ is also a s.i.f.

2. SOME PROPERTIES

2.1 Theorem. Let $f, g \in F$ and let $\alpha>0, c>0$ be to constants then we have
i) $f+c$
(ii) $f-c$
(iii) $c f$
(iv) $f g$
(v) f^{α}
(vi) $f o g$ (vii) $\log f$
(viii) $f+g$ all lie in F.

Proof: Given that $f, g \in F$ and $\alpha>0, c>0$ be constants.
Proof of (i), (ii), (iii), and (iv) follows the definition 1.1
(v) Let $h=f^{\alpha}$

Note that $\lim _{x \rightarrow \infty} h(x)=\lim _{x \rightarrow \infty} f(x)^{\alpha}=\infty$, and $h^{\prime}(x)=\alpha f(x)^{\alpha-1} f^{\prime}(x)>0$, and h^{\prime} is continuous
Moreover $\lim _{x \rightarrow \infty} \frac{x h^{\prime}(x)}{h(x)}=\lim _{x \rightarrow \infty} \frac{x \alpha f(x)^{\alpha-1} f^{\prime}(x)}{f(x)^{\alpha}}=\alpha \lim _{x \rightarrow \infty} \frac{x f^{\prime}(x)}{f(x)}=0$. Hence $h=f^{\alpha} \in F$
(vi) Let $h=f o g$ i.e $h(x)=f(g(x))$

Note that $\lim _{x \rightarrow \infty} h(x)=\lim _{x \rightarrow \infty} f(g(x))=\infty$, and $h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)>0$, and h^{\prime} is continuous
Moreover $\lim _{x \rightarrow \infty} \frac{x h^{\prime}(x)}{h(x)}=\lim _{x \rightarrow \infty} \frac{x f^{\prime}(g(x)) g^{\prime}(x)}{f(g(x))}=\lim _{x \rightarrow \infty} \frac{g(x) f^{\prime}(g(x))}{f(g(x))} \times \frac{x g^{\prime}(x)}{g(x)}=0$. Hence $h=f o g \in F$
(vii) Let $h=\log f$

Note that $\lim _{x \rightarrow \infty} h(x)=\lim _{x \rightarrow \infty} \log f(x)=\infty$, and $h^{\prime}(x)=\frac{f^{\prime}(x)}{f(x)}>0$, and h^{\prime} is continuous

Moreover $\lim _{x \rightarrow \infty} \frac{x h^{\prime}(x)}{h(x)}=\lim _{x \rightarrow \infty} \frac{x \frac{f^{\prime}(x)}{f(x)}}{\log f(x)}=\lim _{x \rightarrow \infty} x \frac{f^{\prime}(x)}{f(x)} \times \frac{1}{\log f(x)}=0 . \quad$ Hence $h=\log f \in F$ (viii) Let $h=f+g$

For sufficientely large x, we have $0 \leq \frac{x f^{\prime}}{f+g} \leq \frac{x f^{\prime}}{f}$ and $0 \leq \frac{x g^{\prime}}{f+g} \leq \frac{x g^{\prime}}{g}$
By adding the above, we get

$$
0 \leq \lim _{x \rightarrow \infty} \frac{x h^{\prime}(x)}{h(x)} \leq \lim _{x \rightarrow \infty} \frac{x f^{\prime}}{f}+\lim _{x \rightarrow \infty} \frac{x g^{\prime}}{g}=0
$$

$$
\therefore \lim _{x \rightarrow \infty} \frac{x h^{\prime}(x)}{h(x)}=0 \quad \text { Hence } h=f+g \in F
$$

2.2 Theorem. Let $f, g \in F$. Define $h(x)=f\left(x^{\alpha}\right)$ and $k(x)=f\left(x^{\alpha} g(x)\right)$ for each x, then $h, k \in F$.

Proof: Given that $f, g \in F$. Define $h(x)=f\left(x^{\alpha}\right)$ and $k(x)=f\left(x^{\alpha} g(x)\right)$ for each x.
Let

$$
h(x)=f\left(x^{\alpha}\right)
$$

Note that $\lim _{x \rightarrow \infty} h(x)=\lim _{x \rightarrow \infty} f\left(x^{\alpha}\right)=\infty$, and $h^{\prime}(x)=f^{\prime}\left(x^{\alpha}\right) \alpha x^{\alpha-1}>0$, and h^{\prime} is continuous
Moreover $\quad \lim _{x \rightarrow \infty} \frac{x h^{\prime}(x)}{h(x)}=\lim _{x \rightarrow \infty} \frac{x f^{\prime}\left(x^{\alpha}\right) \alpha x^{\alpha-1}}{f\left(x^{\alpha}\right)}=\alpha \lim _{x \rightarrow \infty} \frac{x^{\alpha} f^{\prime}\left(x^{\alpha}\right)}{f\left(x^{\alpha}\right)}=0$
Hence $\quad h(x)=f\left(x^{\alpha}\right)$ is s.i.f.
Let $k(x)=f\left(x^{\alpha} g(x)\right) \quad$ Note that $\lim _{x \rightarrow \infty} k(x)=\lim _{x \rightarrow \infty} f\left(x^{\alpha} g(x)\right)=\infty$, and
$k^{\prime}(x)=f^{\prime}\left(x^{\alpha} g(x)\right)\left[\alpha x^{\alpha-1} g(x)+x^{\alpha} g^{\prime}(x)\right]>0$ and k^{\prime} is continuous

Moreover

$$
\begin{array}{r}
\lim _{x \rightarrow \infty} \frac{x k^{\prime}(x)}{k(x)}=\lim _{x \rightarrow \infty} \frac{x f^{\prime}\left(x^{\alpha} g(x)\right)\left[\alpha x^{\alpha-1} g(x)+x^{\alpha} g^{\prime}(x)\right]}{f\left(x^{\alpha} g(x)\right)} \\
=\alpha \lim _{x \rightarrow \infty} \frac{x^{\alpha} g(x) f^{\prime}\left(x^{\alpha} g(x)\right)}{f\left(x^{\alpha} g(x)\right)}+\lim _{x \rightarrow \infty} \frac{x^{\alpha} g(x) f^{\prime}\left(x^{\alpha} g(x)\right)}{f\left(x^{\alpha} g(x)\right)} \times \frac{x g^{\prime}(x)}{g(x)}=0
\end{array}
$$

Therefore $k(x)=f\left(x^{\alpha} g(x)\right)$ is s.i.f. Hence $h, k \in F$
2.3 Theorem. Let $f, g \in F$ be such that $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\infty$ and $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]>0$. Then $\frac{f}{g} \in F$.

Proof: Given that

$$
f, g \in F, \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\infty \text { and } \frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]>0
$$

Let

$$
h(x)=\frac{f(x)}{g(x)} \text { and } h^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
$$

Moreover

$$
\lim _{x \rightarrow \infty} \frac{x h^{\prime}(x)}{h(x)}=\lim _{x \rightarrow \infty} \frac{x\left(\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}\right)}{\left(\frac{f(x)}{g(x)}\right)}=\lim _{x \rightarrow \infty} \frac{x f^{\prime}(x)}{f(x)}-\lim _{x \rightarrow \infty} \frac{x g^{\prime}(x)}{g(x)}=0
$$

Hence

$$
\frac{f}{g} \in F
$$

2.4 Theorem. Let $h:[a, \infty) \rightarrow(0, \infty)$ be a continuously differentiable function such that $h^{\prime}(x)>0$ and $\lim _{x \rightarrow \infty} h(x)=\infty$
(i) Define $g(x)=h(\log x)$. Then $g \in F \Leftrightarrow \lim _{x \rightarrow \infty} \frac{h^{\prime}(x)}{h(x)}=0$
(ii) Define $k(x)=e^{h(x)}$.Then $k \in F \Leftrightarrow \lim _{x \rightarrow \infty} x h^{\prime}(x)=0$

Proof: Given that $h^{\prime}(x)>0$ and $\lim _{x \rightarrow \infty} h(x)=\infty$
(i) Define $g(x)=h(\log x)$ then $g^{\prime}(x)=\frac{h^{\prime}(\log x)}{x}$

Suppose $g \in F$ then g satisfies $\lim _{x \rightarrow \infty} \frac{x g^{\prime}(x)}{g(x)}=0$ i.e. $\lim _{x \rightarrow \infty} \frac{x \frac{h^{\prime}(\log x)}{x}}{h(\log x)}=0 \Rightarrow \lim _{x \rightarrow \infty} \frac{h^{\prime}(\log x)}{h(\log x)}=0$
Put $t=\log x$ so that $x \rightarrow \infty \Rightarrow t \rightarrow \infty \therefore \lim _{t \rightarrow \infty} \frac{h^{\prime}(t)}{h(t)}=0 \quad$ i.e. $\quad \lim _{x \rightarrow \infty} \frac{h^{\prime}(x)}{h(x)}=0$.
Conversely suppose

$$
\lim _{x \rightarrow \infty} \frac{h^{\prime}(x)}{h(x)}=0
$$

Put $t=e^{x}$ so that $x=\log t$ and $x \rightarrow \infty \Rightarrow t \rightarrow \infty \Rightarrow \lim _{x \rightarrow \infty} \frac{h^{\prime}(x)}{h(x)}=\lim _{t \rightarrow \infty} \frac{h^{\prime}(\log t)}{h(\log t)}=0$
Now

$$
\lim _{t \rightarrow \infty} \frac{t g^{\prime}(t)}{g(t)}=\lim _{t \rightarrow \infty} \frac{h^{\prime}(\log t)}{h(\log t)}=\lim _{x \rightarrow \infty} \frac{h^{\prime}(x)}{h(x)}=0 . \quad \text { Hence } g \in F
$$

(ii) Like proof of (i)
2.5 Theorem. If $f \in F$ then $\lim _{x \rightarrow \infty} \frac{\log f(x)}{\log x}=0$.

