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Abstract  
 

This paper presents an analytical approach for 

calculating the stiffness matrix of parallel 

manipulators. A way to improve this stiffness along 

certain paths is important during trajectory tracking. 

The analytical procedure presented assumes that the 

stiffness matrix varies along the work-space. The 

stiffness is directly varies with the Jacobian matrix of 

the mechanism.  Applying the procedure iteratively 

over the workspace, stiffness maps are also obtained. 

The methodology is illustrated for a 3-RPR parallel 

manipulator architecture.  

 

1. Introduction  
In recent years, many studies have focused on 

parallel manipulators. Since their end-effector (moving 

platform) is sustained by several kinematic chains, they 

can achieve better structural and dynamic properties 

with less structural mass. That leads to higher stiffness, 

where the stiffness can be defined as capacity of a 

mechanical system to sustain loads without excessive 

changes in its geometry. The value of the stiffness 

evolves according to the geometry, the topology of the 

structure and the position and orientation of the end-

effector within its workspace. The stiffness of a parallel 

robot at a given point of its workspace can be 

characterized by its stiffness matrix. This matrix 

combines the forces and moments applied to the end-

effector. When inputs of a manipulator are locked, the 

parallel kinematic machine (PKM) can be considered as 

a structure and its stiffness is then called static stiffness. 

Since positioning accuracy is strongly dependent on 

this stiffness, it is an important characteristic. Such 

characteristics can be essential in certain applications of 

PKMs, such as machine tools, micro positioning 

devices and mechanisms for surgical procedures. 

Several authors have been studying how to quantify the 

static stiffness of different parallel robots. In this line, 

various methodologies were employed to obtain a 

stiffness matrix which relates an applied external 

wrench forces to the displacements it produce. Most 

published studies can be included in the following 

groups: (a) Jacobian matrix-based methods [1-3], where 

Jacobian is used to calculate a stiffness matrix and the 

analysis is carried out for the entire workspace. (b) 

Matrix product methods (stiffness matrix as the product 

of several matrices) [4-5] where initially the applied 

external wrench is related to the local reactions and 

further local reactions are connected with 

corresponding deformations and finally other matrices 

relate these local deformation to the end-effector 

deformation(c) Structural or Finite Element Methods 

[6] and (d) Analytical–experimental methods [7], where 

the experimental results are included in analytical 

stiffness calculations. Stiffness matrix is often 

estimated based on the linear approximations. Over the 

last few years several works reported the importance of 

stiffness in parallel mechanisms. Pashkevich et al. [8] 

presented a new stiffness modeling method for over-

constrained parallel manipulators with flexible links 

and compliant actuating joints. Here the approach was 

implemented for 3-PUU architecture. Li and Gosselin 

[9] derived the analytical stiffness equation of 3-RPR 

planar parallel mechanism based on conservative 

congruence transformation stiffness matrix. Pashkerich 

et al. [10] presented a methodology to enhance the 

stiffness analysis of serial and parallel manipulators 

with passive joints. More recently, Aginaga et al. [11] 

presented a method of calculating stiffness matrix of a 

6-RUS parallel manipulator and employed inverse 

singularities to enhance the stiffness. In addition, 

stiffness is taken as an important kinematic metric in 

several works [12-13] relating to optimum design of 

parallel linkages.  

 This paper presents an analytical procedure of 

computing the stiffness matrix of a planar 3-RPR 

parallel manipulator, within the workspace. 

Singularities are identified and an attempt is made to 

obtain the maximum stiffness poses in the workspace 

using inverse singular configurations. The paper is 

organization as follows: section-2 presents the 
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description, kinematics and singularity analysis; 

section-3 gives the finite element modelling and 

stiffness evaluation approach. manuscripts must be in 

English. These guidelines include complete 

descriptions of the fonts, spacing, and related 

information for producing your proceedings 

manuscripts.  

