A Study and Comparsion of Base Shear in **Different Zones and Soil Types for** (G+4),(G+9),(G+14)

Sajala, Nadiya RVR and JC College of Engineering

Abstract:- In modern days the seismic design of the buildings is going for higherimportance. In this regard we are going to compare the results of the buildings of G+4,G+9,G+14 of a same dimensions for different zone values of II=0.1; III=0.16, IV=0.24 V=0.36 (low, medium, severe, very severe) and for various types of soils namely rocky, medium, soft soils and for different fundamental natural time periods:

```
1)(G+4)
       Ta=0.382sec
2) (G+9)
       Ta=0.734sec
3) (G+14)
        Ta=1.086sec
And for various ground accelerations
1)(G+4)
        Sa/g=2.5
2) (G=9)
        Sa/g = 1.361381 for rocky
             = 1.851478 for medium
             = 2.273506 for soft
3) (G+14)
        Sa/g = 0.920193 for rocky
              = 1.251452 for medium
              = 1.536722 for soft
```

And we compared the base shear of the buildings at different zones and soil types. For term paper we are submitting zone comparison and soil comparison results.

2.NOTATION

Important letter symbols generally used are listed here for reference. Other symbols are covered in the concerned sections.

 A_h : Design horizontal seismic coefficient.

g: Acceleration due to gravity.

h: Height of structure, in meters

I : Importance factor.

n: Number of storeys.

 Q_i : Lateral force due to earthquake, wind at floor i.

R: Response reduction factor.

 $\frac{S_a}{}$: Average response acceleration coefficient.

T: Fundamental natural period, in seconds.

 V_h : Design seismic base shear.

W: Seismic weight of the structure.

 W_i : Seismic weight floor i.

Z : Zone factor.

fck: Characteristic compressive strength of concrete cube.

fy: Yield stress of steel.

lw: Horizontal length of wall.

Vol. 9 Issue 11, November-2020

ISSN: 2278-0181

tw: Thickness of wall web.

dw: Effective depth of wall section.

 $\tau_{...}$: Nominal shear stress.

 τ_{cmax} : Maximum permissible shear stress in section.

 τ_c Shear strength of concrete.

 V_{u} : Factored shear force. xu: Depth of neutral axis.

3. INTRODUCTION

WHAT IS EARTH QUAKE:

An earthquake is a sudden tremor or movement of the earth's crust which originates naturally at or below the surface. The word natural is important here, since it excludes shock waves caused by nuclear tests, man-made explosions, etc., about 90% of all earthquakes result from tectonic events primarily movements on the faults. The remaining is related to volcanism, collapse of subterranean cavities or man made effects. Tectonic earthquakes are triggered when the accumulated strain exceeds the shearing strength of rocks.

EARTHOUAKE SIZE:

Intensity is a qualitative measure of the strength of an earthquake. It gives a graduation of strength of earthquake using observed damage to structures and or ground and reaction of humans to the earthquake shaking. An earthquake has many intensities the highest near the maximum fault displacement and progressively to lower grade at further away. Since the measure is not instrumental intensity can be assigned to historical earthquakes also. The popular intensity scale is the modified mercalli scale with twelve gradation denoted by roman numerals from I TO XII. Another intensity scale developed for central and eastern European states is kno9wn as medveddysponheuer-karnik intensity scale. The twelve gradation MSK scale differes with MMI in details only. Like many other countries IS 1893(Part 1), the Indian standard: 2002 also refers to the MSK scale.

MAGNITUDE:

The magnitude is a quantitative or absolute measure of the size of an earthquake it can be correlated to the amount of wave energy released at the source of an earthquake. The elastic wave energy is that portion of total strain energy stored in lithospheric rock that is not consumed as mechanical work during an earthquake there are various magnitude scales in use. These scale differ from each other because those are derived from measuring different wave components of an earthquake.

4. DEFINITIONS

TERMINOLOGY FOR EARTHQUAKE ENGINEERING OF BUILDINGS

1. EARTHQUAKE:

Vibrations of Earth's surface caused by waves from a source of disturbance inside the earth are known as Earthquakes.

2. INTENSITY:

The Severity of shaking of an Earthquake as fell or observed through damage is known as intensity. Areas having same intensities are then enclosed by contour lines such a map is called isoseismic map.

3. MAGNITUDE:

The magnitude of earthquake is a number, which is a measure of energy released in an earthquake .It is defined as logarithm to the base 10 of the maximum trace amplitude, expressed in microns, which the standard short period torsion seismometer would register due to the earthquake at an epicenteral distance of 100km.

4. NATURAL PERIOD:

Natural period of a structure is its time period of undamped free vibration.

5. RESPONSE SPECTRUM:

The representation of the maximum response of idealized single degree freedom systems having certain period and damping, during earthquake ground motion. The maximum response is plotted against the undamped natural period and for various damping values, and can be expressed in terms of maximum absolute acceleration, maximum relative velocity, or maximum relative displacement.