Proof: Given that $f \in F, \quad \lim _{x \rightarrow \infty} \frac{\log f(x)}{\log x}=\lim _{x \rightarrow \infty} \frac{\left(\frac{f^{\prime}(x)}{f(x)}\right)}{\left(\frac{1}{x}\right)} \quad$ (byL'Hospital's rule)

$$
=\lim _{x \rightarrow \infty} \frac{x f^{\prime}(x)}{f(x)}=0 \quad \text { i.e. } \lim _{x \rightarrow \infty} \frac{\log f(x)}{\log x}=0
$$

2.6 Theorem. $f \in F$ if and only if to each $\alpha>0$ there exists x_{α} such that $\frac{d}{d x}\left[\frac{f(x)}{x^{\alpha}}\right]<0, \forall x>x_{\alpha}$

Proof: We have $\frac{d}{d x}\left[\frac{f(x)}{x^{\alpha}}\right]=\frac{f^{\prime}(x) x^{\alpha}-f(x) \alpha x^{\alpha-1}}{x^{2 \alpha}}=\frac{f(x)}{x^{\alpha+1}}\left[\frac{x f^{\prime}(x)}{f(x)}-\alpha\right]$
Suppose

$$
f \in F \text { then } \Rightarrow \lim _{x \rightarrow \infty} \frac{x f^{\prime}(x)}{f(x)}=0
$$

i.e. For each $\alpha>0$ there exists x_{α} such that $\forall x>x_{\alpha}$

And $\quad\left|\frac{x f^{\prime}(x)}{f(x)}-0\right|<\alpha, \forall x>x_{\alpha} \quad \Rightarrow \frac{d}{d x}\left[\frac{f(x)}{x^{\alpha}}\right]<0, \quad \forall x>x_{\alpha}$
To prove the converse assumes that the condition holds.
Let $\alpha>0$ be given. Then there exist x_{α} such that $\forall x>x_{\alpha}$
We have, by hypothesis $\frac{d}{d x}\left[\frac{f(x)}{x^{\alpha}}\right]<0 \quad$ this implies that $\quad\left|\frac{x f^{\prime}(x)}{f(x)}-0\right|<\alpha, \quad \forall x>x_{\alpha}$

$$
\text { i.e. } \frac{x f^{\prime}(x)}{f(x)} \rightarrow 0 \text { as } x \rightarrow \infty \Rightarrow \lim _{x \rightarrow \infty} \frac{x f^{\prime}(x)}{f(x)}=0 . \text { Therefore } f \in F .
$$

2.7 Theorem. If $f \in F$ then $\lim _{x \rightarrow \infty} \frac{f(x)}{x^{\beta}}=0$, for all $\beta>0$

Proof: For any α with $0<\alpha<\beta$, we get by Theorem 2.6, $\frac{d}{d x}\left[\frac{f(x)}{x^{\alpha}}\right]<0, \quad \forall x>x_{\alpha}$ for some x_{α}
This implies that $\frac{f(x)}{x^{\alpha}}$ is decreasing for $x>x_{\alpha}$
Hence $\frac{f(x)}{x^{\alpha}}$ bounded above, say, by M
That is, there exists $M>0$ such that $0<\frac{f(x)}{x^{\alpha}}<M, \forall x>x_{\alpha}$

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{x^{\beta}}=\lim _{x \rightarrow \infty} \frac{f(x)}{x^{\alpha}} \frac{1}{x^{\beta-\alpha}}=0
$$

2.8 Note. We know that each $f \in F$ is an icreasing function. Moreover by the above theorem it is clear that $\lim _{x \rightarrow \infty} \frac{f(x)}{x^{\beta}}=0, \forall \beta>0$. This shows that the increasing nature of f is slow. That is f does not increase rapidly. This justifies the name given to the members of F .

From the above theorem, we have the following results.
2.9 Theorem. If $\quad f \in F$ then $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=0$ and $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$.

Proof: In Theorem 2.7 put $\beta=1$, toget $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=0$.
If

Since

$$
f \in F, \text { then } \lim _{x \rightarrow \infty} \frac{x f^{\prime}(x)}{f(x)}=0
$$

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{x}=0 \quad \text { we must have } \lim _{x \rightarrow \infty} f^{\prime}(x)=0
$$

2.10 Theorem. Let $f \in F$ then for any $\alpha>-1$ and $\beta \in \square$, the series $\sum_{n=1}^{\infty} n^{\alpha} f(n)^{\beta}$ diverges to ∞.

Proof: We write

$$
\sum_{n=1}^{\infty} n^{\alpha} f(n)^{\beta}=\sum_{n=1}^{\infty}\left(n^{\alpha+1} f(n)^{\beta}\right) \frac{1}{n}
$$

we know that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges to ∞
Given $\alpha>-1 \Rightarrow \alpha+1>0$
If $\beta \geq 0$ then $\lim _{n \rightarrow \infty} n^{\alpha+1} f(n)^{\beta}=\infty$
If $\beta>0$ then $\lim _{n \rightarrow \infty} \frac{n}{\left(\frac{f(n)^{-\beta}}{n^{\alpha}}\right)}=\lim _{n \rightarrow \infty} \frac{n^{\alpha+1}}{f(n)^{-\beta}}=\infty \quad$ (from Theorem 2.7)
i.e. $\sum_{n=1}^{\infty} n^{\alpha} f(n)^{\beta}$ diverges to ∞

An important byproduct of the above theorem is the following result.
2.11 Theorem. Let $f \in F$. Then for any $\alpha>-1$ and $\beta \in \square, \lim _{x \rightarrow \infty} \frac{\int_{a}^{x} t^{\alpha} f(t)^{\beta} d t}{\left(\frac{x^{\alpha+1} f(x)^{\beta}}{\alpha+1}\right)}=1$.

Proof: From Theorem 2.10, we have $\lim _{n \rightarrow \infty} x^{\alpha+1} f(x)^{\beta}=\infty$

$$
\Rightarrow \lim _{x \rightarrow \infty} \frac{x^{\alpha+1}}{\alpha+1} f(x)^{\beta}=\infty, \quad \forall \alpha>-1, \forall \beta
$$

From Theorem 2.10, we have $\sum_{t=1}^{\infty} t^{\alpha} f(t)^{\beta}=\infty \Rightarrow \lim _{x \rightarrow \infty} \int_{a}^{x} t^{\alpha} f(t)^{\beta} d t=\infty$
Consider $\lim _{x \rightarrow \infty} \frac{\int_{a}^{x} t^{\alpha} f(t)^{\beta} d t}{\left(\frac{x^{\alpha+1} f(x)^{\beta}}{\alpha+1}\right)}=\lim _{x \rightarrow \infty} \frac{x^{\alpha} f(x)^{\beta}}{x^{\alpha} f(x)^{\beta}+\frac{x^{\alpha+1}}{\alpha+1} \beta f(x)^{\beta-1} f^{\prime}(x)} \quad$ (byL'Hospitals's rule)

$$
=\lim _{x \rightarrow \infty} \frac{x^{\alpha} f(x)^{\beta}}{x^{\alpha} f(x)^{\beta}\left(1+\frac{\beta}{\alpha+1} \frac{x f^{\prime}(x)}{f(x)}\right)}=1
$$

2.12 Definition.Let $f, g:[a, \infty) \rightarrow(0, \infty)$
(i) If $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=1$, then f is is said to asymptotically equivalent to g. We describe this by writing $f \square g$.
(ii) $f=\mathrm{O}(g)$ Means $f \leq A g$ for some $A>0$. In this case we say that f is of large order g.
(iii) $f=o(g)$ Means $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0$. In this case we say that f is of small order g.
2.13 Examples. (i) Consider $f(x)=x^{n}, g(x)=x^{n}+x$, for all $x>0$ and $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{x^{n}}{x^{n}+x}=1$ Therefore $f \square g$.
(ii) $x=\mathrm{O}(10 x)$ Because $\frac{x}{10 x}=\frac{1}{10} \Rightarrow x=\frac{1}{10}(10 x)$.
(iii) $x+1=o\left(x^{2}\right)$ Becuase $\lim _{x \rightarrow \infty} \frac{x+1}{x^{2}}=0$.

