

 A Software Reuse in Small Scale Industry: A Survey
Tincy Rani, Sushil Garg

CES Dept, RIMT-IET, Mandi Gobindgarh, HOD in CSE Dept, RIMT-IET, Mandi Gobindgarh.

Abstract

Software Engineering is the very integrated part of

the industry from mid nineties. Small scale

enterprises are a very important in the gears of the

world economy. Software industry becomes

significant economical activity from the last few

decades. According to Fayad et al. [8] 99.2% of

software development companies are small (fewer

than 150 employees).They develop significant

products, for the construction of which the firms

need efficient software engineering practices that

are suitable for their particular size and type of

business. Effectively gathering user requirements is

a critical first step of any project and perhaps one

of the most challenging project management skills.

To avoid cost overruns, dissatisfied users or even

project cancellation, it is vitally important to build

the project on well-formed, testable, and verifiable

user requirements. After project requirement and

implementation by firm implementation of software

is comes into act which in turn complete the project

in major sense. Usually companies tends to reuse

their assets, resources and software policies to cut-

off their expenses and to increase utilization of

available resources.

1. Introduction

Software reuse is the process of creating software

systems from existing software rather than building

software systems from scratch. This simple yet

powerful v ision was introduced in 1968. Software

products are expensive. Therefore, software project

managers are always worried about the high cost of

software development. A possible way to reduce

development cost is to reuse parts from previously

developed software. In addition to reduced

development cost and time,

Reuse also lead to higher quality of the developed

products since the reusable components are ensured

to have high quality. A reuse approach that is of

late gaining prominence is component based

development. Component-based software

development is different from the traditional

software development in that software is developed

by assembling software from off-the-shelf

components. Reuse is an umbrella concept,

encompassing a variety of approaches and

situations [Morisio02]. The reusable components or

assets can take several forms: subroutines in

lib rary, free-standing COTS (Commercial-Off-The-

Shelf) or OSS (Open Source Software)

components, modules in a domain-specific

framework (e.g. Smalltalk MVC classes), or entire

software architectures and their components

forming a product line or a product family.

Morisio02 et al. define reusability as a combination

of two characteristics:

1. Usefulness, which is the extent to which an asset

is often needed.

2. Usability, which is the extent to which an asset is

packaged for reuse.

Frakes et al [3] define software reuse as “The use

of existing software knowledge or artifacts to build

new software artifacts”, a definition that includes

reuse of software knowledge. Morisio’s [2]

definit ion is closer to what is meant by “software

reuse” in our research; i.e. reuse of building blocks

knowledge, or patterns may happen without reuse

of building blocks and is captured in domain

engineering. Developing for reuse has its price,

which is the reason for analyzing the success of

reuse programs to improve the chances of

succeeding.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

1www.ijert.org

2. Basic issues in any reuse program

 The following are some of the basic issues that

must be clearly understood for starting any reuse

program.

2.1. Component creation

For component creation, the reusable components

have to be first identified. Selection of the right

kind of components having potential for reuse is

important. Domain analysis as a promising

technique which can be used to create reusable

components.

2.2. Component indexing and storing

Indexing requires classification of the reusable

components so that they can be easily searched

when we look for a component for reuse. The

components need to be stored in a relational

database management system (RDBMS) or an

Object-Oriented Database System (ODBMS) for

efficient access when the number of components

becomes large.

2.3. Component searching

The programmers need to search for right

components matching their requirements in

database of components. To be able to decide

whether they can reuse the component. To facilitate

understanding, the components should be well

documented and should do something simple.

2.4. Component adaptation

Often, the components may need adaptation before

they can be reused, since a selected component

may not exact ly fit the problem at hand. However,

tinkering with the code is also not a satisfactory

solution because this is very likely to be a source of

bugs.

2.5. Repository maintenance

 A component repository once is created requires

continuous maintenance. New components, as and

when created have to be entered into the repository.

The faulty components have to be tracked. Further,

when new applications emerge, the order

applications become obsolete. In this case, the

obsolete components might have to be removed

from the repository

3. Reuse at organization level

Reusability should be a standard part in all software

development activities including specification,

design, implementation, test, etc. ideally, there

should be a steady flow of reusable components. In

practice, however, things are not so simple.

Extracting reusable components from pro jects that

were completed in the past presents an important

difficulty not encountered while ext racting a

reusable component from an ongoing project-

typically; the original developers are no longer

available for consultation. Development of new

systems leads to an assortment of products, since

reusability ranges from items whose reusability is

immediate to those items whose reusability is

highly improbable.