6. SEISMIC WEIGHT:

It is the total dead load plus appropriate amounts of specified imposed load.

7. STRUCTURAL RESPONSE FACTORS (Sa/g):

It is a factor denoting the acceleration response spectrum of the structure subjected to earthquake ground vibrations, and depends on natural period of vibration and damping of the structure.

AVERAGE RESPONSE ACCELERATION COEFFICIENT (Sa/g):

The values of Sa/g can be found either from above graph or by some empirical equations given below:-

For rocky, or hard soil sites

For medium soil sites

For soft soil sites

1+151;	0.00 <= 1 <= 0.10
Sa/g = 2.50;	0.10 <= T <= 0.67
1.36/T;	0.67 <= T <= 4.00

Where T is the fundamental nature period.

8. ZONE FACTOR(Z):

It is a factor to obtain design spectrum depending on the perceived maximum seismic risk characterized by Maximum Considered Earthquake (MCE) in the zone in which the structure is located .The basic zone factors included in this standard are reasonable estimate of effective peak ground acceleration.

The country is classified into four seismic zones as given below Zone factor,

Seismic Zone	II	III	IV	V
Seismic intensity	Low	Moderate	Severe	Very severe
Z	0.10	0.16	0.24	0.36

9. DESIGN SEISMIC BASE SHEAR(VB):

It is the total design lateral force or design seismic base shear(VB) along any principal direction shall be determined by the following expression.

$$VB = AhW$$

Where:

Ah = Design horizontal seismic coefficient.

W = Seismic weight of the building.

10. FUNDAMENTAL NATURAL PERIOD:

The fundamental natural period of vibration (Ta), in seconds, of all other buildings , including moment resisting frame buildings with brick infill panels, may be estimated by the empirical expression .

$$Ta = 0.09h/d^{(1/2)}$$

Where:

h = Height of the building in m

d = Base dimension of the building at the plinth level in m, along the considered direction of the lateral force.

11 .DISTRIBUTION OF DESIGN FORCE:

The vertical distribution of base shear to different floor levels can be computed as per the following expression.

$$Qi = VB * (Wi * hi*hi) /$$

where:

Qi =design lateral force at floor i

Wi =seismic weight of floor i

hi =height of floor I measured from base

n=no. of stories in the building is the no: of levels at which masses are located

13. BASE SHEAR:

Base shear is an estimate of the maximum lateral force that will occur due to seismic ground motion at the base of the structure.

14. DESIGN SEISMIC BASE SHEAR:

The total design lateral force or design seismic base shear will be along any principal direction shall be determined by the following expression:

Where:

Ah=design horizontal acceleration spectrum value using the fundamental natural time period Tn in the considered direction of vibration.

W=Seismic weight of the building.

12. IMPORTANCE FACTOR:

It is the factor used to obtain the design seismic force depending on the functional use of the structure, characterized by hazardous consequences of its failure, its post earthquake functional need, historic value or economic importance.

Sl.No	STRUCTURE IMPORTANCE FACTO		
1.	Importance service and community buildings, such as hospitals, schools, monumental structures, emergency buildings like telephone exchange, television stations, radio stations, railway stations, fire station building; large community halls like cinemas, assembly hall stand subway stations, power stations	1.5	
2.	All other buildings	1.0	

GENERAL:

BHUJ earthquake occurred in 2001 and caused extensive damage to the structures and huge loss of lives also. Collapse of more than hundred reinforced buildings is due to open ground storey i.e. soft storey.

BHUJ earthquake has emphasized that such buildings are extremely vulnerable under earthquake shaking. Significant doubts have been arised in the minds of the professionals in dealing with these structures and make the structure more stiff, to resist earthquake.

The earthquake causes vibratory ground motions at the base of the structure, and the structure actively responds to these motions. For the structure responding to a moving base, there is an equivalent system. The base is fixed and the structure is acted upon by forces (called inertia forces) that cause the same distributions that occur in the moving-base system. In design system it is customary to assume the structure as a fixed-base system acted upon by inertia forces. Seismic design involves two distinct steps

- 1). Determining (or estimating) the earthquake forces that will acted on the structure, and
- 2). Designing the structure to provide adequate strength, stiffness, and energy dissipation capabilities to with stand these forces.

1.2. BEHAVIOR OF STRUCTURE:

Building and other structures are composed of horizontal and vertical structural elements that resist lateral forces. The horizontal elements, diaphragms and horizontal bracings are used to distribute the lateral forces to vertical elements. The vertical elements that are used to transfer lateral forces to the ground are shear walls, braced frames and moment resisting frames. The structure must include complete lateral and vertical force resisting systems, capable of providing adequate energy dissipation capacity to withstand the design ground motions with in the prescribed limits, deformation and strength demand.