As a result of the Theorem 2.11, we get the following results as particular cases.
2.14 Theorem. Let $f \in F$. Then we have the following statements.
(i) $\int_{a}^{x} f(t)^{\beta} d t \square x f(x)^{\beta}$
(ii) $\int_{a}^{x} f(t) d t \square x f(x)$
(iii) $\int_{a}^{x} \frac{1}{f(t)} d t \square \frac{x}{f(x)}$

Proof: Let $\quad f \in F$
(i) Put $\alpha=0$ in Theorem 2.11, we get

$$
\lim _{x \rightarrow \infty} \frac{\int_{a}^{x} f(t)^{\beta} d t}{x f(x)^{\beta}}=1 \Rightarrow \int_{a}^{x} f(t)^{\beta} d t \square x f(x)^{\beta}
$$

(ii) Put $\alpha=0, \beta=1$ in Theorem 2.11, we get

$$
\lim _{x \rightarrow \infty} \frac{\int_{a}^{x} f(t) d t}{x f(x)}=1 \Rightarrow \int_{a}^{x} f(t) d t \square x f(x)
$$

(iii) Put $\alpha=0, \beta=-1$ in Theorem 2.11, we get

$$
\lim _{x \rightarrow \infty} \frac{\int_{a}^{x} \frac{1}{f(t)} d t}{\frac{x}{f(x)}}=1 \quad \Rightarrow \int_{a}^{x} \frac{1}{f(t)} d t \square \frac{x}{f(x)}
$$

2.15 Theorem. Let $f \in F$. Then
(i) $\lim _{x \rightarrow \infty} \frac{f(x+c)}{f(x)}=1$, For any $c \in \square$
(ii) If $f^{\prime}(x)$ is decreasing then $\lim _{x \rightarrow \infty} \frac{f(c x)}{f(x)}=1$, for any $c \in \square$

Proof: Let $f \in F$
(i) Case (a). Suppose $c>0$

By Lagrange's mean value theorem, There exists a $t \in(x, x+c)$ such that

$$
\begin{gathered}
f(x+c)-f(x)=(x+c-x) f^{\prime}(t) \Rightarrow \quad 0 \leq \frac{f(x+c)-f(x)}{f(x)}=\frac{c f^{\prime}(t)}{f(x)} \\
\Rightarrow \quad 0 \leq \lim _{x \rightarrow \infty} \frac{f(x+c)-f(x)}{f(x)}=\lim _{x \rightarrow \infty} \frac{c f^{\prime}(t)}{f(x)}, t \in(x, x+c) \\
\Rightarrow \quad \lim _{x \rightarrow \infty} \frac{f(x+c)}{f(x)}-1=0, \text { since } \lim _{x \rightarrow \infty} f^{\prime}(x)=0 \text { (by Theorem 2.9) } \\
\Rightarrow \quad \lim _{x \rightarrow \infty} \frac{f(x+c)}{f(x)}=1 .
\end{gathered}
$$

Case (b). Suppose $c<0$
By Lagrange's mean value theorem there exists $t \in(x+c, x)$ such that

$$
\begin{gathered}
f(x)-f(x+c)=(x-x-c) f^{\prime}(t) \Rightarrow \quad 0 \leq \frac{f(x)-f(x+c)}{f(x)}=-\frac{c f^{\prime}(t)}{f(x)} \\
\Rightarrow \quad 0 \leq \lim _{x \rightarrow \infty} \frac{f(x)-f(x+c)}{f(x)}=-c \lim _{x \rightarrow \infty} \frac{f^{\prime}(t)}{f(x)}, t \in(x+c, x) \\
\Rightarrow \quad \lim _{x \rightarrow \infty} \frac{f(x+c)}{f(x)}-1=0, \text { since } \lim _{x \rightarrow \infty} f^{\prime}(x)=0 \quad \text { (by Theorem 2.9) } \\
\Rightarrow \quad \lim _{x \rightarrow \infty} \frac{f(x+c)}{f(x)}=1 .
\end{gathered}
$$

(ii) Case (a). Suppose $c>1$

By Lagrange's mean value theorem there exists $t \in(x, c x)$ such that

$$
\begin{aligned}
& \qquad \begin{aligned}
& f(c x)-f(x)=(c x-x) f^{\prime}(t) \Rightarrow 0 \leq \frac{f(c x)-f(x)}{f(x)}=\frac{(c-1) x f^{\prime}(t)}{f(x)} \\
& \Rightarrow \quad 0 \leq \lim _{x \rightarrow \infty} \frac{f(c x)-f(x)}{f(x)}=(c-1) \lim _{x \rightarrow \infty} \frac{x f^{\prime}(t)}{f(x)}, t \in(x, c x)
\end{aligned} \\
& \text { And } f(x) \text { is decreasing } \quad \Rightarrow f^{\prime}(x)>f^{\prime}(t)
\end{aligned}
$$

There fore

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{f(c x)}{f(x)}-1=0, \text { since } \lim _{x \rightarrow \infty} f^{\prime}(x)=0 \\
\Rightarrow \quad \lim _{x \rightarrow \infty} \frac{f(c x)}{f(x)}=1
\end{gathered}
$$

(by Theorem 2.9)

Case (b). Suppose $c<1$
By Lagrange mean value theorem there exists $t \in(c x, x)$ such that

$$
\begin{aligned}
& f(x)- f(c x)=(x-c x) f^{\prime}(t) \quad \Rightarrow \quad 0 \leq \frac{f(x)-f(c x)}{f(x)}=\frac{(1-c) x f^{\prime}(t)}{f(x)} \\
& \Rightarrow \quad 0 \leq \lim _{x \rightarrow \infty} \frac{f(x)-f(c x)}{f(x)}=(1-c) \lim _{x \rightarrow \infty} \frac{x f^{\prime}(t)}{f(x)}, t \in(c x, x)
\end{aligned}
$$

And $f^{\prime}(x)$ is decreasing $\Rightarrow f^{\prime}(x)>f^{\prime}(t)$
There fore $\quad \lim _{x \rightarrow \infty} \frac{f(c x)}{f(x)}-1=0$, since $\lim _{x \rightarrow \infty} f^{\prime}(x)=0 \quad$ (by Theorem 2.9)

$$
\Rightarrow \lim _{x \rightarrow \infty} \frac{f(c x)}{f(x)}=1
$$

2.16 Theorem. Suppose $f \in F$ is such that $f^{\prime}(x)$ is decreasing. If $0<c_{1} \leq c_{2}$ and g is a function such that

$$
c_{1} \leq g(x) \leq c_{2} \text { then } \lim _{x \rightarrow \infty} \frac{f(g(x) x)}{f(x)}=1
$$

Proof: Suppose $f \in F$ is such that $f^{\prime}(x)$ is decreasing
If $\quad 0<c_{1} \leq g(x) \leq c_{2} \Rightarrow f\left(c_{1} x\right) \leq f(g(x) x) \leq f\left(c_{2} x\right)$ since f is decreasing

$$
\begin{aligned}
& \Rightarrow \quad \frac{f\left(c_{1} x\right)}{f(x)} \leq \frac{f(g(x) x)}{f(x)} \leq \frac{f\left(c_{2} x\right)}{f(x)} \Rightarrow \quad \lim _{x \rightarrow \infty} \frac{f\left(c_{1} x\right)}{f(x)} \leq \lim _{x \rightarrow \infty} \frac{f(g(x) x)}{f(x)} \leq \lim _{x \rightarrow \infty} \frac{f\left(c_{2} x\right)}{f(x)} \\
& \Rightarrow \quad 1 \leq \lim _{x \rightarrow \infty} \frac{f(g(x) x)}{f(x)} \leq 1 \quad \text { (By Theorem 2.15) } \Rightarrow \quad \lim _{x \rightarrow \infty} \frac{f(g(x) x)}{f(x)}=1 .
\end{aligned}
$$

3. APPLICATIONS OF SLOW INCREASING FUNCTIONS TO SOME SEQUENCES OF INTEGERS

This topic is aimed at applications in some special sequences of positive integers. Infact several asymptotic results related to these integer sequences are derived by using the theory of Slow Increasing Functions.
We begin with the following important definition.
Let $f \in F$. Through out this chapter $\left(a_{n}\right)$ denotes a strictly increasing sequence of positive integers such that

$$
\begin{align*}
& a_{1}>1 \text { And } \lim _{n \rightarrow \infty} \frac{a_{n}}{n^{s} f(n)}=1 \text { for some } s \geq 1 \tag{1}\\
& \text { i.e. } a_{n} \square n^{s} f(n)
\end{align*}
$$

There exist several such sequences.
For example $a_{n}=p_{n}$, the sequence of prime numbers in increasing order, $f(x)=\log x$ and $s=1$.