Achieving organization-level reuse requires

adoption of the following steps:

 Assess of an item’s potential fo r reuse

 Refine the item for greater reusability

 Enter the product in the reuse repository

We elaborate these three steps required to achieve

organization-level reuse. Assessing a product’s

potential fo r reuse.

Reusability could act as the major tool in growth of

small scale industry. Due to boost in globalization

in technology, agile practices comes into act and

many small scales companies are also adopting the

Agile approach so better utilization of resources is

major challenge as well as a opportunity for small

scale industry [6].

4. Reuse advantages

4.1 Increased dependability

Reused software that has been tried and tested in

working systems should be more dependable than

new software. The init ial use of the software

reveals any design and implementation faults.

These are then fixed, thus reducing the number of

failures when the software is reused.

4.2 Reduced process risk

If software exists, there is less uncertainly in the

costs of reusing that software than in the costs of

development. This is an important factor for pro ject

management as it reduces the margin of error in

project cost estimat ion. This is particularly true

when relat ively large software components such as

sub-system are reused.

4.3 Effective use of s pecialists

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

2www.ijert.org

 Instead of application specialists doing the same

work on different projects, these specialists can

develop reusable software that encapsulate their

knowledge.

4.4 Standards compliance

Some standards such as user interface standards

can be implemented as a set of standard reusable

components. For example, if menus in a user

interfaces are implemented using reusable

components, all applications present the same

menu formats to users. The use of standard user

interfaces improves dependability as users. The use

of standard user interfaces improves dependability

as users are less likely to make mistakes when

presented with a familiar interface.

5. Reuse problems

5.1 Increased maintenance costs

If the source code of a reused software system or

component is not available then maintenance costs

may be increased as the reused elements of the

system may become increasingly incompatible with

system changes.

5.2 Lack of tool support

CASE tool sets may not supports development with

reuse. It may be difficult or impossible to integrate

these tools with a component library system. The

software process assumed by these tools may not

take reuse into account.

5.3 Not-invented-here syndrome

Some software engineers sometimes prefer to re-

write components as they believe that they can

improve on the reusable component. This is partly

to do with trust and partly to do with the fact that

writing original software is seen as more

challenging than reusing other people’s software.

5.4 Creating and maintaining a component

library

Populating a reusable component library and

ensuring the software developers can use this

lib rary can be expensive. Our current techniques

for classifying, cataloguing and retrieving software

components are immature.

5.5 Finding, understanding and adapting

reusable components

Software components have to be discovered in a

lib rary, understood and, sometimes, adapted to

work in a new environment. Engineers must be

reasonably confident of finding a component search

as part of their normal development process.

6. Conclusion

There is an ample scope of research in stated area.

Present study will reflect the importance of user

requirements in any software project and how we

can utilize resources with better approach with

reusability. It will exp lore how way of requirement

gathering is modified when reuse of recourses are

taken into part at very initial step. It provides

guidance for small scale companies to achieve

growth during resource reusability.

7. References

[1] B.Jalender, Dr. A Govardhan, Dr.P Premchand,” A

Pragmatic approach to software reuse”; journal of

Theoretical and Applied Information Technology.

[2] [Morisio02] Morision, M., Ezran, M., Tully, C.:

Success and Failures in Software Reuse.IEEE Trans.
Software Engineering, 28(4), pp. 340-357, April

2002.

[3] W.B. Frakes, C.J. Fox, “Sixteen Questions about

Software Reuse”, Comm. ACM, 38(6):75-87, 1995.

[4] Francisco J. Pino Æ Fe´lix Garcı´a Æ Mario Piattini,

“Software process improvement in small and medium

software enterprises: a systematic review”: Published

online: 21 November 2007_ Springer Science
Business Media, LLC 2007.

[5] [Griss95] Griss, M.L., Wosser, M.: Making Reuse

Work in Hewlett-Packard. IEEE Software, 12(1),

pp. 105-107, January 1995.

[6] Version one, 3rd Annual Survey: “The State of Agile

Development”,

www.versionone.com/pdf/3rdAnnualStateOfAgile_F

ullDataReport.pdf, 2008.

[7] Tim Menzies, Justin S. Di Stefano,” More Success

and Failure Factors in Software Reuse”, IEEE trans.

soft. eng. vol. xx, no. y, month 2002.

[8] Fayad, M. E., Laitinen, M., & Ward, R. P. (2000).

Software engineering in the small. Communications

of the ACM, 43(3), 115–118.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

3www.ijert.org