The loads or forces that a structure sustains during an earthquake result directly from the distortions induced in the structure by motion of the ground on which it rests. Earthquake loads are inertia forces related to the mass, Stiffness and energy – absorbing. (i.e. damping and ductility) characteristics of the structure.

During the life of a structure, located in a seismically active zone, subjected to many small earthquakes, some moderate earthquakes, one or more large earthquakes and possibly a very severe earthquake. In general it is uneconomical or impractical to design buildings to resist the forces resulting from the very severe earthquake with in the elastic range of stress instead the building is designed to resist lower level of force, using ductile systems. When the earthquake motion is large to severe, some of the structural elements are expected to yield. Buildings that are properly designed and detailed can survive earthquake forces substantially greater than the forces associated with allowable stresses in the elastic range. Seismic design concepts must consider building proportions and detail for their ductility and for their reverse energy- absorbing capacity for surviving the inelastic deformations that would result from the maximum expected earthquake.

Architectural planning of structures:

The behaviour of a building during earthquake depends critically on its overall shape, size and geometry, in addition to the earthquake forces. Building with plan irregularities (e.g., those with re-entrant corners such as L-shape plans on corner plots) and those with elevation irregularities (e.g., large vertical setbacks in elevation such as a plaza – type configuration in commercial structures) are common. Building with plan asymmetry may experience significant torsional motions with even slight eccentricity between the center of mass (CM) and the center of rigidity (CR). As a result, the flexible side of the building (the edge of the building closer to CM) experiences larger than the stiff side (the edge of the building closer to CR). If not designed to accommodate these excessive deformations, the columns on the flexible side may fail and lead to collapse.

3.5. The size of buildings:

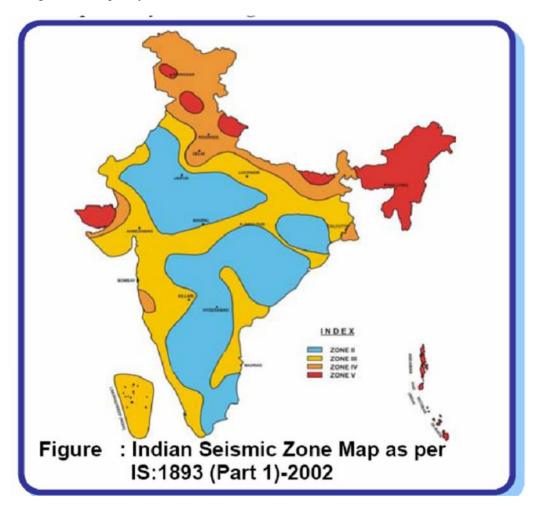
In tall buildings with large height to base size ratio, the horizontal movement of the floors during ground shaking is large. In short but very long buildings, the damaging effects during earthquake shaking are many. In buildings with large plan area, the horizontal forces can be excessive to be carried by columns and walls.

3.6. Horizontal layout:

Generally, buildings with simple geometry in plan perform well during the strong earthquakes. Building with reentrant corners like those U, V, H and + shaped in plan subjects to severe damage. Often, simple plan with columns/ walls unequally distributed in plan tend to twist during the earthquake.

3.7. Vertical layout:

The earthquake forces developed at different floor levels in a building need to be brought along the height to the ground by the shortest path. Any deviation or discontinuity in the load transfer path results in poor performance. Buildings with vertical


setbacks cause a sudden jump in earthquake forces at the level of discontinuity. Building with fewer columns or walls in a particular storey or with unusually tall storey tend to damage or collapse which is initiated in that storey. Buildings with open ground storey intended for parking, building on sloppy ground having unequal height columns along the slope cause ill effects twisting and damage in short columns. Buildings with floating columns has discontinuity in the load transfer path.

3.8. Adjacency of buildings:

Two buildings closely spaced may pounding during strong shaking. The unequal heights in adjacent buildings cause severe damage to both the buildings due to pounding action.

3.9. Seismic zones of India:

The varying geology at different locations in the country implies that the likelihood of damaging earthquakes taking place at different locations is different. Thus, a seismic zone map is required so that buildings and other structures located in different regions can be designed to withstand different level of ground shaking. The current zone map subdivided India into five zones – I, II, III, IV and V (Fig) and subsequently in 2002 the zone I and II have minimized.

The maximum Modified Mercalli (MM) intensity of seismic shaking in these zones are V or less, VI, VII, VIII and IX and other, respectively. Parts of Himalayan boundary in the North and Northest, and the Kach area in the West are classified as zone V. The seismic zone maps are revised from time to time as more understanding is grained on the geology, the seismic tectonic and the seismic activity in the country.