By prime number theorem we have

$$
\lim _{n \rightarrow \infty} \frac{p_{n}}{n \log n}=1
$$

3.1 Definition. Let $\left(a_{n}\right)$ be asequence as described above. Then for any $x>0$, define $\psi(x)=\sum_{a_{n} \leq x} 1$

The number of a_{n} that do not exceed x.
3.2 Theorem. If $\left(a_{n}\right)$ satisfies (1) and $g \in F$, then
(i) $a_{n+1} \square a_{n}$
(ii) $\lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{a_{n}}=0$
(iii) $\log a_{n+1} \square \log a_{n}$
(iv)
$g\left(a_{n+1}\right) \square g\left(a_{n}\right)$
(v) $\log a_{n} \square s \log n$
(vi) $\log \log a_{n} \square \log \log n$
(vii) $\lim _{x \rightarrow \infty} \frac{\psi(x)}{x}=0$

Proof: Let $\left(a_{n}\right)$ satisfies (1) and $g \in F$
(i) Consider $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{s} f(n+1)}{n^{s} f(n)} \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{s} \lim _{n \rightarrow \infty} \frac{f(n+1)}{f(n)}=1$

Theorem 2.15
(ii) We have

$$
\Rightarrow \quad a_{n+1} \square a_{n}
$$

$$
a_{n+1} \square a_{n} \Rightarrow \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1 \Rightarrow \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}-1=0 \Rightarrow \lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{a_{n}}=0
$$

(iii) Consider

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1 \Rightarrow \log \left(\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}\right)=\log 1 \Rightarrow \lim _{n \rightarrow \infty} \log \left(\frac{a_{n+1}}{a_{n}}\right)=0 \\
& \Rightarrow \lim _{n \rightarrow \infty}\left(\log a_{n+1}-\log a_{n}\right)=0 \Rightarrow \lim _{n \rightarrow \infty}\left(\frac{\log a_{n+1}-\log a_{n}}{\log a_{n}}\right)=0 \\
& \Rightarrow \lim _{n \rightarrow \infty}\left(\frac{\log a_{n+1}}{\log a_{n}}\right)=1 \quad \text { i.e. } \log a_{n+1} \square \log a_{n}
\end{aligned}
$$

(iv) As $a_{n+1} \square a_{n}, g \in F$, we have $\lim _{n \rightarrow \infty} \frac{g\left(a_{n+1}\right)}{g\left(a_{n}\right)}=1 \Rightarrow g\left(a_{n+1}\right) \square g\left(a_{n}\right)$
(v) We have $\quad a_{n} \square \quad n^{s} f(n) \Rightarrow \log a_{n} \square \quad \log n^{s} f(n) \Rightarrow \log a_{n} \square \quad \operatorname{slog} n+\log f(n)$

$$
\Rightarrow \frac{\log a_{n}}{\operatorname{slog} n} \square 1+\frac{\log f(n)}{\operatorname{slog} n} \Rightarrow \lim _{n \rightarrow \infty} \frac{\log a_{n}}{\operatorname{slog} n}=1+\frac{1}{s} \lim _{n \rightarrow \infty} \frac{\log f(n)}{\log n} \Rightarrow \lim _{n \rightarrow \infty} \frac{\log a_{n}}{s \log n}=1 \quad \text { Ву }
$$

Theorem 2.5
i.e. $\log a_{n} \square s \log n$
(vi) We have $\quad \log a_{n} \square s \log n \Rightarrow \log \log a_{n} \square \log (s \log n) \Rightarrow \log \log a_{n} \square \log s+\log \log n$

$$
\begin{gathered}
\Rightarrow \frac{\log \log a_{n}}{\log \log n} \square \frac{\log s}{\log \log n}+1 \Rightarrow \lim _{n \rightarrow \infty} \frac{\log \log a_{n}}{\log \log n}=\log s \lim _{n \rightarrow \infty} \frac{1}{\log \log n}+1 \\
\Rightarrow \lim _{n \rightarrow \infty} \frac{\log \log a_{n}}{\log \log n}=1 \quad \text { i.e. } \log \log a_{n} \square \log \log n .
\end{gathered}
$$

(vii) We have

$$
\psi(x)=\sum_{a_{n} \leq x} 1
$$

Let n_{0} be the largest index such that $a_{n_{0}} \leq x$ then $\psi(x)=n_{0} \Rightarrow \frac{\psi(x)}{x}=\frac{n_{0}}{x} \leq \frac{n_{0}}{a_{n_{0}}}$

$$
\Rightarrow 0 \leq \lim _{x \rightarrow \infty} \frac{\psi(x)}{x} \leq \lim _{n_{0} \rightarrow \infty} \frac{n_{0}}{a_{n_{0}}} \Rightarrow 0 \leq \lim _{x \rightarrow \infty} \frac{\psi(x)}{x} \leq 0 \Rightarrow \lim _{x \rightarrow \infty} \frac{\psi(x)}{x}=0
$$

3.3 Theorem. Suppose $\quad\left(a_{n}\right) \quad$ satisfies \quad (1) and $g \in F, \quad$ then for $l>1$,

$$
\mathrm{g}\left(a_{n}\right) \square \lg (n) \Leftrightarrow \mathrm{g}(\psi(x)) \square \frac{1}{l} g(x)
$$

Proof: First suppose that

$$
\begin{aligned}
& \mathrm{g}(\psi(x)) \square \frac{1}{l} g(x) \quad \Rightarrow \mathrm{g}\left(\psi\left(a_{n}\right)\right) \square \frac{1}{l} g\left(a_{n}\right) \\
& \Rightarrow g(n) \square \frac{1}{l} g\left(a_{n}\right) \quad \Rightarrow g\left(a_{n}\right) \square \lg (n) . \quad\left(\because \psi\left(a_{n}\right)=n\right)
\end{aligned}
$$

Conversely suppose

$$
\left.g\left(a_{n}\right) \square \lg (n) \Rightarrow g\left(a_{n}\right) \square \lg \left(\psi\left(a_{n}\right)\right) \Rightarrow \lim _{n \rightarrow \infty} \frac{\mathrm{~g}\left(\psi\left(a_{n}\right)\right.}{\frac{1}{l} g\left(a_{n}\right)}\right)=1
$$

(2)

If $a_{n} \leq x<a_{n+1}$ we have $\quad \psi\left(a_{n}\right) \leq \psi(x)<\psi\left(a_{n+1}\right) \Rightarrow g\left(\psi\left(a_{n}\right)\right) \leq g(\psi(x))<g\left(\psi\left(a_{n+1}\right)\right)$ since $g \in F$.

And

$$
\begin{align*}
& g\left(a_{n}\right) \leq g(x)<g\left(a_{n+1}\right) \Rightarrow \frac{1}{l} g\left(a_{n}\right) \leq \frac{1}{l} g(x)<\frac{1}{l} g\left(a_{n+1}\right) \\
& \quad \Rightarrow \lim _{n \rightarrow \infty} \frac{g\left(\psi\left(a_{n}\right)\right)}{\frac{1}{l} g\left(a_{n}\right)} \leq \lim _{x \rightarrow \infty} \frac{g(\psi(x))}{\frac{1}{l} g(x)} \leq \lim _{n \rightarrow \infty} \frac{g\left(\psi\left(a_{n}\right)\right)}{\frac{1}{l} g\left(a_{n}\right)} \\
& \left(\because a_{n+1} \square a_{n}\right) \Rightarrow \quad 1 \leq \lim _{x \rightarrow \infty} \frac{g(\psi(x))}{\frac{1}{l} g(x)} \leq 1 \quad \text { by }(2) \\
& \Rightarrow \quad \lim _{x \rightarrow \infty} \frac{g(\psi(x))}{\frac{1}{l} g(x)}=1 \quad \Rightarrow \quad g(\psi(x)) \square \frac{1}{l} g(x) .
\end{align*}
$$

3.4 Theorem. Suppose $\left(a_{n}\right)$ satisfies (1) and $g \in F$, then (i) $\log a_{n} \square s \log n \Leftrightarrow \log \psi(x) \square \frac{1}{s} \log x$
(ii) $\log \log a_{n} \square \log \log n \Leftrightarrow \log \log \psi(x) \square \log \log (x)$.

Proof: Given $\left(a_{n}\right)$ satisfies (1) and $g \in F$
(i) In Theorem 3.3 put $g\left(a_{n}\right)=\log a_{n}, g(n)=\log n$ and $l=s$.

