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Abstract 

 
We aim to construct a driver assistance system that is 

able to detect such driver deviations. The system 

detects deviation using time-series head motion 

information. We analyze driver’s head posture during 

safety verificationand propose a method for 

classifying head posture using two types of 

unsupervised neural networks: Self-Organizing Maps 

(SOMs) and fuzzy Adaptive Resonance Theory (ART). 

The proposed method has a feature based on the 

hybridization of two unsupervised neural networks 

with a seamless mapping procedure. The proposed 

method can generate the optimal number of cluster-

generated labels for the target problem. We 

experimentally assess the effectiveness of the 

proposed method by adjusting the fuzzy ART network 

vigilance parameters. In addition, we indicate that 

driver’s head posture during safety verification can 

be categorized according to their individual 

properties. 

 

1. Introduction  
Recently, driver assistance systems, which deal 

with a driver’s state and detect if drivers are able to 

continue driving safely, have become increasingly 

popular. Many researchers have been studying the 

detection of driver’s gaze movements and sleepiness 

for the estimation of unsafe driving. Cognitive errors 

and faulty decisions cause many traffic accidents, and 

the primary error factor is believed to be continual 

deviation from normal states. We hypothesize that 

head motion patterns of a driver can be used for 

verification of safe driver conditions by detecting 

deviations in such motion patterns due to 

inattentiveness. This study aims to construct a driver 

assistance system that is able to detect such 

deviations. Recently, active safety technology 

designed to prevent car accidents has been drawing 

significant attention. There are a number of 

technologies that detect drowsiness or inattentive 

behavior using driver’s eye-gaze line or head turning 

motion information to alert drivers of potentially 

dangerous situations [1]-[3]. Active safety technology 

is currently available in some automobiles. However, 

such systems only detect a single instance of 

deviation from normal conditions, such as 

inattentiveness. Our system continually analyzes 

time-series data to generate a predictive driver 

deviation signal. 

Our system quantizes driver’s 3D head motions 

during safety verification behavior using only phase 

variation of 2D images taken by an in-vehicle 

monocular camera and modeled head motion 

information. In this study, we analyze head postures 

of a driver during safety verification at an 

unsignalized blind intersection and propose a head 

posture classification method using two types of 

unsupervised neural networks: Self-Organizing Maps 

(SOMs) [4] and fuzzy Adaptive Resonance Theory 

(ART) [5]. In addition, we discuss face orientation 

categorization using the proposed method.  

The remainder of this paper is organized as 

follows. Section II describes related work. An 

analysis of safety verification is presented in Section 

III. The proposed method is introduced in Section IV 

and experimental results are presented in Section V. 

The conclusion and future work are presented in 

Section VI. 

 

2. Related study 
The highest number of reported traffic accident 

fatalities involves pedestrians. From automobile-

focused analysis of pedestrian fatalities, the Traffic 

Accident Research and Analysis Center has 

announced that 83% of accidents occur when driving 

a vehicle in a straight direction. In such cases, 

“inattentive driving,” e.g., looking at distant traffic 

signals or operating audio equipment, and “careless 

driving,” e.g., idly and thinking, equally contribute 

(35%) to 70% of the total accidents. On the other 

hand, 70% of pedestrian actions are violations. 

Seventy-three percent are crossing violations, such as 
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crossing immediately before or after a vehicle, 

crossing outside crosswalks, and ignoring traffic 

signals. There is a very high risk of fatal accidents 

when drivers succumb to inattentive or careless 

driving, which easily occurs when driving in a 

straight direction and when pedestrians violate 

crossing regulations. Here, “careless driving” refers 

to operating an automobile in a distracted state 

because of psychological and physiological factors. 

Drivers operating a vehicle in a distracted state are at 

risk of not perceiving potential dangers or may 

demonstrate delayed responses to such dangers. In a 

distracted state, the driver’s mental and physical 

resources are distributed without focusing on driving 

behaviors and requirements, which is a common 

contributor to serious accidents [6]. Several studies 

have examined such distracted states. Homma et al. 

[7] focused on what they referred to as the vague 

state, and Abe et al. [8] examined what they referred 

to the thinking state. These studies promoted the 

experimental verification of such states and 

confirmed the existence of characteristic scenes in 

which discovery delay or oversight of changes in an 

ambient environment occurs.  