Zone factors detailing:

Zone 5

Zone 5 covers the areas with the highest risks zone that suffers earthquakes of intensity MSK IX or greater. The IS code assigns zone factor of 0.36 for Zone 5. Structural designers use this factor for earthquake resistant design of structures in Zone 5. The zone factor of 0.36 is indicative of effective (zero period) peak horizontal ground accelerations of 0.36 g (36 % of gravity) that may be generated during MCE level earthquake in this zone. It is referred to as the Very High Damage Risk Zone. The state of Kashmir, Punjab,the western and central Himalayas, the North-East Indian region and the Rann of Kutch fall in this zone. Generally, the areas having trap or basaltic rock are prone to earthquakes.

Zone 4

This zone is called the High Damage Risk Zone and covers areas liable to MSK VIII. The IS code assigns zone factor of 0.24 for Zone 4. The Indo-Gangetic basin and the capital of the country (Delhi), Jammu and Kashmir fall in Zone 4. In Maharashtra Patan area(Koyananager) also in zone 4. but East Delhi is an earthquake prone area.

Zone 3

The Andaman and Nicobar Islands, parts of Kashmir, Western Himalayas fall under this zone. This zone is classified as Moderate Damage Risk Zone which is liable to MSK VII. and also 7.8 The IS code assigns zone factor of 0.16 for Zone 3.

Zone 2

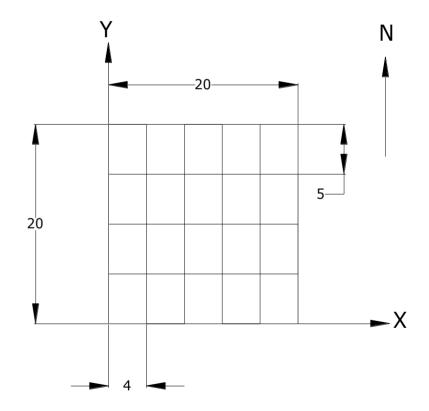
This region is liable to MSK VI or less and is classified as the Low Damage Risk Zone. The IS code assigns zone factor of 0.10 (maximum horizontal acceleration that can be experienced by a structure in this zone is 10 % of gravitational acceleration) for Zone 2.

5.AIM OF THE PROJECT

Here the main objective of the term paper is to compare base shear values for buildings of varying heights (G+4,G+9,G+14) in different zones in India categorized as per IS code of importance factor "1"and also for different types of soils. The final conclusion for the project will be comparision of base shear values with moment values using STAAD PROGRAMING. Thus, simplifying the design calculations for construction of buildings.

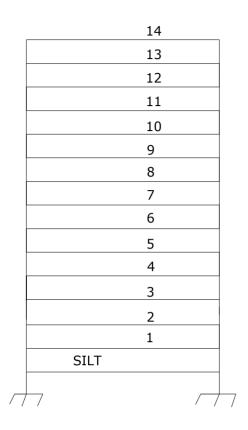
0.15m

DETAILS OF MODEL PROBLEM:

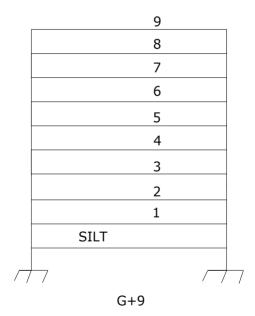

Thickness of slab

The RCC frames are in filled with brick masonry

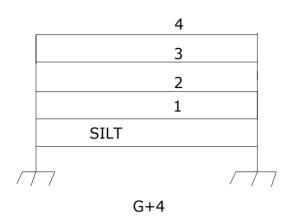
Load due to roof finish	2Kn/m^2
Load due to floor finish	1Kn/m^2
Thickness of outer walls	0.25mmincluding plaster
Thickness of inner walls	0.15mm including plaster
Imposed load	3.5Kn/m^2
Size of column at ground level	0.25* 0.4m
Type of foundation	isolated footing
Soil condition	hard murmur available at depth of 1.5m below G.L
Seismic zone	III
Length in x-direction	20m
Length in y-direction	20m
No of in fills in x-direction	3


No of in fills in y-direction	4
Total floor area	400m^2
Floor to floor height	3.5m
Ground level	1.5m
Height of ground floor	3.5m
No of floors without stilt	9
Total height of the building	36.5m
Unit wt of masonry	20
Unit wt of concrete	25
Self wt of slab	3.75Kn m
No of floors without stilt and roof floor	8

PLAN AND SECTIONAL VIEWS ARE:



ISSN: 2278-0181


PLAN

G+14

ISSN: 2278-0181

COMPARISION RESULTS FOR ZONES:

BASE SHEAR VALUES FOR ROCKY SOIL, MEDIUM SOIL, SOFT SOIL (G+4):

ZONE	ZONEII	ZONEIII	ZONE IV	ZONE V
/STOREY				
04	311.2152	497.9443	746.9165	1120.375
03	303.3289	485.3262	727.9893	1091.984
02	181.8079	290.8927	436.339	654.5086
01	91.21961	145.9514	218.9271	328.3906
SILT	24.02995	38.44792	57.67188	86.50782
T-SHEAR	911.6016	1458.563	2187.844	3281.766