 

2. Kinematic Modelling of Manipulator  
The 3-RPR parallel manipulator composes of two 

triangular (or circular) platforms; one of them is fixed 

to the ground. One the fixed platform, there are three 

revolving (R) cylinders in which three moving sliders 

reciprocate and provide linear actuations for each leg of 

the linkage. The other end of slider is connected to the 

corner points of triangular mobile platform with the 

help of revolute joints (pins). Fig.1 shows a schematic 

of 3-RPR mechanism.  

 

 

 
 

Figure 1. CAD model of 3-RPR linkage 

 

The pose (position of a point C and rotation) of 

mobile triangular platform is described by two 

coordinate system as shown in Fig.2. The position of 

the mobile platform reference point C with respect to 

fixed frame is represented by {c}=[x y 0]T. The 

position vector of point Bi (where i=1,2,3) in the fixed 

and mobile frames are denoted by {bi} and {bi}. The 

rotation matrix [R] representing rotation of the platform 

from X-A1-Y frame to X-B1-Y frame is: 

 

[R]=





















100

0cossin

0sincos

  (1) 

 

where  refers to the platform rotation around the axis 

perpendicular to the plane. The inverse and forward 

kinematics and Jacobian analysis of a 3-RPR parallel 

robot were extensively studied in literature [14-15].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Parameterization of 3-RPR linkage 

 

The position of considered point C of the platform 

in the fixed and moving frames are respectively {c}=[x 

y]
T
 and {c}=[x y]

T
 related to each other as: 

 

  {c}={cr}+[R]{c}  

(or)   {cr}={c}-[R]{c}                            (2) 

 

Hence, the position of Bi (i=1,2,3) in the fixed frame 

can be expressed as: 

 

 {bi} = {cr}+[R]{bi}={c}+[R]({bi}-{c})    (3) 

 

Now the inverse kinematics can be written as 

distance between points Ai and Bi.  

Therefore: 

 

 i
2
= ({bi}-{ai})

T
({bi}-{ai})                   (4) 

 

Differentiating this equation with respect to time, 

one obtains: 

 

 [Jx]{v}=[Jq]{ } (or) [J]{v}={  }             (5) 

 

where {  }=  T321   denotes the velocity of 

sliders and {v}=  Tyx  is Cartesian velocity vector 

of the platform point. [Jx] and [J] are two Jacobian 

matrices. Workspace is one of the most important 

factors for designing parallel robots. It is the set of 

space configuration that the platform point (C) can 

reach. This space is defined by its limits which are 

imposed by the joints (active and passive), the length of 
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segments and by the internal collisions. The constant 

orientation workspace of 3-RPR mechanism is the 

common area of the vertex spaces generated by each 

limb. The vertex space of each limb is the ring centered 

at {ai}+{bi}, where {ai} is position vector of base joints 

Ai, with min and max as the radii for internal circle and 

external circle respectively. Generally, it is assumed 

that all the prismatic actuators have identical strokes 

defined by min and max. Under static condition, the 

articulated forces {} and generalized forces at mobile 

base (external wrench) {F} are related to each other 

according to the relation: 

 

{}=[J]
T
{F}                (6) 

 

where [J]=[Jq]
-1

[Jx]. In singular configurations, the 

performance of the mechanism degenerates and 

structure may be damaged. Therefore, their 

determination is primordial. Several methods exist to 

determine these configurations. From Jacobian 

matrices, their state can be ascertained. If determinant 

of matrix Jx=0, it corresponds to the appearance of 

uncontrollable mobilities of the mobile platform 

because it is possible to move it even the actuated 

(prismatic) joints are locked. Here the manipulator 

gains one or more degrees of freedom and the stiffness 

is locally lost. This state is known as direct singular 

configuration. On the other hand, if Jq=0, it is not 

possible to generate some velocities of mobile base in 

some directions. Such inverse singularities represent 

the limits of the reachable workspace. In these 

configurations, manipulator loses one or more degrees 

of freedom. As it is proved in literature that the 

equilateral triangular platforms produce the maximal 

singularity free workspace, such a configuration is only 

selected in this work. The stiffness value evolves 

according to the geometry, the topology of the structure 

and the position and orientation of the mobile platform 

within the workspace. Stiffness at any given point in 

workspace can be characterized by its stiffness matrix. 