The prediction of driver’s behavior is effective for 

the overall prevention of traffic accidents. However, 

individual driver characteristics are greatly influenced 

by states of mind, such as emotional stress and 

mental burden, which are not always constant. 

Emotional stress is an important factor in traffic 

accidents; irritability and impatience increase risky 

driving behaviors, such as short and narrow inter-

vehicle distance, rapid acceleration and deceleration, 

and driving at high speeds. In addition, excessive 

anxiety generates carelessness or oversight because it 

interferes with cognitive processes. Matthews [9] 

stated that the various emotional stresses during 

driving must be broadly classified into the following 

three factors. The “degree of involvement in the 

driving task (Task Engagement)” involves the level 

of driver engagement and fatigue. “Puzzle-distress 

(Distress)” includes feelings of tension, pleasure–

displeasure, and anger. “Anxiety (Worry)” involves 

cognitive interference. Individual thresholds for anger 

or frustration caused by conflict with another car, 

e.g., the other car does not run as expected, vary for 

each driver. However, regardless of the different 

thresholds and tolerances, these emotions exist as 

stress and affect driving behaviors. In addition, acting 

within time constraints or delays can easily lead to 

impatience, e.g., you cannot proceed as intended 

because of a traffic jam. Such situations can evoke 

emotional stress. However, driving behavior 

prediction that considers operating characteristics on 

the basis of the mental and emotion state of drivers 

has not yet been realized. 

Many researchers have been working on the 

estimation of drivers’ face orientation, head postures, 

and gaze. S. J. Lee et al. proposed a vision-based 

real-time gaze zone estimator that works in both day 

and night conditions and is sufficiently robust to 

recognize facial image variation caused by eyeglasses 

[10]. In another system, driver vigilance has been 

estimated by the percentage of eye closure and a 

fuzzy classifier using infrared images [11]. Another 

study focusing on natural driving environments 

presented an automatic calibration method and 

categorized the head position using 12 gaze zones 

with a particle filter [12]. In addition, drivers’ head 

positions have been estimated using localized 

gradient orientation histograms of the facial region as 

input to support vector regressors [13]. A robust 

driver’s head and facial feature tracking system, 

which is capable of detecting occluded eye and 

mouth features, has also been proposed [14]. These 

methods use facial orientation, driver’s gaze, and the 

degree of eye openness to estimate the degree of 

driver’s concentration and fatigue; these factors are 

realized by detecting and tracking the corresponding 

facial feature points. However, these approaches have 

some inherent technical issues, such as the failure of 

tracking and mismatch in the relationship between 

corresponding facial feature points, because changes 

in the driving environment lead to different degrees 

of light. The proposed method does not require the 

detection and tracking of facial feature points. We 

focus on time-series information of geometric phase 

changes in a two-dimensional space captured by a 

single video camera, with respect to the neutral 

driving position seated to the fixed position of an 

individual driver. 

 

3.Analysis of safety verification behavior 
Most car accidents occur near or in intersections. 

If safety verifications are insufficient and the driver is 

operating a vehicle in an abnormal state, the 

probability of a car accident is significantly higher. In 

our study, we constructed a safety verification 

behavior model according to an individual’s behavior 

during safety verification motions at an unsignalized 

blind intersection. To construct the safety verification 

behavior model, we quantize head posture changes 

made during safety verification motions. In this 

section, we analyze a driver’s upper body posture 

motions during safety verification behavior and 

discuss the granularity of quantization. 
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3.1. Dataset 
To analyze a driver’s safety verification posture, 

actual driving environment data were collected. The 

subject, a man in his twenties, gave informed consent 

prior to engaging in the driving exercise. The subject 

practiced driving the designated course before the 

actual data collection. The course proceeded around 

the University of Tokushima, and it took 

approximately 15 min to complete one lap. A 

monocular in-vehicle camera (Anshin-mini, Anshin 

Management Co., Ltd., see Figure 1) was set on the 

windshield in front of the driver’s seat. We recorded 

the subject’s upper body data (driver’s images). 

Another camera was set behind the rearview mirror to 

record images in front of the car (driving scene 

images). The image resolution was 640 × 480 pixels, 

and the frame rate was 30 fps. There were some 

unsignalized blind intersections in the course. The 

course is shown in Figure 2 (a), and an example of an 

unsignalized blind intersection is shown in Figure 2 

(b). Data were collected on three different days, 

resulting in three unique datasets: A, B, and C. The 

subject drove the course once per day. 