And we have $\log a_{n} \square s \log n$.
(ii) In Theorem 3.3 put $g\left(a_{n}\right)=\log \log a_{n}, g(n)=\log \log n$ and $l=s$

And we have $\quad \log \log a_{n} \square \log \log n$.
We make use the following well known result in proving theorems to follow.
3.5 Result. Let $\sum_{n=1}^{\infty} b_{n}$ and $\sum_{n=1}^{\infty} c_{n}$ be two series of positive terms such that $\lim _{n \rightarrow \infty} \frac{b_{n}}{c_{n}}=1$. If $\sum_{n=1}^{\infty} c_{n}$ is divergent then it is known that $\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} b_{k}}{\sum_{k=1}^{n} c_{k}}=1$.
3.6 Theorem. Let $f \in F,\left(a_{n}\right)$ satisfies (1) and $f\left(a_{n}\right) \square f(n)$. Then

$$
a_{n} \square n f(n) \Leftrightarrow \psi(x) \square \frac{x}{f(x)} \Leftrightarrow \psi(x) \square \int_{a}^{x} \frac{1}{f(t)} d t \Leftrightarrow \sum_{a_{k} \leq x} f\left(a_{k}\right) \square x .
$$

Proof: Given $\left(a_{n}\right)$ satisfies $\quad(1)$ and $f \in F$ and $f\left(a_{n}\right) \square f(n)$ (3)

First suppose that $\quad \psi(x) \square \frac{x}{f(x)} \Rightarrow \psi\left(a_{n}\right) \square \frac{a_{n}}{f\left(a_{n}\right)} \Rightarrow n \square \frac{a_{n}}{f\left(a_{n}\right)}$

$$
\Rightarrow \quad a_{n} \square n f\left(a_{n}\right)
$$

$$
\begin{equation*}
a_{n} \square n f(n) \tag{3}
\end{equation*}
$$

Conversely suppose $a_{n} \square n f(n) \Rightarrow \quad a_{n} \square \psi\left(a_{n}\right) f(n) \quad \Rightarrow \quad \psi\left(a_{n}\right) \square \frac{a_{n}}{f(n)}$

$$
\Rightarrow \quad \psi\left(a_{n}\right) \square \frac{a_{n}}{f\left(a_{n}\right)} \quad \text { by }(3) \quad \Rightarrow \lim _{n \rightarrow \infty} \frac{\psi\left(a_{n}\right)}{\frac{a_{n}}{f\left(a_{n}\right)}}=1
$$

(4)

If $a_{n} \leq x<a_{n+1}$ we have $\psi\left(a_{n}\right) \leq \psi(x)<\psi\left(a_{n+1}\right)$
We have by Theorem $2.6 \frac{f(x)}{x}$ has negative derivative $\Rightarrow \frac{f(x)}{x}$ is decreasing $\Rightarrow \frac{x}{f(x)}$ is increasing

$$
\begin{gathered}
\Rightarrow \frac{a_{n}}{f\left(a_{n}\right)} \leq \frac{x}{f(x)}<\frac{a_{n+1}}{f\left(a_{n+1}\right)} \Rightarrow \lim _{n \rightarrow \infty} \frac{\psi\left(a_{n}\right)}{\frac{a_{n}}{f\left(a_{n}\right)}} \leq \lim _{x \rightarrow \infty} \frac{\psi(x)}{\frac{x}{f(x)}} \leq \lim _{n \rightarrow \infty} \frac{\psi\left(a_{n}\right)}{\frac{a_{n}}{f\left(a_{n}\right)}} \quad\left(\because a_{n+1} \square a_{n}\right) \\
\Rightarrow 1 \leq \lim _{x \rightarrow \infty} \frac{\psi(x)}{\frac{x}{f(x)}} \leq 1
\end{gathered} \quad \text { By (4) } \Rightarrow \lim _{x \rightarrow \infty} \frac{\psi(x)}{\frac{x}{f(x)}=1 \Rightarrow \psi(x) \square \frac{x}{f(x)}} .
$$

Suppose

$$
\psi(x) \square \frac{x}{f(x)}
$$

(5)

Then we have from Theorem $2.14 \quad \int_{a}^{x} \frac{1}{f(t)} d t \square \frac{x}{f(x)}$
(6)

Hence from (5) and (6) $\quad \psi(x) \square \int_{a}^{x} \frac{1}{f(t)} d t$.

Also we have from Theorem 2.14

$$
\int_{a}^{x} f(t) d t \square x f(x)
$$

And since $f(x)$ is increasing, we get

$$
\begin{equation*}
\sum_{k=1}^{n} f(k)=\int_{a}^{n} f(x) d x+h(n) \square n f(n) \tag{7}
\end{equation*}
$$

Given that $f\left(a_{n}\right) \square f(n) \Rightarrow \sum_{k=1}^{n} f\left(a_{k}\right) \square \sum_{k=1}^{n} f(\mathrm{k}) \quad$ By Result $3.5 \Rightarrow \sum_{k=1}^{n} f\left(a_{k}\right) \square n f(n)$ By (7)

$$
\Rightarrow \sum_{a_{k} \leq a_{n}} f\left(a_{k}\right) \square n f\left(a_{n}\right) \Rightarrow \sum_{a_{k} \leq a_{n}} f\left(a_{k}\right) \square \psi\left(a_{n}\right) f\left(a_{n}\right) \Rightarrow \lim _{n \rightarrow \infty} \frac{\psi\left(a_{n}\right)}{\frac{\sum_{a_{k} \leq a_{n}} f\left(a_{k}\right)}{f\left(a_{n}\right)}}=1
$$

(8)

If $a_{n} \leq x<a_{n+1}$ we have $\quad \psi\left(a_{n}\right) \leq \psi(x)<\psi\left(a_{n+1}\right)$
And

$$
\begin{aligned}
& f\left(a_{n}\right) \leq f(x)<f\left(a_{n+1}\right) \Rightarrow \quad \sum_{a_{k} \leq a_{n}} f\left(a_{k}\right) \leq \sum_{a_{k} \leq x} f\left(a_{k}\right)<\sum_{a_{k} \leq a_{n+1}} f\left(a_{k}\right) \\
& \Rightarrow \quad \lim _{n \rightarrow \infty} \frac{\psi\left(a_{n}\right)}{\sum_{a_{k} \leq a_{n}}^{f\left(a_{n}\right)} f\left(a_{k}\right)} \leq \lim _{x \rightarrow \infty} \frac{\psi(x)}{\frac{\sum_{a_{k} \leq x} f\left(a_{k}\right)}{f(x)}} \leq \lim _{n \rightarrow \infty} \frac{\psi\left(a_{n}\right)}{\sum_{a_{k} \leq a_{n}} f\left(a_{k}\right)} \\
& f\left(a_{n}\right)
\end{aligned} \quad\left(\because a_{n+1} \square a\right)
$$

$$
\Rightarrow \quad 1 \leq \lim _{x \rightarrow \infty} \frac{\psi(x)}{\frac{\sum_{a_{k} \leq x} f\left(a_{k}\right)}{f(x)}} \leq 1 \quad \quad \text { By (8) } \Rightarrow \quad \lim _{x \rightarrow \infty} \frac{\psi(x)}{\frac{\sum_{a_{k} \leq x} f\left(a_{k}\right)}{f(x)}}=1 \Rightarrow \psi(x) \square \frac{\sum_{a_{k} \leq x} f\left(a_{k}\right)}{f(x)}
$$

$$
\Rightarrow \quad \frac{x}{f(x)} \square \frac{\sum_{a_{k} \leq x} f\left(a_{k}\right)}{f(x)} \Rightarrow \sum_{a_{k} \leq x} f\left(a_{k}\right) \square x
$$

3.7 Theorem. Let $f \in F,\left(a_{n}\right)$ satisfies (1) and $f\left(a_{n}\right) \square l f(n)$. Then

$$
a_{n} \square n^{s} f(n) \Leftrightarrow \psi(x) \square \frac{l^{\frac{1}{s}} x^{\frac{1}{s}}}{f(x)^{\frac{1}{s}}} \Leftrightarrow \psi(x) \square \frac{l^{\frac{1}{s}}}{s} \int_{a}^{x} \frac{t^{-1+\frac{1}{s}}}{f(t)^{\frac{1}{s}}} d t \Leftrightarrow \sum_{a_{k} \leq x} f\left(a_{k}\right)^{\frac{1}{s}} \square l^{\frac{1}{s}} x^{\frac{1}{s}} .
$$

Proof: Given $\left(a_{n}\right)$ satisfies (1) and $f \in F$ and $f\left(a_{n}\right) \square l f(n)$
(9)

Suppose

$$
\begin{aligned}
& \psi(x) \square \frac{l^{\frac{1}{s}} x^{\frac{1}{s}}}{f(x)^{\frac{1}{s}}} \Rightarrow \quad \psi\left(a_{n}\right) \square \frac{l^{\frac{1}{s}} a_{n} a^{\frac{1}{s}}}{f\left(a_{n}\right)^{\frac{1}{s}}} \Rightarrow n \square \frac{l^{\frac{1}{s}} a_{n}{ }^{\frac{1}{s}}}{f\left(a_{n}\right)^{\frac{1}{s}}} \\
& \Rightarrow n^{s} \square \frac{l a_{n}}{f\left(a_{n}\right)} \quad \Rightarrow a_{n} \square n^{s} f(n)
\end{aligned}
$$

By
(9)

Conversely suppose $\quad a_{n} \square n^{s} f(n) \Rightarrow a_{n}{ }^{\frac{1}{s}} \square n f(n)^{\frac{1}{s}} \Rightarrow \lim _{n \rightarrow \infty} \frac{\psi\left(a_{n}\right)}{\left(\frac{l^{\frac{1}{s}} a_{n}{ }^{\frac{1}{s}}}{f\left(a_{n}\right)^{\frac{1}{s}}}\right)}=1$
(10)