This matrix combines the forces and moments applied 

to the end-effector and can be obtained using kinematic 

and static equations. If [k]=diag(ki), i=1,2,3,  is 

diagonal matrix of stiffness with each non-zero 

diagonal corresponding to stiffness of an actuator, one 

can express the stiffness matrix of manipulator as: 

 

  [K]=[J]
T
[k][J]              (7) 

 

There are many ways for stiffness evaluation, such 

as the determinant, the condition number, and the 

eigenvalues of the stiffness matrix. The minimum and 

maximum values of stiffness can be obtained by 

calculating the eigenvalues of the matrix [K]. Here, the 

minimum and maximum eigenvalues are selected. In 

real application, the minimum eigenvalue is paid more 

attention, because we always hope that the minimum 

stiffness over the workspace should be larger than a 

specified value to ensure the accuracy of the operation 

everywhere in the workspace. In present work, the 

stiffness constant ki for all actuators is set to 10
6
N/m. 

 

3. Results and Discussion  
Geometric model of the 3-RPR architecture is 

developed using a base equilateral triangle of side 160 

µm and mobile equilateral triangle of side 30 µm. The 

maximum and minimum lengths of the sliders are 

respectively 200 µm and 0. Inverse kinematics problem 

is solved for all of the possible positions and 

orientations (poses) of the moving platform of the 

mechanism to obtain the volume of the workspace. For 

each pose in the Cartesian space (x,y,), if the solution 

of the inverse kinematics verifies the conditions and 

constraints of all joints, then this point is considered as 

a valid point and lies within the workspace. Using such 

an inverse kinematics of the manipulator, the three-

dimensional work volume of manipulator is obtained 

for [-180
o
, 180

o
]. Fig.3 shows the work-volume 

obtained from a program developed in MATLAB for 

the four inputs entered interactively..  

 

 
 

Figure 3. Work-volume of the manipulator 

 

Using a geometric standpoint, kinematic sensitivity is 

defined as the maximum displacement of the moving 

platform of the mechanism, under a unit 

displacement/rotation in the joint space. The 

corresponding 2-D workspace at different platform 

orientation angles is also shown in Figures 4 and 5.  
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Figure 4. Work-space at =30

o
 

 

 
        Figure 5. Work-space at =180

o
  

 

Fig.6 shows the maximum and minimum eigenvalues at 

each pose within the prescribed workspace of 

manipulators computed at =30
o
 and 180

o
 orientations. 

It is seen that the minimum stiffness eigenvalue close 

to a singular configuration is almost equal to zero.  

 

 
 

(a) Minimum eigenvalue 

 
(b) Maximum eigenvalue 

Figure 6. Stiffness index at platform orientation =30
o
. 

 

The same data for 180
o
 pose are shown in Fig.7. It is 

seen that at 180
o
 orientation, the platform comes to 

complete singular configuration as the index is close to 

zero. 

 

 

 
(a) Minimum eigenvalue 

 

 
(b) Maximum eigenvalue 

Fig. 7. Stiffness index at platform orientation =180
o
. 
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Fig.8 shows the variation of dexterity index which is 

ratio of minimum and maximum singular values of 

Jacobian matrix of manipulator. This is shown for two 

different platform orientations..       

 
(a) Orientation =30

o 

 

 
(b) At orientation =180

o
 

Fig.8. Dexterity index of non-redundant manipulator 

 

4. Conclusions  
In this work, the importance of stiffness index for 

planar parallel linkage was highlighted. As with other 

measures, stiffness index is also very important in 

design of parallel linkage. The methodology was 

illustrated with a 3-RPR non-redundant parallel 

mechanism. The minimum eigenvalue selected as a 

stiffness index in present work runs at-par with the 

dexterity index indicating the contours of singular 

points. The work can be extended for a redundant 

parallel linkage stiffness analysis.  
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