 

3.2. Dataset Analysis 
We analyzed right turn behavior at the 

intersections, as shown in Figure 2 (b). Figure 3 

illustrates the subject’s head posture changes during 

safety verification. From dataset A, the subject 

verified the safety of the intersection with deeply bent 

head postures. On the other hand, from datasets B 

and C, the subject made smaller bending movements. 

From all the dataset results, we were able to 

recognize a common posture while checking the 

convex mirrors when entering the intersection. For 

sufficient quantization of head postures, the 

classification of frontal facial features, head postures 

when checking a convex mirror, small head bending 

postures, deep head bending postures, and right and 

left checking postures is the minimum requirement. 

 

4. Proposed method 
The proposed method has a feature based on the 

hybridization of two unsupervised neural networks 

with a seamless mapping procedure comprising the 

following steps. First, on the basis of the similarity of 

the spatial phase structure of images, we identify a 

local neighborhood region containing the order of 

phase changes. The region is mapped to one-

dimensional space equivalent to more than the 

optimal number of clusters. Labels that match the 

optimal number of clusters are generated by 

additional learning that is in accordance with the 

order of the one-dimensional maps formed in the 

neighborhood region.  

Specifically, SOMs have excellent topological 

properties for spatial mapping. Using one-

dimensional SOMs with a non-circular mapping 

layer, the neighborhood region can form an 

independent one-dimensional space that locally 

maintains order on the basis of the similarity of the 

structural phase. In addition, after mapping, sparse 

input data are reflected in the weight vectors of the 

mapping units. The weight vectors for each unit of 

the one-dimensional mapping layer maintaining this 

order are positioned to enter the ART network by 

sequentially placing them into the ART input space 

from the start or end of the terminal units. In reality, 

ART encourages the formation of adaptive category 

combinations with stability and plasticity to achieve 

the optimal number of cluster-generated labels for the 

target problem. Figure 4 depicts an overview of the 

hybridization of the two unsupervised neural 

networks. The proposed method has a seamless 

mapping procedure comprising the following two 

steps, as shown in Figure 4. 

Figure 1. Monocular in-vehicle camera

 

 

(a) Course map (b) Unsignalized 

intersection 

Figure 2. Driving course. 
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The first step is to classify the input patterns in 

feature space using one-dimensional SOMs with a 

non-circular mapping layer. The second step is to 

integrate the weight vectors of the one-dimensional 

SOMs into proper categories using fuzzy ART 

networks.  

 

The algorithm of SOMs comprises the following 

steps. 

1). Let wi,j(t) be the weight from the input unit i to 

the mapping unit j at time t. The weights are 

initialized with random numbers. 

2). Let xi(t) be the input data to the input unit at time 

t. 

3). The Euclidean distance dj between xi(t) and 

wi,j(t) is calculated as follows. 

 

𝑑𝑗 =    𝑥𝑖 𝑡 − 𝑤𝑖 ,𝑗  𝑡  
2

𝐼
𝑖=1   (1) 

 

4). The winning unit dj becomes a minimum. Let 

Nc(t) be the units of the winning unit 

neighborhood. The weight wi,j(t) inside Nc(t) is 

updated. 

 

𝑤𝑖 ,𝑗  𝑡 + 1 = 𝑤𝑖 ,𝑗  𝑡 + 𝛼 𝑡  𝑥𝑖 𝑡 − 𝑤𝑖 ,𝑗  𝑡       (2) 

 

Figure 3. Head posture change during safety verification. 

 

t 

Checking a convex mirror 

Figure 4.Network structure of proposed 

method. 

 

(a) Original image 

(320 × 240 pixels) 
(b) Region of interest 

(c) Gabor wavelet 

filter image 

(d) Coarse-grained 

image (24 × 24 pixels) 

Figure5.    Input data of SOMs. 
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Here, α 𝑡  is the training coefficient, which 

decreases with time. Training ends when the 

iterations reach the maximum number.  

In this study, the initial value of α(t) is set as 0.5, 

and that of Nc(t) is set as 2/3 of the number of 

mapping layer units, such that the values decrease 

linearly with time. The number of learning operations 

is empirically set as 1,000. 

 

The fuzzy ART algorithm is presented below. 