COMPARSION/ STOREY	V/II	V/III	V/IV	IV/III	IV/II	III/II
04	360.0001	225.0001	150	150	240	160
03	360	225	150	150	240	160
02	360.0001	225	150	150	240	160
010	360	225	150	150	240	160
SILT	360	225	150	150	240	160
T-SHEAR	360	225	150	150	240	160

BASE SHEAR VALUE FOR ROCKY SOIL (G+9):

ZONE/	ZONEII	ZONEIII	ZONEIV	ZONEV
STOREY	201121	201(222	201(22)	201.21
09	196.3375	314.1401	471.2101	706.8152
08	235.0402	376.0644	564.0966	846.1449
07	187.8272	300.5234	450.7852	676.1778
06	145.9019	233.4431	350.1646	525.247
05	109.2646	174.8233	262.235	393.3525
04	77.91508	124.6641	186.9962	280.4943
03	51.85346	82.96554	124.4483	186.6725
02	31.0797	49.72752	74.59128	111.8869
01	15.59381	24.95009	37.42514	56.13771
SILT	4.107872	6.572595	9.858892	14.78834
T-SHEAR	1054.921	1687.874	2531.811	3797.717

COMPARISION/ STOREY	V/II	V/III	V/IV	IV/III	IV/II	III/II
09	360.0001	225	150	150	240.0001	160.0001
08	360.0001	225	150	150	240.0001	160
07	359.9999	225	150	150	240	159.9999
06	360.0001	225	150	150	240	160
05	359.9999	225	150	150	240	159.9999
04	360	225.0001	150	150	240	160
03	359.9999	225	150	150	240	160
02	360	225	150	150	240	160
01	360	225	150	150	240	160
SILT	360	225	150	150	240	160
T-SHEAR	360	225	150	150	240	160

BASE SHEAR VALUE FOR MEDIUM SOIL (G+9):

ZONE/	ZONEII	ZONEIII	ZONEIV	ZONEV
STOREY				
09	267.019	427.2305	640.8457	961.2685
08	319.6547	511.4475	767.1713	1150.757
07	255.4449	408.7119	913.0678	919.6017
06	198.4266	317.4826	613.0678	714.3358
05	148.5998	237.7597	356.6395	534.9593
04	105.9645	169.5432	254.3148	381.4722
03	70.5207	112.8331	169.2497	253.8745
02	42.26839	67.62942	101.4441	152.1662
01	21.20758	33.93212	50.89819	76.34728
SILT	5.586705	8.938728	13.40809	20.11214
T-SHEAR4	1434.693	2295.509	3443.263	5164.895

COMPARISION/	V/II	V/III	V/IV	IV/III	IV/II	III/II
STOREY						
09	360	225	150	150	240	160
08	360	225	150	150	240	160
07	360	225	150	150	240	160
06	360	225	150	150	240	160
05	360	225	150	150	240	160
04	360	225	150	150	240	160
03	360	225	150	150	240	160
02	360	225	150	150	239,9999	160
01	360	225	150	150	240	160
SILT	360	225	150	150	240	160

BASE SHEAR VALUES FOR SOFT SOIL(G+9):

ZONE/	ZONEII	ZONEIII	ZONEIV	ZONEV
STOREY				
09	32708837	524.6139	786.9208	1180.381
08	392.5172	628.0275	942.0412	1413.062
07	313.6713	501.8741	752.8111	1129.217
06	243.6562	389.8499	584.7749	877.1623
05	182.4718	291.9549	437.9324	656.8985
04	130.1182	208.1891	312.2836	468.4254
03	86.59527	138.5524	207.8286	311.743
02	51.9031	83.04495	124.5674	186.8511
01	26.04166	41.66665	62.49998	93.74997
SILT	6.860145	10.97623	16.46435	24.69652
T-SHEAR	1761.719	2818.75	4228.124	6342.187

COMPARISION/	V/II	V/III	V/IV	IV/III	IV/II	III/II	
STOREY							
09	359.9999	224.9999	150	150	240	160	
08	360	225	150	150	240	160	
07	360.0001	225.0001	150	150	240	160	
06	360	225	150	150	240	160	
05	360	225	150	150	240	160	
04	359.9999	225	150	150	239.9999	160	
03	360	225.0001	150	150	239.9999	160	
02	359.9999	225	150	150	239.9999	160	
01	360	225	150	150	240	160	
SILT	360	225	150	150	240	160	
T-SHEAR	360	225	150	150	240	160	

BASE SHEAR VALUES FOR HARD SOIL(G+14):