If $a_{n} \leq x<a_{n+1}$ we have

$$
\psi\left(a_{n}\right) \leq \psi(x)<\psi\left(a_{n+1}\right)
$$

We have by Theorem $2.6 \frac{f(x)}{x}$ has negative derivative $\Rightarrow \frac{f(x)}{x}$ is decreasing $\Rightarrow \frac{x}{f(x)}$ is increasing

$$
\begin{align*}
& \Rightarrow \frac{a_{n}}{f\left(a_{n}\right)} \leq \frac{x}{f(x)}<\frac{a_{n+1}}{f\left(a_{n+1}\right)} \Rightarrow \lim _{n \rightarrow \infty} \frac{\psi\left(a_{n}\right)}{\frac{l^{\frac{1}{s}} a_{n} \frac{1}{s}}{s}} \leq \lim _{x \rightarrow \infty} \frac{\psi(x)}{\frac{f\left(a_{n}\right)^{\frac{1}{s}}}{\frac{l^{\frac{1}{s}} x^{\frac{1}{s}}}{f(x)^{\frac{1}{s}}}} \leq \lim _{n \rightarrow \infty} \frac{\psi\left(a_{n}\right)}{\frac{l^{\frac{1}{s}} a_{n}^{\frac{1}{s}}}{f\left(a_{n}\right)^{\frac{1}{s}}}}} \quad\left(\because a_{n+1} \square a_{n}\right) \\
& \Rightarrow 1 \leq \lim _{x \rightarrow \infty} \frac{\psi(x)}{\frac{l^{\frac{1}{s}} x^{\frac{1}{s}}}{f(x)^{\frac{1}{s}}}} \leq 1 \quad \text { By }(10) \Rightarrow \lim _{x \rightarrow \infty} \frac{\psi(x)}{l^{\frac{1}{s}} x^{\frac{1}{s}}}=1 \Rightarrow \psi(x) \square \frac{l^{\frac{1}{s}} x^{\frac{1}{s}}}{f(x)^{\frac{1}{s}}} \\
& a_{n} \square n^{s} f(n) \Leftrightarrow \psi(x) \square \frac{l^{\frac{1}{s}} x^{\frac{1}{s}}}{f(x)^{\frac{1}{s}}} \tag{11}\\
& \lim _{x \rightarrow \infty} \frac{\int_{a}^{x} t^{\alpha} f(t)^{\beta} d t}{\frac{x^{\alpha+1} f(x)^{\beta}}{\alpha+1}}=1 \quad \Rightarrow \quad \int_{a}^{x} t^{\alpha} f(t)^{\beta} d t \square \frac{x^{\alpha+1} f(x)^{\beta}}{\alpha+1} \\
& \text { We have from Theorem } 2.11
\end{align*}
$$

In above equation put $\alpha=-1+\frac{1}{s}$ and $\beta=-\frac{1}{s} \Rightarrow \int_{a}^{x} t^{-1+\frac{1}{s}} f(t)^{-\frac{1}{s}} d t \square \frac{x^{-1+\frac{1}{s}+1} f(x)^{-\frac{1}{s}}}{-1+\frac{1}{s}+1}$

$$
\Rightarrow \quad \frac{1}{s} \int_{a}^{x} \frac{t^{-1+\frac{1}{s}}}{f(t)^{\frac{1}{s}}} d t \square \frac{x^{\frac{1}{s}}}{f(x)^{\frac{1}{s}}} \quad \Rightarrow \quad \frac{l^{\frac{1}{s}}}{s} \int_{a}^{x} \frac{t^{-1+\frac{1}{s}}}{f(t)^{\frac{1}{s}}} d t \square \frac{l^{\frac{1}{s}} x^{\frac{1}{s}}}{f(x)^{\frac{1}{s}}}
$$

(12)

From (11) and (12)

$$
\psi(x) \square \frac{l^{\frac{1}{s}}}{s} \int_{a}^{x} \frac{t^{-1+\frac{1}{s}}}{f(t)^{\frac{1}{s}}} d t
$$

Also we have from Theorem 2.14

$$
\int_{a}^{x} f(t) d t \square x f(x) \quad \text { and } f(x) \text { is increasing }
$$

Now

$$
\sum_{k=1}^{n} f(k)=\int_{a}^{n} f(x) d x+h(n) \square n f(n)
$$

Given that

$$
\begin{equation*}
f(a)_{n} \square l f(n) \Rightarrow \quad \sum_{k=1}^{n} f\left(a_{k}\right) \square l \sum_{k=1}^{n} f(\mathrm{k}) \tag{13}
\end{equation*}
$$

By Result
3.5

$$
\begin{gather*}
\Rightarrow \sum_{k=1}^{n} f\left(a_{k}\right) \square \operatorname{lnf}(n) \quad \mathrm{By}(13) \Rightarrow \sum_{a_{k} \leq a_{n}} f\left(a_{k}\right) \square \ln f\left(a_{n}\right) \Rightarrow \sum_{a_{k} \leq a_{n}} f\left(a_{k}\right) \square l \psi(n) f\left(a_{n}\right) \\
\Rightarrow \psi\left(a_{n}\right) \square \frac{\sum_{k} \leq a_{n}}{l f\left(a_{n}\right)} f\left(a_{k}\right) \tag{14}\\
\Rightarrow \lim _{n \rightarrow \infty} \frac{\psi\left(a_{n}\right)}{\sum_{a_{k} \leq a_{n}} f\left(a_{k}\right)}=1 \\
l f\left(a_{n}\right)
\end{gather*}
$$

If $a_{n} \leq x<a_{n+1}$ we have $\quad \psi\left(a_{n}\right) \leq \psi(x)<\psi\left(a_{n+1}\right)$
And $f\left(a_{n}\right) \leq f(x)<f\left(a_{n+1}\right) \Rightarrow \operatorname{lf}\left(a_{n}\right) \leq \operatorname{lf}(x)<\operatorname{lf}\left(a_{n+1}\right)$

$$
\begin{gathered}
\Rightarrow \quad \sum_{a_{k} \leq a_{n}} f\left(a_{k}\right) \leq \sum_{a_{k} \leq x} f\left(a_{k}\right)<\sum_{a_{k} \leq a_{n+1}} f\left(a_{k}\right) \\
\Rightarrow \lim _{n \rightarrow \infty} \frac{\psi\left(a_{n}\right)}{\sum_{\frac{a_{k} \leq a_{n}}{} f\left(a_{k}\right)}^{l f\left(a_{n}\right)}} \leq \lim _{x \rightarrow \infty} \frac{\psi(x)}{\sum_{\frac{a_{k} \leq x}{} f\left(a_{k}\right)}^{l f(x)} \leq \lim _{n \rightarrow \infty} \frac{\psi\left(a_{n}\right)}{\sum_{a_{k} \leq a_{n}} f\left(a_{k}\right)}} \frac{\left(\because a_{n+1} \square a_{n}\right)}{l f\left(a_{n}\right)}
\end{gathered}
$$

$$
\left.\begin{array}{c}
\Rightarrow \quad 1 \leq \lim _{x \rightarrow \infty} \frac{\psi(x)}{\sum_{\frac{a_{k} \leq x}{} f\left(a_{k}\right)}^{l f(x)}} \leq 1 \quad \text { By }(14) \quad \Rightarrow \quad \lim _{x \rightarrow \infty} \frac{\psi(x)}{\sum_{a_{k} \leq x} f\left(a_{k}\right)}=1 \\
\Rightarrow f(x)
\end{array}\right] \begin{aligned}
& \Rightarrow(x) \square \frac{\sum_{a_{k} \leq x} f\left(a_{k}\right)}{l f(x)} \\
& \Rightarrow \quad \frac{x}{f(x)} \square \frac{\sum_{a_{k} \leq x} f\left(a_{k}\right)}{l f(x)} \Rightarrow \sum_{a_{k} \leq x} f\left(a_{k}\right) \square l x \Rightarrow \sum_{a_{k} \leq x} f\left(a_{k}\right)^{\frac{1}{s}} \square l^{\frac{1}{s} x^{\frac{1}{s}} .}
\end{aligned}
$$

3.8 Theorem. If $g(x)^{\beta}$ is a f.s.i. and $g\left(a_{n}\right) \square \lg (n)$ where $\left(a_{n}\right)$ satisfies (1), then

$$
\psi(x) \square \frac{\sum_{a_{k} \leq x} g\left(a_{k}\right)^{\beta}}{g(x)^{\beta}}, \text { for all real } \beta .
$$

Proof: Given that $g(x)^{\beta}$ is a f.s.i. and $g\left(a_{n}\right) \square \lg (n)$ where $\left(a_{n}\right)$ satisfies (1)

We have from Theorem 2.14

$$
\int_{a}^{x} g(t)^{\beta} d t \square x g(x)^{\beta}
$$

And since $g(x)$ is increasing, we get

$$
\sum_{k=1}^{n} g(k)^{\beta}=\int_{q}^{n} g(x)^{\beta} d x+h(n) \square n g(n)^{\beta}
$$

Given that

$$
\begin{equation*}
g\left(a_{n}\right) \square \lg (n) \quad \Rightarrow g\left(a_{n}\right)^{\beta} \square l^{\beta} g(n)^{\beta} \tag{15}
\end{equation*}
$$