Fuzzy ART network architecture consists of the 

following three fields: Field 0 (F0) receives input 

data, Field 1 (F1) is for feature representation, and 

Field 2 (F2) is for category representation. 

1). wi denotes the weights between each F2 i and 

each corresponding F1. All wi values are 

initialized as one. 

2). Input data x is the SOM weight wi,j for F0. 

3). For each unit i in F2, the choice function Ti is 

defined as follows. 

 

𝑇𝑖 =
 𝑥∧𝑤 𝑖 

𝑎+ 𝑤 𝑖 
   (3) 

 

4). Tc is a winning category, wherec gives the 

maximum value of Ti. The category with the 

smallest index is chosen if more than Ti is 

maximal. When Tc is selected for a category, the 

Ti unit on the c of F2 is set to one and other units 

are set to zero. 

5). Resonance or resetting is assessed. The match 

function that 𝑥 ∧ 𝑤𝑐  to F1 of the signal from the 

unit in the c of F2. 

 
 𝑥∧𝑤𝑐  

 𝑖 
≧ 𝑝   (4) 

 

Here, x and c are resonant. Resonance occurs if 

the match function of the selected category meets the 

vigilance criterion. Then, the weight vector wi0 is 

updated as follows. 

 

𝑤𝑖0 = 𝑟 𝑥 ∧ 𝑤𝑖0 +  1 − 𝑟 𝑤𝑐   (5) 

 

If x has no resonance with Tc, then Tc is reset. 

The network seeks the next category where Ti is 

maximal and reselects it. The network determines 

resonance or resets. If all categories are reset, then a 

unit is created on F2 and a new category is registered. 

Here, r denotes the learning speed parameter.  

The units of F2 and SOM’s weight correspond in 

fuzzy ART. And similar feature is integrated of 

category. 

 

5. Experimental results 
We examined the effectiveness of the proposed 

method on the basis of the safety verification 

analysis. 

Datasets A, B, and C were used in this experiment. 

Figure 5 shows details of the experimental 

preprocessing. Figure 5 (a) is the original image (320 

× 240 pixels). Figure 5 (b) is the region of interest 

(240 × 240 pixels) extracted from the center of the 

original image. Figure 5 (c) is Gabor wavelet filter 

image of Figure 5 (b). Figure 5 (d) is a coarse-grained 

image (24 × 24 pixels) of Figure 5 (c). The input 

features of the SOMs are the coarse-grained image 

pixel values (576 dimensions). We empirically set the 

mapping layer to 25 units. 

 

5.1. Effectiveness of proposed method 
The advantage of the proposed method is the 

ability to adaptively integrate categories of one-

dimensional SOM mapping results to maintain 

neighborhood units by adjusting the fuzzy ART 

vigilance parameter. Tables 1–3 show the results for 

vigilance parameters from 0.93 to 0.97 for datasets A, 

B, and C, respectively. The SOM’s unit number (1–

25) corresponds to the category number of the 

integrated result from fuzzy ART. In these tables, N 

indicates that no data are mapped to the unit. In 

addition, category integration is achieved with N as 

the boundary and integration is conducted within the 

boundary areas. Specifically, focusing on mapping 

units from 1 to 9 in Table 2, similar units are 

integrated to make a neighborhood as the vigilance 

parameter decreases from 0.97 to 0.93. When the 

vigilance parameter is 0.97, units 1 and 2 are 

integrated into category 1. Similarly, units 3, 4, and 5, 

units 6 and 7, and units 8 and 9 are integrated into 

categories 2, 3, and 4, respectively. In contrast, when 

the vigilance parameter is 0.93, units 1–5 and units 

6–9 are integrated into categories 1 and 2, 

respectively. As shown in Table 2, the boundary unit 

changes adaptively with the vigilance parameter.  
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Figures 6, 7 and 8 show the average images from 

datasets A, B and C, respectively. In these figures, 

each safety verification posture is ordered according 

to the phase variation of the images on the basis of 

the frontal face category. Figures 6, 7 and 8 illustrate 

that the safety verification motion mapped by the 

one-dimensional SOMs is integrated with a similar 

head posture category and that face orientation phases 

adaptively with the vigilance parameter control. On 

the basis of the front-facing head posture, Figures 6, 

7 and 8 illustrate the results of sorting and 

quantifying the extent of head posture changes (i.e., 

geometric phase changes) associated with safety 

Table 1. Category integration results (dataset 

A) N: no data mapped to unit 

N: no data mapped to unit 

N: no data mapped to unit 

Table 2. Category integration results (dataset 

B) 