ZONE/ STOREY	ZONE II	ZONE I	TT	ZONE IV	ZONE V	
01	139.682	223,491		335,2367	502.8551	
02	178.9091	286,254		429.3817	644.0726	
03	154.9692	247.950		371.926	557.889	
04	132.748	212.396		318.5953	477.8929	
05	112.2457	179.593		269.3896	404.0844	
06	93,46205	149.539		224.3089	336.4634	
07	76.3972	122.235		183.3533	275.0299	
08	61.05111	97.6817		146.5227	219.784	
09	47.42379	75.8780		113.8171	170.7256	
10	35.51523	56.8243		85.23654	127.8548	
11	25,32543	40.5206		60.78102	91.17153	
12	16.85439	26.9670		40.45053	60.67579	
13	10.10211	16.1633		24.24506	36.36759	
14	5.068593	8.10974		12.16462	18.24693	
SILT	1.347842	2.15654		3.234822	4.852233	
T-SHEAR	1091.102	1745.76		2618.644	3927.966	
	1091.102	1743.70.	,	2010.044	3921.900	
ZONEG/						
ZONES/ COMPARISION	V/II	V/III	V/IV	IV/III	IV/II	III/II
01	359,9999	225	150	150	239.9999	160
02	359,9999	225	150	150	239,9999	160
03	359,9999	225	150	150	239.9999	160
04	360.0001	225	150	150	240.0001	160
05	359,9999	225.0001	150	150,0001	239.9999	159.9999
06	360	225	150	150	240	160
07	360	225	150	150	240	160
08	360	225	150	150	240.0001	160
09	359,9999	225	150	150	240	160
10	359,9999	225	150	150	240	160
11	359,9999	225	150	150	240	160
12	359,9999	225	150	150	240	160
13	359,9999	225	150	150	240	159.9999
14	359.9999	224.9999	150	150	239.9999	160
SILT	360.0001	225	150	150	240.0001	160.0001
T-SHEAR	360	225	150	150	240.0001	160.0001
	300	443	130	130	47 0	100

BASE SHEAR VALUES FOR MEDIUM SOIL(G+14):

ZONES/				
STOREY	ZONE II	ZONE III	ZONE IV	ZONE V
14	189.9674	303.9479	455.9218	683.8827
13	243.3162	389.3059	583.9589	875.9384
12	210.758	337.2128	505.8191	758.7287
11	180.5372	288.8596	433.2894	649.9341
10	152.654	244.2465	366.3697	549.5545
9	127.1083	203.3733	305.06	457.59
8	103.9002	166.2402	249.3604	374.0405
7	83.02948	132.8472	199.2708	298.9061
6	64.49633	103.1941	154.7912	232.1868
5	48.30069	77.2811	115.9217	173.8825
4	34.44257	55.10811	82.66216	123.9932
3	22.92196	36.67513	55.0127	82.51905

IJERTV9IS110282 www.ijert.org 685

Vol. 9 Issue 11, November-2020

2	13.738	886	21.98218	32.97327	49.45991	
1	6.8932		11.02925	16.54388	24.81582	
SILT	1.8330		2.932904	4.399356	6.599034	
T.SHEAR	1483.8		2374.236	3561.354	5342.031	
ONES/						
OMPARISION	V/II	V/III	V/IV	IV/III	IV/II	III/II
	360	225	150	150	240	160
	360	225	150	150	240	160
	360	225	150	150	240	160
	360.0001	225	150	150	240.0001	160
	360.0001	224.9999	150	150	240.0001	160.0001
	360.0001	225	150	150	240.0001	160
	359.9998	225	150	150.0001	239.9999	159.9999
	360	224.9999	149.9999	150	240.0001	160
	360	225.0001	150	150	240	160
	360	225	150	150.0001	240.0001	160
	359.9998	224.9999	150	150	240	160
	360	225	150	150	240	160
	360.0001	225	150	150	240	160
	360	225.0001	150	150	240	159.9999
LT .	360	225	150	150	240	160
SHEAR	360	225	150	150	240	160

BASE SHEAR VALUES FOR SOFT SOIL (G+14):

ZONES/									
	ZONE II		ZONE III		ZC	ONE IV		ZONE	V
14	233.2688		373.2302		55	9.8452		839.767	8
13	298.7781		478.0449		71	7.0673		1075.60	1
12	258.7984		414.0775		62	1.1163		931.674	4
11	221.6892		354.7027		53	2.054		798.081	
10	187.4502		299.9203		449	9.8805		674.820	7
9	156.0816		249.7305		37	4.5958		561.893	7
8	127.5833		204.1333		30	6.1999		459.299	9
7	101.9553		163.1285		24	4.6928		367.039	2
6	79.19771		126.7163		19	0.0745		285.111	8
5	59.31042		94.89667		14	2.345		213.517	5
4	42.29345		67.66952		10	1.5043		152,256	4
3	28.14682		45.03491		67.	.55237		101.328	6
2	16.87052		26.99283		40.	.48924		60.7338	7
1	8.464548		13.54328		20.	.31492		30.4723	7
SILT	2.250896		3.601434		5.4	02151		8.10322	7
T.SHEAR	1822.139		2915.423		43'	73.134		6559.70	1
ZONES/									
COMPARISION	V/II	V/III		V/IV]	IV/III	IV/II		III/II
01	360.0001	225		150		150	240		160.0001
02	359.9999	225		150		150	240		160
03	360.0001	225		150		150	240.0001		160
04	359.9999	225		150		150	240		160
05	360	225		150		150	240		160