(16)

$$
\begin{align*}
& \Rightarrow \sum_{k=1}^{n} g\left(a_{k}\right)^{\beta} \square l^{\beta} \sum_{k=1}^{n} g(n)^{\beta} \\
& \Rightarrow \sum_{k=1}^{n} g\left(a_{k}\right)^{\beta} \square l^{\beta} n g(n)^{\beta} \quad \text { By (15) } \Rightarrow \sum_{a_{k} \leq a_{n}} g\left(a_{k}\right)^{\beta} \square n g\left(a_{n}\right)^{\beta} \tag{16}\\
& \Rightarrow \sum_{a_{k} \leq a_{n}} g\left(a_{k}\right)^{\beta} \square \psi\left(a_{n}\right) g\left(a_{n}\right)^{\beta} \Rightarrow \psi\left(a_{n}\right) \square \frac{\sum_{a_{k} \leq a_{n}} g\left(a_{k}\right)^{\beta}}{g\left(a_{n}\right)^{\beta}} \Rightarrow \lim _{n \rightarrow \infty} \frac{\psi\left(a_{n}\right)}{\frac{\sum_{a_{k} \leq a_{n}} g\left(a_{k}\right)^{\beta}}{g\left(a_{n}\right)^{\beta}}}=1 \tag{17}
\end{align*}
$$

If $a_{n} \leq x<a_{n+1}$ and $\beta>0 \quad \Rightarrow \quad \psi\left(a_{n}\right) \leq \psi(x)<\psi\left(a_{n+1}\right)$
We have $g \in F \Rightarrow g\left(a_{n}\right) \leq g(x)<g\left(a_{n+1}\right) \quad \Rightarrow \quad g\left(a_{n}\right)^{\beta} \leq g(x)^{\beta}<g\left(a_{n+1}\right)^{\beta}$

$$
\begin{aligned}
& \Rightarrow \quad \sum_{a_{k} \leq a_{n}} g\left(a_{k}\right)^{\beta} \leq \sum_{a_{k} \leq x} g\left(a_{k}\right)^{\beta}<\sum_{a_{k} \leq a_{n+1}} g\left(a_{k}\right)^{\beta} \\
& \Rightarrow \quad \frac{\sum_{a_{k} \leq a_{n}} g\left(a_{k}\right)^{\beta}}{g\left(a_{n+1}\right)^{\beta}} \leq \frac{\sum_{a_{k} \leq x} g\left(a_{k}\right)^{\beta}}{g(x)^{\beta}}<\frac{\sum_{a_{k} \leq a_{n+1}} g\left(a_{k}\right)^{\beta}}{g\left(a_{n}\right)^{\beta}} \\
& \Rightarrow \lim _{n \rightarrow \infty} \frac{\psi\left(a_{n}\right)}{\left(\frac{\sum_{a_{k} \leq a_{n}} g\left(a_{k}\right)^{\beta}}{g\left(a_{n}\right)^{\beta}}\right)} \leq \lim _{x \rightarrow \infty} \frac{\psi(x)}{\left(\frac{\sum_{a_{k} \leq x} g\left(a_{k}\right)^{\beta}}{g(x)^{\beta}}\right)} \leq \lim _{n \rightarrow \infty} \frac{\psi\left(a_{n}\right)}{\left(\frac{\sum_{a_{\leq} \leq a_{n}} g\left(a_{k}\right)^{\beta}}{g\left(a_{n}\right)^{\beta}}\right)} \\
& \Rightarrow 1 \leq \lim _{x \rightarrow \infty} \frac{\psi(x)}{\left(\frac{\sum_{a_{k} \leq x} g\left(a_{k}\right)^{\beta}}{g(x)^{\beta}}\right)} \leq 1 \quad \text { By (17) } \quad \Rightarrow \lim _{x \rightarrow \infty} \frac{\psi(x)}{\left(\frac{\sum_{a_{k} \leq x} g\left(a_{k}\right)^{\beta}}{g(x)^{\beta}}\right)}=1 \\
& \Rightarrow \psi(x) \square\left(\frac{\sum_{a_{k} \leq x} g\left(a_{k}\right)^{\beta}}{g(x)^{\beta}}\right) . \\
& \text { If } a_{n} \leq x<a_{n+1} \text { and } \beta<0 \quad \Rightarrow \quad \psi\left(a_{n}\right) \leq \psi(x)<\psi\left(a_{n+1}\right) \\
& \text { We have } \left.\left.\left.\quad g \in F \quad \Rightarrow \quad g a_{n} \leq g x\right) g a_{n+1}\right) \quad \Rightarrow \quad g a_{n+1}{ }^{\beta}(\leq g)^{\beta}<g a_{n} \beta\right) \\
& (\because \beta<0) \\
& \Rightarrow \lim _{n \rightarrow \infty} \frac{\psi\left(a_{n}\right)}{\left(\frac{\sum_{a_{k} \leq a_{n}} g\left(a_{k}\right)^{\beta}}{g\left(a_{n}\right)^{\beta}}\right)} \leq \lim _{x \rightarrow \infty} \frac{\psi(x)}{\left(\frac{\sum_{a_{k} \leq x} g\left(a_{k}\right)^{\beta}}{g(x)^{\beta}}\right)} \leq \lim _{n \rightarrow \infty} \frac{\psi\left(a_{n}\right)}{\left(\frac{\sum_{a_{k} \leq a_{n}} g\left(a_{k}\right)^{\beta}}{g\left(a_{n}\right)^{\beta}}\right)} \quad\left(\because a_{n} \square a_{n+1}\right) \\
& \Rightarrow 1 \leq \lim _{x \rightarrow \infty} \frac{\psi(x)}{\left(\frac{\sum_{a_{k} \leq x} g\left(a_{k}\right)^{\beta}}{g(x)^{\beta}}\right)} \leq 1 \quad \text { By (17) } \quad \Rightarrow \lim _{x \rightarrow \infty} \frac{\psi(x)}{\left(\frac{\sum_{a_{k} \leq x} g\left(a_{k}\right)^{\beta}}{g(x)^{\beta}}\right)}=1 \\
& \Rightarrow \psi(x) \square \frac{\sum_{a_{k} \leq x} g\left(a_{k}\right)^{\beta}}{g(x)^{\beta}} . \\
& \text { Hence } \\
& \Rightarrow \psi(x) \square \frac{\sum_{a_{k} \leq x} g\left(a_{k}\right)^{\beta}}{g(x)^{\beta}} \quad \text { For all } \beta \text { real. }
\end{aligned}
$$

3.9 Theorem. If $\left(a_{n}\right)$ satisfies (1) and $\lambda(x)=\sum_{p_{n} \leq x} 1$, the number of primes up to x , then $\lambda(x) \square \psi(x)$.

Proof: The $a_{k} \leq x$ are $a_{1}, a_{2, \cdots,}, a_{\psi(x)}$.
Let us write $\quad a_{k}^{\alpha_{k}}=x, \quad(k=1,2, \ldots, \psi(x)) \Rightarrow \quad \log a_{k}^{\alpha_{k}}=\log x \Rightarrow \alpha_{k} \log a_{k}=\log x$

$$
\Rightarrow \quad \alpha_{k}=\frac{\log x}{\log a_{k}} \quad(k=1,2, \ldots, \psi(x))
$$

We know that

$$
\begin{equation*}
\psi(x) \leq \lambda(x) \leq \sum_{k=1}^{\psi(x)}\left[\alpha_{k}\right]=\sum_{k=1}^{\psi(x)} \alpha_{k}=\log x \sum_{k=1}^{\psi(x)} \frac{1}{\log a_{k}} \tag{18}
\end{equation*}
$$

From theorem 3.2, We have $\log a_{n} \square s \log n \Rightarrow \frac{1}{\log a_{n}} \square \frac{1}{s \log n}$

$$
\begin{equation*}
\Rightarrow \quad \sum_{k=1}^{\psi(x)} \frac{1}{\log a_{k}} \square \frac{1}{\log a_{1}}+\frac{1}{s} \sum_{k=2}^{\psi(x)} \frac{1}{\log k} \quad \text { By Result } 3.5 \tag{19}
\end{equation*}
$$

We have from Theorem $\mathbf{2 . 1 4}$

$$
\int_{a}^{x} \frac{1}{f(t)} d t \square \frac{x}{f(x)} \quad \Rightarrow \quad \int_{2}^{x} \frac{1}{\log t} d t \square \frac{x}{\log x}
$$

(20)

Now

$$
\begin{equation*}
\frac{1}{\log a_{1}}+\frac{1}{s} \sum_{k=2}^{\psi(x)} \frac{1}{\log k}=\int_{2}^{\psi(x)} \frac{1}{\log t} d t+\mathrm{O}(1) \square \frac{\psi(x)}{s \log x} \tag{By}
\end{equation*}
$$

(20)

