A Study of Optical Sensor based Methods used for Blood Leak Detection During Hemodialysis

Ms. Nandini Rao G*, Ms. Meenakshi M* and V K Agrawal**

*Department of ECE, School of Engineering, DSU
**Department of CSE, School of Engineering, DSU

Abstract: Blood leakage during hemodialysis can be a serious life-threatening. Venous needle dislodgement can cause a high risk of blood leakage and can be fatal to patients. Intradialytic blood loss could result from conventional method of blood leak detection. The patient's entrance site ought to be noticeable consistently. It requires a superior, increasingly flexible and effective method of location. A versatile and non-invasive approach of blood leak monitoring is by using photocells. This paper provides the comparative study of various approach used for blood leak detection using photocells or optical sensors.

Key words: Venous needle dislodgement (VND), photocells, photointerrupter

I. INTRODUCTION

Venous needle dislodgement is an underreported life-threatening complication of hemodialysis[1]. According to the American Nephrology Nurses' Association VND survey reports, VND is a concerning issue for the nephrology nurses/staff and patients. VND can result in severe hemorrhage and can be fatal without rapid response. With blood pump speeds of 350 to 500 mL/min, VND can result in cardiovascular collapse immediately. Slower leaks of blood around partially dislodged venous needles can also result in significant blood loss. A diagrametic representation of arterivenous fistula is shown in figure 1. Arterial or VND from the access, separation of the venous or blood vessel line associations, femoral or central line dialysis catheter perforation, rupture of a dialysis membrane. Clinical findings include hypotension, loss of consciousness, and cardiac arrest.

Fig. 1: Diagrametic representation of arterivenous fistula

II. BLOOD LEAKAGE IN HEMODIALYSIS

If the blood pump is not stopped, either by activation of the protective system of the dialysis machine or manually, the patient can bleed to death within minutes[1]. The Renal Association Patient Safety Project has identified that renal patients have been exposed to incidents and risks from failure of dialysis equipment or disposables, or from use error. Blood loss on hemodialysis, from venous needle dislodgement as shown in Fig.1 are risks for potential fatal outcomes. Renal patients are susceptible to infection and also are at risk when admitted as acutely ill.

III. COMPARATIVE STUDY

The better arrangement discovered is a non-intrusive optical sensor which could be created to distinguish modest quantity of blood in clear liquids on straightforward tubing. These sort of blood loss indicators are structured to such an extent that blood ought not cross the dialysate film. The optical sensor includes an illuminating source with an ideal frequency to give the best affectability in regards to the detection of the red blood cells.

Fig. 2: Using photosensors for blood leak detection.

A simplest approach for blood leak detection is shown in figure 2. Here photosensors will sense the change in light intensity passing through the tube and detect the blood leakage. But this method requires certain sophisticated conditions to be met such as dark room, no disturbance. Better approach will be using array sensing patch as shown in figure 3 which is combined with a mapping circuit and a wireless module could measure and transmit risk levels [2].

Published by:
http://www.ijert.org

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 9 Issue 06, June-2020

IJERTV9IS060474
www.ijert.org
995

(This work is licensed under a Creative Commons Attribution 4.0 International License.)
Experimental results showed that each point of the sensing array could detect up to 0.1mL of leakage of blood and the array sensing patch supports a risk level monitoring system up to 8 h to alert healthcare personnel of pertinent danger to the patients.

**Fog computing with array photocell sensors:**

Blood leakage based on fog computing with array photocell sensors and hetero associative memory is used for better monitoring of blood leakage. Photocell sensors are arranged in an array on a flexible substrate as shown in figure 4 to detect blood leakage via the resistance changes with illumination in the visible spectrum of 500–700 nm[3].

![Array sensing patch](image1)

**Table 1: Comparative study**

<table>
<thead>
<tr>
<th>Proposed Method</th>
<th>Amount of blood leakage detected</th>
<th>Time required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array sensing patch [2]</td>
<td>0.1mL</td>
<td>90 ± 5 ms</td>
</tr>
<tr>
<td>Fog computing with array photocell sensors[3]</td>
<td>0.1mL</td>
<td>&lt;1 s</td>
</tr>
<tr>
<td>Absorbent material with photointerrupter[4]</td>
<td>0.01 mL</td>
<td>1.6 s</td>
</tr>
</tbody>
</table>

A cost effective approach is using an absorbent material which will be placed at the light sensing position of the photointerrupter. It causes the received light intensity to change during blood leakage. Once a blood leakage occurs, the absorbent material absorbs the blood due to the capillary action and triggers the alarm system. A warning light will be activated, and a leakage occurrence will be transmitted to the healthcare stations alarming healthcare workers via the Bluetooth. The healthcare workers can take appropriate action immediately to prevent any risks to the patients during hemodialysis therapy.

Conclusion: Using a portable wearable device consisting of photo sensors to detect blood leak detection would a good solution. But the cost effective approach will be used using absorbent material along with photointerrupter. The methods for blood leakage detection can be considered to be to be efficient based on response time and the amount of blood leakage detection within that time as mentioned in Table 1. These methods should be used along with alarm system to indicate the damage. Using IOT for communication, immediate medication will result in efficient blood leak detection system.

**REFERENCES**