Vol. 9 Issue 11, November-2020

06	360	225	150	150	240	160
07	360	225	150	150	240	160
08	360.0001	225	150	150	240.0001	160
09	360.0001	225.0001	150	150	240	160
10	360	225	150	150	240	160
11	360	225	150	150	240	160
12	360.0002	225.0001	150.0001	150	240	160
13	360	225	150	150	240	160
14	360	224.9999	150	150	240.0001	160
SILT	360.0001	225	150	150	240	160
T-SHEAR	360	225	150	150	240	160

COMPARISION OF BASE SHEAR VALUES BY TYPE OF SOIL:

HARD AND MEDIUM SOIL:

STOREY ZONE II ZONE III ZONE IV ZONE IV 14 135,9999 135,9999 136 136 13 135,9999 135,9999 136 135,9999 12 135,9999 136 135,9999 135,9999 11 135,9999 136 135,9999 135,9999 10 135,9999 136 135,9999 135,9999 9 135,9999 136 135,9999 136 135,9999 8 136 136 136 135,9999 7 136 136 136 136,9999 6 135,9999 136 136 136 5 135,9999 136 136 136 4 135,9999 136 136 135,9999 3 135,9999 136 136 136 2 135,9999 136 136 136 1 136 135,9999 136 136 1	ZONES/				
13 135,9999 135,9999 136 135,9999 12 135,9999 135,9999 135,9999 135,9999 11 135,9999 136 135,9999 135,9999 10 135,9999 136 135,9999 135,9999 9 135,9999 136 135,9999 8 136 136 136 135,9999 7 136 136 136 136,9999 6 135,9999 136 136 136 5 135,9999 136 136 136,9999 3 135,9999 136 136 135,9999 3 135,9999 136 136 136,9999 3 135,9999 136 136 136 2 135,9999 136 136 136 1 136 135,9999 136 136 SILT 136 135,9999 135,9999 135,9999 136,9999	STOREY	ZONE II	ZONE III	ZONE IV	ZONE V
12 135.9999 135.9999 135.9999 135.9999 11 135.9999 136 135.9999 135.9999 10 135.9999 136 135.9999 135.9999 9 135.9999 136 135.9999 8 136 135.9999 136 135.9999 7 136 136 136 136 5 135.9999 135.9999 136 136 4 135.9999 136 136 135.9999 3 135.9999 136 136 136 2 135.9999 136 136 136 1 136 135.9999 136 136 1 136 135.9999 136 136 SILT 136 135.9999 135.9999 135.9999 135.9999	14	135.9999	135.9999	136	136
11 135.9999 136 135.9999 135.9999 10 135.9999 136 135.9999 135.9999 9 135.9999 136 135.9999 8 136 135.9999 136 135.9999 7 136 136 136 135.9999 6 135.9999 135.9999 136 136 5 135.9999 136 136 136 4 135.9999 136 136 135.9999 3 135.9999 136 136 136 2 135.9999 136 136 136 1 136 135.9999 136 136 SILT 136 135.9999 135.9999 136 136	13	135.9999	135.9999	136	135.9999
10 135.9999 136 135.9999 135.9999 9 135.9999 136 135.9999 8 136 135.9999 136 135.9999 7 136 136 136 135.9999 6 135.9999 136 136 136 5 135.9999 136 136 135.9999 3 135.9999 136 136 135.9999 3 135.9999 136 136 136 2 135.9999 136 136 136 1 136 135.9999 136 136 SILT 136 135.9999 135.9999 135.9999	12	135.9999	135.9999	135.9999	135.9999
9 135,9999 136 135,9999 8 136 135,9999 136 135,9999 7 136 136 136 135,9999 6 135,9999 136 136 136 5 135,9999 136 136 135,9999 3 135,9999 136 136 135,9999 3 135,9999 136 136 136 2 135,9999 136 136 136 1 136 135,9999 136 136 SILT 136 135,9999 135,9999 135,9999	11	135.9999	136	135.9999	135.9999
8 136 135.9999 136 135.9999 7 136 136 135.9999 6 135.9999 136 136 5 135.9999 136 136 4 135.9999 136 136 3 135.9999 135.9999 135.9999 3 135.9999 136 136 2 135.9999 136 136 1 136 135.9999 136 136 SILT 136 135.9999 135.9999 135.9999	10	135.9999	136	135.9999	135.9999
7 136 136 136 135.9999 6 135.9999 136 136 5 135.9999 136 136 4 135.9999 136 136 3 135.9999 135.9999 135.9999 2 135.9999 136 136 1 136 135.9999 136 136 SILT 136 135.9999 135.9999 135.9999	9	135.9999	135.9999	136	135.9999
6 135.9999 135.9999 136 136 5 135.9999 136 136 136 4 135.9999 136 136 135.9999 3 135.9999 135.9999 135.9999 136 2 135.9999 136 136 136 1 136 135.9999 136 136 SILT 136 135.9999 135.9999 135.9999	8	136	135.9999	136	135.9999
5 135.9999 135.9999 136 136 4 135.9999 136 136 135.9999 3 135.9999 135.9999 135.9999 136 2 135.9999 136 136 136 1 136 135.9999 136 136 SILT 136 135.9999 135.9999 135.9999	7	136	136	136	135.9999
4 135.9999 136 136 135.9999 3 135.9999 135.9999 135.9999 136 2 135.9999 136 136 136 1 136 135.9999 136 136 SILT 136 135.9999 135.9999 135.9999	6	135.9999	135.9999	136	136
3 135.9999 135.9999 136 2 135.9999 136 136 1 136 135.9999 136 136 SILT 136 135.9999 135.9999 135.9999	5	135.9999	135.9999	136	136
2 135.9999 136 136 136 1 136 135.9999 136 136 SILT 136 135.9999 135.9999 135.9999	4	135.9999	136	136	135.9999
1 136 135.9999 136 136 SILT 136 135.9999 135.9999 135.9999	3	135.9999	135.9999	135.9999	136
SILT 136 135.9999 135.9999 135.9999	2	135.9999	136	136	136
	1	136	135.9999	136	136
T.SHEAR 135,9999 135,9999 135,9999	SILT	136	135.9999	135.9999	135.9999
	T.SHEAR	135.9999	135.9999	135.9999	135.9999