From Equation (19) and above equation $\sum_{k=1}^{\psi(x)} \frac{1}{\log a_{k}} \frac{\psi(x)}{s \log x}$
From Equation (18) and above equation $\quad \psi(x) \leq \lambda(x) \leq \frac{h(x) \psi(x) \log x}{s \log x} \quad(\because h(x) \rightarrow 1)$

$$
\begin{equation*}
\Rightarrow 1 \leq \frac{\lambda(x)}{\psi(x)} \leq \frac{h(x) \log x}{s \log x} \quad \Rightarrow \quad 1 \leq \lim _{x \rightarrow \infty} \frac{\lambda(x)}{\psi(x)} \leq \lim _{x \rightarrow \infty} \frac{h(x) \log x}{s \log x} \tag{21}
\end{equation*}
$$

We have from Theorem 3.4 of (i) $\log \psi(x) \square \frac{1}{s} \log x \Rightarrow \lim _{x \rightarrow \infty} \frac{\log x}{s \log \psi(x)}=1$
Using this inEquation (21), we get $\Rightarrow 1 \leq \lim _{x \rightarrow \infty} \frac{\lambda(x)}{\psi(x)} \leq 1 \quad(\because h(x) \rightarrow 1) \Rightarrow \lim _{x \rightarrow \infty} \frac{\lambda(x)}{\psi(x)}=1$
Hence

$$
\lambda(x) \square \psi(x)
$$

3.10 Theorem. Let $f \in F,\left(a_{n}\right)$ satisfies (1).

Then
(i) $\sum_{k=1}^{n} a_{k}^{\alpha} \square \frac{n^{s \alpha+1} f(n)^{\alpha}}{s \alpha+1} \square \frac{n}{s \alpha+1} a_{n}^{\alpha} \quad(\alpha>0)$
$\sum_{a_{n} \leq x} a_{n}^{\alpha} \square \frac{\psi(x)}{s \alpha+1} x^{\alpha} \quad(\alpha>0)$

Proof: Given that Let $f \in F,\left(a_{n}\right)$ satisfies (1)
(i) Let us consider the sum

$$
\begin{equation*}
1+2+\ldots+\left(n^{\prime}-1\right)+\sum_{k=n^{\prime}}^{n}\left(k^{s} f(k)^{s}\right)^{\alpha} \tag{22}
\end{equation*}
$$

Where n^{\prime} is positive integer in the interval $[a, \infty)$
From Equation (1) we have $\quad a_{n} \square n^{s} f(n) \quad \Rightarrow \quad a_{n}^{\alpha} \square n^{s \alpha} f(n)^{\alpha}(\because \alpha>0)$

We know that $x^{s} f(x)^{s}$ is increasing $\Rightarrow \sum_{k=n^{\prime}}^{n}\left(k^{s} f(k)^{s}\right)^{\alpha}=\int_{n^{\prime}}^{n} x^{s \alpha} f(x)^{\alpha} d x+\mathrm{O}\left(n^{s \alpha} f(n)^{\alpha}\right.$

From Theorem 2.13, we have $\lim _{x \rightarrow \infty} \frac{\int_{a}^{x} t^{\alpha} f(t)^{\beta} d t}{\left(\frac{x^{\alpha+1} f(x)^{\beta}}{\alpha+1}\right)}=1 \Rightarrow \int_{a}^{x} t^{\alpha} f(t)^{\beta} d t \square \frac{x^{\alpha+1} f(x)^{\beta}}{\alpha+1}$
Put $\alpha=s \alpha$ and $\beta=\alpha$ in above equation, we get $\int_{n^{\prime}}^{n} x^{s \alpha} f(x)^{\alpha} d x \square \frac{n^{s \alpha+1} f(n)^{\alpha}}{s \alpha+1}$
(25)

From Eqations (22), (24) and (25), we get

$$
\begin{align*}
& \left.1+2+\ldots+\left(n^{\prime}-1\right)+\sum_{k=n^{\prime}}^{n}\left(k^{s} f(k)^{s}\right)^{\alpha} \square \frac{n^{s \alpha+1} f(n)^{\alpha}}{s \alpha+1}=\frac{n^{s \alpha} n f(n)^{\alpha}}{s \alpha+1}\right) \tag{26}\\
\Rightarrow & 1+2+\ldots+\left(n^{\prime}-1\right)+\sum_{k=n^{\prime}}^{n}\left(k^{s} f(k)^{s}\right)^{\alpha} \square \frac{n a_{n}^{\alpha}}{s \alpha+1} \quad \text { Ву (23) } \tag{27}
\end{align*}
$$

FromEquations (23), (26) and (27) and using Result 3.5, we get

$$
\sum_{k=1}^{n} a_{k}^{\alpha} \square \frac{n^{s \alpha+1} f(n)^{\alpha}}{s \alpha+1} \square \frac{n}{s \alpha+1} a_{n}^{\alpha} \quad(\alpha>0)
$$

(ii) If $a_{n} \leq x<a_{n+1}$ and $\alpha>0 \Rightarrow \psi\left(a_{n}\right) \leq \psi(x)<\psi\left(a_{n+1}\right)$

And $\quad a_{n}^{\alpha} \leq x^{\alpha}<a_{n+1}^{\alpha} \Rightarrow \quad(\mathrm{s} \alpha+1) \sum_{a_{k} \leq a_{n}} a_{k}^{\alpha} \leq(\mathrm{s} \alpha+1) \sum_{a_{k} \leq x} a_{k}^{\alpha}<(\mathrm{s} \alpha+1) \sum_{a_{k} \leq a_{n+1}} a_{k}^{\alpha}$

$$
\begin{equation*}
\Rightarrow \lim _{n \rightarrow \infty} \frac{\psi\left(a_{n}\right)}{\left(\frac{(\mathrm{s} \alpha+1) \sum_{a_{k} \leq a_{n}} a_{k}^{\alpha}}{a_{n}^{\alpha}}\right)} \leq \lim _{x \rightarrow \infty} \frac{\psi(x)}{\left(\frac{(\mathrm{s} \alpha+1) \sum_{a_{k} \leq x} a_{k}^{\alpha}}{x^{\alpha}}\right)} \leq \lim _{n \rightarrow \infty} \frac{\psi\left(a_{n}\right)}{\left(\frac{(\mathrm{s} \alpha+1) \sum_{a_{k} \leq a_{n}} a_{k}^{\alpha}}{a_{n}^{\alpha}}\right)} \quad\left(\because a_{n} \square a_{n+1}\right) \tag{28}
\end{equation*}
$$

We have

$$
\begin{aligned}
\sum_{k=1}^{n} a_{k}^{\alpha} \square \frac{n a_{n}^{\alpha}}{s \alpha+1} & \Rightarrow \sum_{a_{k} \leq a_{n}} a_{k}^{\alpha} \square \frac{\psi(n) a_{n}^{\alpha}}{s \alpha+1} \Rightarrow \psi\left(a_{n}\right) \square \frac{s \alpha+1 \sum_{a_{k} \leq a_{n}} a_{k}^{\alpha}}{a_{n}^{\alpha}} \\
& \Rightarrow \lim _{n \rightarrow \infty} \frac{\psi\left(a_{n}\right)}{\frac{s \alpha+1 \sum_{a_{k} \leq a_{n}} a_{k}^{\alpha}}{a_{n}^{\alpha}}}=1
\end{aligned}
$$

$$
\text { Equation (28) implies } 1 \leq \lim _{x \rightarrow \infty} \frac{\psi(x)}{\left(\frac{(\mathrm{s} \alpha+1) \sum_{a_{k} \leq x} a_{k}^{\alpha}}{x^{\alpha}}\right)} \leq 1 \quad \Rightarrow \quad \lim _{x \rightarrow \infty} \frac{\psi(x)}{\left(\frac{(\mathrm{s} \alpha+1) \sum_{a_{k} \leq x} a_{k}^{\alpha}}{x^{\alpha}}\right)}=1
$$

$$
\Rightarrow \quad \psi(x) \square \frac{(\mathrm{s} \alpha+1) \sum_{a_{k} \leq x} a_{k}^{\alpha}}{x^{\alpha}} \quad \Rightarrow \quad \sum_{a_{n} \leq x} a_{n}^{\alpha} \square \frac{\psi(x)}{s \alpha+1} x^{\alpha} . \quad(\alpha>0) .
$$

We apply the results discussed in this article to look into some of the applications in number theory.
Acknowledgments. The author would like to thank the anonymous referees for a careful reading and evaluating the original version of this manuscript.

REFERENCES

[1] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fourth Edition, 1960.
[2] R. Jakimczuk. Functions of slow increase and integer sequences, Journal of Integer Sequences, Vol. 13 (2010), Article 10.1.1.
[3] R. Jakimczuk. A note on sums of powers which have a fixed number of prime factors, J.Inequal. Pure Appl.

Math. 6 (2005), 5-10.
[4] R. Jakimczuk. The ratio between the average factor in a product and the last factor, mathematical sciences:

Quarterly Journal 1 (2007), 53-62.
[5] Y. Shang, On a limit for the product of powers of primes, Sci. Magna 7 (2011) 31-33.
[6] J. Rey Pastor, P. Pi Calleja and C. Trejo, An alisis Matem arico, Volumen I, Octava Edicion, Editorial Kapelusz,
1969.