Table 3. Category integration results (dataset 

C) 

Frontal face 

Category 1 

Category 2 Category 3 Category 4 Category 5 

Category 6 Category 7 

(a) Vigilance parameter: 0.93 

Frontal face 

Category 1 

Category 2 Category 3 Category 4 Category 5 

Category 6 Category 7 Category 8 Category 9 Category 10 

Category 11 Category 12 

(b) Vigilance parameter: 0.97 

Figure 6. Average image for each integrated category (dataset A) 
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verification behavior. A front-facing head posture 

represents the neutral driving position seated to the 

fixed position of an individual driver. The average 

image in each category is calculated. All captured 

images corresponding to the safety verification 

behavior period are classified using our proposed 

method. Momentary head postures vary according to 

driving conditions. In particular, left or right head 

postures due to safety verification in a non-signalized 

intersection significantly depend on the degree of 

visibility. In addition, head postures associated with 

looking into the intersection have been confirmed. By 

adaptively controlling vigilance parameters, we were 

effectively able to analyze changes in the head 

posture during safety verification behavior in time-

series. When vigilance parameters were set to 

relatively low values, e.g., 0.93, excessive and abrupt 

head posture changes during safety verification were 

Frontal face 

Category 1 

Category 2 Category 3 Category 4 Category 5 

Category 6 Category 7 Category 8 Category 9 Category 10 

Category 11 Category 12 

(a) Vigilance parameter: 0.93 (b) Vigilance parameter: 0.97 

Figure 7. Average image for each integrated category (dataset B) 

Frontal face 

Category 1 

Category 2 Category 3 Category 4 Category 5 

Category 6 

(a) Vigilance parameter: 0.93 (b) Vigilance parameter: 0.97 

Figure 8. Average image for each integrated category (dataset C) 

Frontal face 

Category 1 

Category 2 Category 3 Category 4 Category 5 

Category 6 Category 7 

Category 2 Category 3 Category 4 Category 5 

Category 6 Category 7 Category 8 Category 9 Category 10 

Category 11 Category 12 Category 13 

Frontal face 

Category 1 

Figure 9. Head posture classification results (dataset 

A). 

(b) Deep head bending category (a) Frontal face category 
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captured; however, the proposed method could not 

guarantee the required classification accuracy for 

analysis of time-series changes. On the other hand, 

when vigilance parameters were set to a more 

appropriate value, e.g., 0.97, it was possible to 

generate categories that appropriately represent the 

time-series variation of the safety verification 

behavior. Furthermore, by considering the safety 

verification behavior of a single subject at the same 

intersection and the analysis of datasets on different 

driving days, the proposed method can adaptively 

categorize subject-specific safety verification 

behaviors. For safety verification behavior with the 

head bending posture, as can be seen in Figures 9 (b), 

10 (b) and 11 (b), right and left postures are in the 

same category because the proposed method 

quantizes the phase variations of the full region of 

interest and uses this information as a foundation for 

categorization and integration.  

 

5.2. Recursive categorization 
To sensitively separate right and left head 

postures and recognize the degree of head bending 

during safety verification, recursive categorization 

using the proposed method with a mixed category is 

expected to be effective.We examined the possibility 

of recursive categorization to separate right and left 

face posture on previous clause results. 

Figure 12 depicts recursive categorization results. 

The proposed method could separate right and left 

head posture, respectively. 

Figure 10. Head posture classification results (dataset B). 

(b) Small head bending category (a) Frontal face category 

Figure 11. Head posture classification results (dataset C). 

(b) Small head bending category (a) Frontal face category 
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6. Conclusion and future plan 
In this study, we analyzed driver’s head posture 

during safety verification at an unsignalized blind 

intersection and proposed a method of classifying 

head postures using two types of unsupervised neural 

networks: SOMs and fuzzy ART to quantize driver’s 

head motion for the detection continual deviation 

signals. Moreover, we recursively applied the mixture 

head posture results to proposed method. It was 

demonstrated that the proposed method was able to 

appropriately approximate head posture categories for 

a driver assistance system. 

In future, we will conduct proposed method on 

more data and define a head posture space to analyse 

time-si. 
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