FOR HARD AND SOFT SOIL:

ZONES/				
STOREY	ZONE II	ZONE III	ZONE IV	ZONE V
14	166.9999	167	167	167
13	166.9999	167	167	167
12	166.9999	166.9999	167	167
11	167	167	167	167
10	166.9999	167	167	166.9999
9	167	166.9999	167	166.9999
8	167	167	166.9999	167
7	166.9999	166.9999	166.9999	167
6	167	166.9999	166.9999	167
5	167	167	167	167
4	166.9999	167	167	166.9999
3	166.9999	167	167	167.0001
2	167	167	167	167
1	167	167	167	167
SILT	167	166.9999	166.9999	167
T.SHEAR	166.9999	167	167	167

ISSN: 2278-0181

FOR MEDIUM AND SOFT SOILS:

ZONES/				
STOREY	ZONE II	ZONE III	ZONE IV	ZONE V
14	122.7941	122.7941	122.7941	122.7941
13	122.7942	122.7942	122.7941	122.7941
12	122.7941	122.7941	122.7942	122.7941
11	122.7942	122.7942	122.7941	122.7941
10	122.7942	122.7941	122.7941	122.7941
9	122.7942	122.7941	122.7941	122.7941
8	122.7941	122.7942	122.7941	122.7942
7	122.7941	122.7941	122.7941	122.7941
6	122.7941	122.7941	122.7941	122.7941
5	122.7941	122.7942	122.7941	122.7941
4	122.7941	122.7941	122.7942	122.7942
3	122.7941	122.7941	122.7941	122.7942
2	122.7942	122.7941	122.7941	122.7941
1	122.7941	122.7942	122.7942	122.7941
SILT	122.7941	122.7941	122.7941	122.7941
T.SHEAR	122.7941	122.7941	122.7941	122.7941

COMPARISION RESULTS FOR SOILS:

- 1. Comparision of base shear value for hard and medium soils for all zones is 136.
- 2. Comparision of base shear value for hard and soft soils for all zones is 167
- 3. Comparision of base shear value for medium and soft soils for all zones is 122.7941.

CONCLUSION:

In this contest we are going to develop the graphs with respect to:

X Y
Height base shear
Base shear moment

And observe the relation between base shear and moment with respect to height for wind load of terrace conditions 1(10 m) of building area.

REFERENCES:

- [1] "Earthquake Engineering Research 1982," Committee on Earthquake
- [2] Engineering, Research Commission on Engineering and
- [3] Technical Systems, National Research Council, National Academy
- [4] Press, Washington, D.C. 1982
- [5] Dowrick, D. J., "Earthquake Resistant Design," John Wiley & sons
- [6] Newyork,1977
- [7] Rosenbleuth, E., "Design of Earthquake Resistant Structures," by
- [8] Whitman, R. V., and Bielak, J., John Wiley & Sons, New York, 1980.